1
|
Pourteymour S, Majhi RK, Norheim FA, Drevon CA. Exercise Delays Brain Ageing Through Muscle-Brain Crosstalk. Cell Prolif 2025:e70026. [PMID: 40125692 DOI: 10.1111/cpr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Ageing is often accompanied by cognitive decline and an increased risk of dementia. Exercise is a powerful tool for slowing brain ageing and enhancing cognitive function, as well as alleviating depression, improving sleep, and promoting overall well-being. The connection between exercise and healthy brain ageing is particularly intriguing, with exercise-induced pathways playing key roles. This review explores the link between exercise and brain health, focusing on how skeletal muscle influences the brain through muscle-brain crosstalk. We examine the interaction between the brain with well-known myokines, including brain-derived neurotrophic factor, macrophage colony-stimulating factor, vascular endothelial growth factor and cathepsin B. Neuroinflammation accumulates in the ageing brain and leads to cognitive decline, impaired motor skills and increased susceptibility to neurodegenerative diseases. Finally, we examine the evidence on the effects of exercise on neuronal myelination in the central nervous system, a crucial factor in maintaining brain health throughout the lifespan.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rakesh Kumar Majhi
- Tissue Restoration Lab, Department of Biological Sciences and Bioengineering, Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
- Center of Excellence in Cancer, Gangwal School of Medical Science and Technology, Indian Institute of Technology Kanpur, Kanpur, India
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo, Norway
| |
Collapse
|
2
|
Alijanpourotaghsara A, Mirpour K, Choi JW, Chitta KK, Shalaby A, Boswell M, Chilukuri S, Cohen SL, Byon R, Benam M, Kariv S, Lee J, Duncan D, Pouratian N. B(RAIN) 2-BRAIN integrated Resource for Anatomy and Intracranial Neurophysiology. Sci Data 2025; 12:442. [PMID: 40089497 PMCID: PMC11910653 DOI: 10.1038/s41597-025-04784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
The Brain Integrated Resource for Human Anatomy and Intracranial Neurophysiology (B(RAIN)2) is a multi-center data resource that provides standardized imaging and intracranial neurophysiological data from patients who have undergone deep brain stimulation (DBS) implantation with intracranial electroencephalography (iEEG) recordings. The database includes patients' electrophysiological recordings from the cerebral cortex and deeper brain structures, alongside high-resolution neurological imaging scans taken at preoperative, intraoperative, and postoperative stages. The data are systematically organized using the Brain Imaging Data Structure (BIDS) format for imaging data and iEEG-BIDS for intracranial electrophysiological recordings. This standardized structure facilitates data integration, sharing, and analysis across research institutions. Additionally, the database features detailed metadata, such as diagnostic information and neurological assessment scores, providing a comprehensive profile of each patient's data.
Collapse
Affiliation(s)
| | - Koorosh Mirpour
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Krishna Kanth Chitta
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ahmed Shalaby
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Misque Boswell
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sahil Chilukuri
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Samantha L Cohen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan Byon
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohsen Benam
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Saar Kariv
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
3
|
Kušleikienė S, Ziv G, Vints WAJ, Krasinskė E, Šarkinaite M, Qipo O, Bautmans I, Himmelreich U, Masiulis N, Česnaitienė VJ, Levin O. Cognitive gains and cortical thickness changes after 12 weeks of resistance training in older adults with low and high risk of mild cognitive impairment: Findings from a randomized controlled trial. Brain Res Bull 2025; 222:111249. [PMID: 39954817 DOI: 10.1016/j.brainresbull.2025.111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND In this randomized controlled trial, we assessed the neuroprotective effect of a 12-week resistance training (RT) program on executive control and cortical thickness of the prefrontal, temporal, parietal, and central cortex, regions prone to structural decline in individuals with mild cognitive impairment (MCI). METHODS Seventy older adults (aged 60-85 y old, 38 females and 32 males) were randomly allocated to a 12-week lower limb RT program or a waiting list control group. The Montreal Cognitive Assessment (MoCA) was used to stratify participants screened for high (< 26) or low (≥ 26) MCI risk. Cognitive measurements consisted of the two-choice reaction time, Go/No-go, mathematical processing, and memory search tests. Cortical thickness was estimated from 3D T1-weighted MR images. RESULTS Complete randomized controlled trial data was obtained from 50 individuals (24 with high MCI risk). Significant Group x Time interactions were found for response on the Go/No-go task and cortical thickness of the right parahippocampal gyrus [F ≥ 5.3, p ≤ 0.03; η2p ≥ 0.12]. An inspection of these observations revealed an increase in cortical thickness (+1.18 %) and a decrease in response time (-4.35 %) in individuals with high MCI risk allocated to the exercise group (both uncorrected p = 0.08). Decreased response time on the Go/No-go task was associated with increased cortical thickness in the right entorhinal gyrus (uncorrected p = 0.01). CONCLUSIONS Our study demonstrated that 12 weeks of RT intervention may effectively improve cognitive performance and slow neuronal loss in the hippocampal complex of older adults at high MCI risk. Findings support evidence for the neuroprotective effects of resistance training and its potential role in cognitive health.
Collapse
Affiliation(s)
- Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania
| | - Gal Ziv
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas LT-44221, Lithuania; The Levinsky-Wingate Academic Center, Netanya 4290200, Israel
| | - Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, Maastricht 6229 RE, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek 6432 CC, the Netherlands.
| | - Erika Krasinskė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania
| | - Milda Šarkinaite
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50009, Lithuania
| | - Orgesa Qipo
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania; Frailty & Resilience in Ageing (FRIA) research department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Jette 1090, Belgium
| | - Ivan Bautmans
- Frailty & Resilience in Ageing (FRIA) research department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Jette 1090, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, Vilnius LT-03101, Lithuania
| | - Vida J Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania; Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas LT-44221, Lithuania; Frailty & Resilience in Ageing (FRIA) research department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Jette 1090, Belgium; Motor Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium
| |
Collapse
|
4
|
Mynssen H, Avelino-de-Souza K, Chaim K, Ribeiro VL, Patzke N, Mota B. Stitcher: A Surface Reconstruction Tool for Highly Gyrified Brains. Neuroinformatics 2024; 22:539-554. [PMID: 39387991 PMCID: PMC11579147 DOI: 10.1007/s12021-024-09678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 10/12/2024]
Abstract
Brain reconstruction, specially of the cerebral cortex, is a challenging task and even more so when it comes to highly gyrified brained animals. Here, we present Stitcher, a novel tool capable of generating such surfaces utilizing MRI data and manual segmentation. Stitcher makes a triangulation between consecutive brain slice segmentations by recursively adding edges that minimize the total length and simultaneously avoid self-intersection. We applied this new method to build the cortical surfaces of two dolphins: Guiana dolphin (Sotalia guianensis), Franciscana dolphin (Pontoporia blainvillei); and one pinniped: Steller sea lion (Eumetopias jubatus). Specifically in the case of P. blainvillei, two reconstructions at two different resolutions were made. Additionally, we also performed reconstructions for sub and non-cortical structures of Guiana dolphin. All our cortical mesh results show remarkable resemblance with the real anatomy of the brains, except P. blainvillei with low-resolution data. Sub and non-cortical meshes were also properly reconstructed and the spatial positioning of structures was preserved with respect to S. guianensis cerebral cortex. In a comparative perspective between methods, Stitcher presents compatible results for volumetric measurements when contrasted with other anatomical standard tools. In this way, Stitcher seems to be a viable pipeline for new neuroanatomical analysis, enhancing visualization and descriptions of non-primates species, and broadening the scope of compared neuroanatomy.
Collapse
Affiliation(s)
- Heitor Mynssen
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-971, Brazil
- Laboratório de Biologia Teórica e Matemática Experimental (MetaBIO), Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Kamilla Avelino-de-Souza
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-971, Brazil.
- Laboratório de Biologia Teórica e Matemática Experimental (MetaBIO), Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
| | - Khallil Chaim
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- LIM44, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, 05403-010, Brazil
| | | | - Nina Patzke
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
- Faculty of Medicine, IMBB, HMU Health and Medical University, Potsdam, 14471, Germany.
- Department of Biological Science, Faculty of Sciences, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Bruno Mota
- Laboratório de Biologia Teórica e Matemática Experimental (MetaBIO), Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| |
Collapse
|
5
|
Liu YS, Baxi M, Madan CR, Zhan K, Makris N, Rosene DL, Killiany RJ, Cetin-Karayumak S, Pasternak O, Kubicki M, Cao B. Brain age of rhesus macaques over the lifespan. Neurobiol Aging 2024; 139:73-81. [PMID: 38643691 DOI: 10.1016/j.neurobiolaging.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024]
Abstract
Through the application of machine learning algorithms to neuroimaging data the brain age methodology was shown to provide a useful individual-level biological age prediction and identify key brain regions responsible for the prediction. In this study, we present the methodology of constructing a rhesus macaque brain age model using a machine learning algorithm and discuss the key predictive brain regions in comparison to the human brain, to shed light on cross-species primate similarities and differences. Structural information of the brain (e.g., parcellated volumes) from brain magnetic resonance imaging of 43 rhesus macaques were used to develop brain atlas-based features to build a brain age model that predicts biological age. The best-performing model used 22 selected features and achieved an R2 of 0.72. We also identified interpretable predictive brain features including Right Fronto-orbital Cortex, Right Frontal Pole, Right Inferior Lateral Parietal Cortex, and Bilateral Posterior Central Operculum. Our findings provide converging evidence of the parallel and comparable brain regions responsible for both non-human primates and human biological age prediction.
Collapse
Affiliation(s)
- Yang S Liu
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Madhura Baxi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kevin Zhan
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Nikolaos Makris
- Department of Psychiatry, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ronald J Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada; Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Jao CW, Wu HM, Wang TY, Duan CA, Wang PS, Wu YT. Morphological changes of cerebral gray matter in spinocerebellar ataxia type 3 using fractal dimension analysis. PROGRESS IN BRAIN RESEARCH 2024; 290:1-21. [PMID: 39448107 DOI: 10.1016/bs.pbr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease, presents as a cerebellar cognitive affective syndrome (CCAS) and represents the predominant SCA genotype in Taiwan. Beyond cerebellar involvement, SCA3 patients exhibit cerebral atrophy. While prior neurodegenerative disease studies relied on voxel-based morphometry (VBM) for brain atrophy assessment, its qualitative nature limits individual and region-specific evaluations. To address this, we employed fractal dimension (FD) analysis to quantify cortical complexity changes in SCA3 patients. We examined 50 SCA3 patients and 50 age- and sex-matched healthy controls (HC), dividing MRI cerebral gray matter (GM) into 68 auto-anatomical subregions. Using three-dimensional FD analysis, we identified GM atrophy manifestations in SCA3 patients. Results revealed lateral atrophy symptoms in the left frontal, parietal, and occipital lobes, and fewer symptoms in the right hemisphere's parietal and occipital lobes. Focal areas of atrophy included regions previously identified in SCA3 studies, alongside additional regions with decreased FD values. Bilateral postcentral gyrus and inferior parietal gyrus exhibited pronounced atrophy, correlating with Scale for the Assessment and Rating of Ataxia (SARA) scores and disease duration. Notably, the most notable focal areas were the bilateral postcentral gyrus and the left superior temporal gyrus, serving as imaging biomarkers for SCA3. Our study enhances understanding of regional brain atrophy in SCA3, corroborating known clinical features while offering new insights into disease progression.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yun Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Quanta Computer, Taipei, Taiwan
| | - Chien-An Duan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Guishan, Taiwan
| | - Po-Shan Wang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
7
|
Aghamohammadi-Sereshki A, Pietrasik W, Malykhin NV. Aging, cingulate cortex, and cognition: insights from structural MRI, emotional recognition, and theory of mind. Brain Struct Funct 2024:10.1007/s00429-023-02753-5. [PMID: 38305874 DOI: 10.1007/s00429-023-02753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
The cingulate cortex is a limbic structure involved in multiple functions, including emotional processing, pain, cognition, memory, and spatial orientation. The main goal of this structural Magnetic Resonance Imaging (MRI) study was to investigate whether age affects the cingulate cortex uniformly across its anteroposterior dimensions and determine if the effects of age differ based on sex, hemisphere, and regional cingulate anatomy, in a large cohort of healthy individuals across the adult lifespan. The second objective aimed to explore whether the decline in emotional recognition accuracy and Theory of Mind (ToM) is linked to the potential age-related reductions in the pregenual anterior cingulate (ACC) and anterior midcingulate (MCC) cortices. We recruited 126 healthy participants (18-85 years) for this study. MRI datasets were acquired on a 4.7 T system. The cingulate cortex was manually segmented into the pregenual ACC, anterior MCC, posterior MCC, and posterior cingulate cortex (PCC). We observed negative relationships between the presence and length of the superior cingulate gyrus and bilateral volumes of pregenual ACC and anterior MCC. Age showed negative effects on the volume of all cingulate cortical subregions bilaterally except for the right anterior MCC. Most of the associations between age and the cingulate subregional volumes were linear. We did not find a significant effect of sex on cingulate cortical volumes. However, stronger effects of age were observed in men compared to women. This study also demonstrated that performance on an emotional recognition task was linked to pregenual ACC volume, whist the ToM capabilities were related to the size of pregenual ACC and anterior MCC. These results suggest that the cingulate cortex contributes to emotional recognition ability and ToM across the adult lifespan.
Collapse
Affiliation(s)
| | - Wojciech Pietrasik
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2V2, Canada.
| |
Collapse
|
8
|
Sciacchitano S, Carola V, Nicolais G, Sciacchitano S, Napoli C, Mancini R, Rocco M, Coluzzi F. To Be Frail or Not to Be Frail: This Is the Question-A Critical Narrative Review of Frailty. J Clin Med 2024; 13:721. [PMID: 38337415 PMCID: PMC10856357 DOI: 10.3390/jcm13030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Many factors have contributed to rendering frailty an emerging, relevant, and very popular concept. First, many pandemics that have affected humanity in history, including COVID-19, most recently, have had more severe effects on frail people compared to non-frail ones. Second, the increase in human life expectancy observed in many developed countries, including Italy has led to a rise in the percentage of the older population that is more likely to be frail, which is why frailty is much a more common concern among geriatricians compared to other the various health-care professionals. Third, the stratification of people according to the occurrence and the degree of frailty allows healthcare decision makers to adequately plan for the allocation of available human professional and economic resources. Since frailty is considered to be fully preventable, there are relevant consequences in terms of potential benefits both in terms of the clinical outcome and healthcare costs. Frailty is becoming a popular, pervasive, and almost omnipresent concept in many different contexts, including clinical medicine, physical health, lifestyle behavior, mental health, health policy, and socio-economic planning sciences. The emergence of the new "science of frailty" has been recently acknowledged. However, there is still debate on the exact definition of frailty, the pathogenic mechanisms involved, the most appropriate method to assess frailty, and consequently, who should be considered frail. This narrative review aims to analyze frailty from many different aspects and points of view, with a special focus on the proposed pathogenic mechanisms, the various factors that have been considered in the assessment of frailty, and the emerging role of biomarkers in the early recognition of frailty, particularly on the role of mitochondria. According to the extensive literature on this topic, it is clear that frailty is a very complex syndrome, involving many different domains and affecting multiple physiological systems. Therefore, its management should be directed towards a comprehensive and multifaceted holistic approach and a personalized intervention strategy to slow down its progression or even to completely reverse the course of this condition.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Giampaolo Nicolais
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Simona Sciacchitano
- Department of Psychiatry, La Princesa University Hospital, 28006 Madrid, Spain;
| | - Christian Napoli
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Monica Rocco
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Flaminia Coluzzi
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| |
Collapse
|
9
|
Elmer S, Kurthen I, Meyer M, Giroud N. A multidimensional characterization of the neurocognitive architecture underlying age-related temporal speech processing. Neuroimage 2023; 278:120285. [PMID: 37481009 DOI: 10.1016/j.neuroimage.2023.120285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023] Open
Abstract
Healthy aging is often associated with speech comprehension difficulties in everyday life situations despite a pure-tone hearing threshold in the normative range. Drawing on this background, we used a multidimensional approach to assess the functional and structural neural correlates underlying age-related temporal speech processing while controlling for pure-tone hearing acuity. Accordingly, we combined structural magnetic resonance imaging and electroencephalography, and collected behavioral data while younger and older adults completed a phonetic categorization and discrimination task with consonant-vowel syllables varying along a voice-onset time continuum. The behavioral results confirmed age-related temporal speech processing singularities which were reflected in a shift of the boundary of the psychometric categorization function, with older adults perceiving more syllable characterized by a short voice-onset time as /ta/ compared to younger adults. Furthermore, despite the absence of any between-group differences in phonetic discrimination abilities, older adults demonstrated longer N100/P200 latencies as well as increased P200 amplitudes while processing the consonant-vowel syllables varying in voice-onset time. Finally, older adults also exhibited a divergent anatomical gray matter infrastructure in bilateral auditory-related and frontal brain regions, as manifested in reduced cortical thickness and surface area. Notably, in the younger adults but not in the older adult cohort, cortical surface area in these two gross anatomical clusters correlated with the categorization of consonant-vowel syllables characterized by a short voice-onset time, suggesting the existence of a critical gray matter threshold that is crucial for consistent mapping of phonetic categories varying along the temporal dimension. Taken together, our results highlight the multifaceted dimensions of age-related temporal speech processing characteristics, and pave the way toward a better understanding of the relationships between hearing, speech and the brain in older age.
Collapse
Affiliation(s)
- Stefan Elmer
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland; Competence center Language & Medicine, University of Zurich, Switzerland.
| | - Ira Kurthen
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland; Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland; Cognitive Psychology Unit, Alpen-Adria University, Klagenfurt, Austria
| | - Nathalie Giroud
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland; Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland; Competence center Language & Medicine, University of Zurich, Switzerland
| |
Collapse
|
10
|
Clifford KP, Miles AE, Prevot TD, Misquitta KA, Ellegood J, Lerch JP, Sibille E, Nikolova YS, Banasr M. Brain structure and working memory adaptations associated with maturation and aging in mice. Front Aging Neurosci 2023; 15:1195748. [PMID: 37484693 PMCID: PMC10359104 DOI: 10.3389/fnagi.2023.1195748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction As the population skews toward older age, elucidating mechanisms underlying human brain aging becomes imperative. Structural MRI has facilitated non-invasive investigation of lifespan brain morphology changes, yet this domain remains uncharacterized in rodents despite increasing use as models of disordered human brain aging. Methods Young (2m, n = 10), middle-age (10m, n = 10) and old (22m, n = 9) mice were utilized for maturational (young vs. middle-age) and aging-related (middle-age vs. old mice) comparisons. Regional brain volume was averaged across hemispheres and reduced to 32 brain regions. Pairwise group differences in regional volume were tested using general linear models, with total brain volume as a covariate. Sample-wide associations between regional brain volume and Y-maze performance were assessed using logistic regression, residualized for total brain volume. Both analyses corrected for multiple comparisons. Structural covariance networks were generated using the R package "igraph." Group differences in network centrality (degree), integration (mean distance), and segregation (transitivity, modularity) were tested across network densities (5-40%), using 5,000 (1,000 for degree) permutations with significance criteria of p < 0.05 at ≥5 consecutive density thresholds. Results Widespread significant maturational changes in volume occurred in 18 brain regions, including considerable loss in isocortex regions and increases in brainstem regions and white matter tracts. The aging-related comparison yielded 6 significant changes in brain volume, including further loss in isocortex regions and increases in white matter tracts. No significant volume changes were observed across either comparison for subcortical regions. Additionally, smaller volume of the anterior cingulate area (χ2 = 2.325, pBH = 0.044) and larger volume of the hippocampal formation (χ2 = -2.180, pBH = 0.044) were associated with poorer cognitive performance. Maturational network comparisons yielded significant degree changes in 9 regions, but no aging-related changes, aligning with network stabilization trends in humans. Maturational decline in modularity occurred (24-29% density), mirroring human trends of decreased segregation in young adulthood, while mean distance and transitivity remained stable. Conclusion/Implications These findings offer a foundational account of age effects on brain volume, structural brain networks, and working memory in mice, informing future work in facilitating translation between rodent models and human brain aging.
Collapse
Affiliation(s)
- Kevan P. Clifford
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Amy E. Miles
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Thomas D. Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Keith A. Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Yuliya S. Nikolova
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Evaluation of Brain Tumors Using Amide Proton Transfer Imaging: A Comparison of Normal Amide Proton Transfer Signal With Abnormal Amide Proton Transfer Signal Value. J Comput Assist Tomogr 2023; 47:121-128. [PMID: 36112043 DOI: 10.1097/rct.0000000000001378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate the relationship of amide proton transfer (APT) signal characteristics in brain tumors and uninvolved brain tissue for patients with glioblastoma and those with brain metastases. METHODS Using the mDIXON 3D-APT sequence of the fast spin echo method, an APT image was obtained. The mean APT signal values of tumor core, peritumor edema, ipsilateral normal-appearing white matter (INAWM), and contralateral normal white matter (CNAWM) were obtained and compared between glioblastoma and brain metastases. Receiver operating characteristic curves were used to evaluate parameters for distinguishing between glioblastoma and brain metastases. In addition, the difference and change rate in APT signal values between tumor core and peritumoral edema (PE) and CNAWM were evaluated, respectively. RESULTS The APT signal values of glioblastoma were the highest in tumor core (3.41% ± 0.49%), followed by PE (2.24% ± 0.29%), INAWM (1.35% ± 0.15%), and CNAWM (1.26% ± 0.12%, P < 0.001). The APT signal value of brain metastases was the highest in tumor core (2.74% ± 0.34%), followed by PE (1.86% ± 0.35%), INAWM (1.17% ± 0.13%), and CNAWM (1.2% ± 0.09%, P < 0.01). The APT change rate (between PE and CNAWM) was not significantly different at 78% and 56% for glioblastoma and brain metastases, respectively ( P > 0.05). CONCLUSIONS Performing APT imaging under the same parameters used in this study may aid in the identification of brain tumors.
Collapse
|
12
|
Prasannakumar A, Korann V, Jacob A, Bharath RD, Kumar V, Varambally S, Venkatasubramanian G, Rao NP. Relation between frontal pole volumes and cognitive insight in Schizophrenia. Asian J Psychiatr 2022; 76:103204. [PMID: 35907267 DOI: 10.1016/j.ajp.2022.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cognitive insight comprising self-reflection and self-certainty is an important determinant of functional outcomes in Schizophrenia. The neural correlates of cognitive insight in Schizophrenia are underexamined. The frontal pole (FP) is implicated in metacognitive function in healthy individuals, but its role is not well examined in Schizophrenia. We had earlier reported the relationship between Frontal pole volumes and cognitive insight in a small sample of only male patients. Hence, we studied this relationship in an independent sample of schizophrenia patients and healthy controls. METHODS We examined 41 healthy volunteers (HV) and 57 patients with Schizophrenia (SCZ). We used a previously validated manual morphometric method to perform FP parcellation on images obtained from a 3 T scanner and calculated the volumes. Cognitive insight was measured using Beck's Cognitive insight scale (BCIS). To assess the relationship between FP volumes and BCIS scores, multiple linear regression analyses were performed. RESULTS In the overall sample, age, years of education, and intracranial volume were significant predictors of BCIS scores. Within the SCZ group, age and left FP volume were significant predictors of BCIS composite scores and age, ICV for BCIS-self certainty. There was no significant relationship between age and FP volumes in either SCZ or HV group. DISCUSSION The current study in an independent sample further supports the critical role of the frontal pole in cognitive insight, earlier reported by us. As cognitive insight has a vital role in functional outcome, our findings have potential clinical implications.
Collapse
Affiliation(s)
- Akash Prasannakumar
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Vittal Korann
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Arpitha Jacob
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Rose Dawn Bharath
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Vijay Kumar
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Shivarama Varambally
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | | | - Naren P Rao
- National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| |
Collapse
|
13
|
Iinuma Y, Nobukawa S, Mizukami K, Kawaguchi M, Higashima M, Tanaka Y, Yamanishi T, Takahashi T. Enhanced temporal complexity of EEG signals in older individuals with high cognitive functions. Front Neurosci 2022; 16:878495. [PMID: 36213750 PMCID: PMC9533123 DOI: 10.3389/fnins.2022.878495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that the maintenance of cognitive function in the later life of older people is an essential factor contributing to mental wellbeing and physical health. Particularly, the risk of depression, sleep disorders, and Alzheimer's disease significantly increases in patients with mild cognitive impairment. To develop early treatment and prevention strategies for cognitive decline, it is necessary to individually identify the current state of cognitive function since the progression of cognitive decline varies among individuals. Therefore, the development of biomarkers that allow easier measurement of cognitive function in older individuals is relevant for hyperaged societies. One of the methods used to estimate cognitive function focuses on the temporal complexity of electroencephalography (EEG) signals. The characteristics of temporal complexity depend on the time scale, which reflects the range of neuron functional interactions. To capture the dynamics, composed of multiple time scales, multiscale entropy (MSE) analysis is effective for comprehensively assessing the neural activity underlying cognitive function in the brain. Thus, we hypothesized that EEG complexity analysis could serve to assess a wide range of cognitive functions in older adults. To validate our hypothesis, we divided older participants into two groups based on their cognitive function test scores: a high cognitive function group and a low cognitive function group, and applied MSE analysis to the measured EEG data of all participants. The results of the repeated-measures analysis of covariance using age and sex as a covariate in the MSE profile showed a significant difference between the high and low cognitive function groups (F = 10.18, p = 0.003) and the interaction of the group × electrodes (F = 3.93, p = 0.002). Subsequently, the results of the post-hoct-test showed high complexity on a slower time scale in the frontal, parietal, and temporal lobes in the high cognitive function group. This high complexity on a slow time scale reflects the activation of long-distance neural interactions among various brain regions to achieve high cognitive functions. This finding could facilitate the development of a tool for diagnosis of cognitive decline in older individuals.
Collapse
Affiliation(s)
- Yuta Iinuma
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
- *Correspondence: Sou Nobukawa
| | - Kimiko Mizukami
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Megumi Kawaguchi
- Department of Nursing, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
| | | | | | | | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
- Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
14
|
Abstract
Sex and gender differences are seen in cognitive disturbances in a variety of neurological and psychiatry diseases. Men are more likely to have cognitive symptoms in schizophrenia whereas women are more likely to have more severe cognitive symptoms with major depressive disorder and Alzheimer's disease. Thus, it is important to understand sex and gender differences in underlying cognitive abilities with and without disease. Sex differences are noted in performance across various cognitive domains - with males typically outperforming females in spatial tasks and females typically outperforming males in verbal tasks. Furthermore, there are striking sex differences in brain networks that are activated during cognitive tasks and in learning strategies. Although rarely studied, there are also sex differences in the trajectory of cognitive aging. It is important to pay attention to these sex differences as they inform researchers of potential differences in resilience to age-related cognitive decline and underlying mechanisms for both healthy and pathological cognitive aging, depending on sex. We review literature on the progressive neurodegenerative disorder, Alzheimer's disease, as an example of pathological cognitive aging in which human females show greater lifetime risk, neuropathology, and cognitive impairment, compared to human males. Not surprisingly, the relationships between sex and cognition, cognitive aging, and Alzheimer's disease are nuanced and multifaceted. As such, this chapter will end with a discussion of lifestyle factors, like education and diet, as modifiable factors that can alter cognitive aging by sex. Understanding how cognition changes across age and contributing factors, like sex differences, will be essential to improving care for older adults.
Collapse
|
15
|
Zhu L, Zhang W, Chen L, Ren Y, Cao Y, Sun T, Sun B, Liu J, Wang J, Zheng C. Brain Gray Matter Alterations in Hepatic Encephalopathy: A Voxel-Based Meta-Analysis of Whole-Brain Studies. Front Hum Neurosci 2022; 16:838666. [PMID: 35517986 PMCID: PMC9062230 DOI: 10.3389/fnhum.2022.838666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Previous studies on voxel-based morphometry (VBM) have found that there were gray matter alterations in patients with hepatic encephalopathy (HE). However, the reported results were inconsistent and lack a quantitative review. Therefore, this study aims for a quantitative meta-analysis of VBM analysis on patients with HE. Methods The studies in our meta-analysis were collected from Pubmed, Web of Science, and Embase, which were published from January 1947 to October 2021. The seed-based d mapping (SDM) method was applied to quantitatively estimate the regional gray matter abnormalities in patients with HE. A meta-regression analysis was applied to evaluate the relationship between plasma ammonia and gray matter alteration. Results There were nine studies, with sixteen datasets consisting of 333 participants with HE and 429 healthy controls. The pooled and subgroup meta-analyses showed an increase in gray matter volume (GMV) in the bilateral thalamus and the calcarine fissure but a decrease in the GMV in the bilateral insula, the basal ganglia, the anterior cingulate gyrus, and the cerebellum. The meta-regression showed that plasma ammonia was positively associated with the GMV in the left thalamus but was negatively associated with the GMV in the cerebellum and the bilateral striatum. Conclusion Gray matter volume in patients with HE largely varied and could be affected by plasma ammonia. The findings of this study could help us to better understand the pathophysiology of cognitive dysfunction in patients with HE.
Collapse
Affiliation(s)
- Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
16
|
Izumika R, Cabeza R, Tsukiura T. Neural Mechanisms of Perceiving and Subsequently Recollecting Emotional Facial Expressions in Young and Older Adults. J Cogn Neurosci 2022; 34:1183-1204. [PMID: 35468212 DOI: 10.1162/jocn_a_01851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is known that emotional facial expressions modulate the perception and subsequent recollection of faces and that aging alters these modulatory effects. Yet, the underlying neural mechanisms are not well understood, and they were the focus of the current fMRI study. We scanned healthy young and older adults while perceiving happy, neutral, or angry faces paired with names. Participants were then provided with the names of the faces and asked to recall the facial expression of each face. fMRI analyses focused on the fusiform face area (FFA), the posterior superior temporal sulcus (pSTS), the OFC, the amygdala, and the hippocampus (HC). Univariate activity, multivariate pattern (MVPA), and functional connectivity analyses were performed. The study yielded two main sets of findings. First, in pSTS and the amygdala, univariate activity and MVPA discrimination during the processing of facial expressions were similar in young and older adults, whereas in FFA and OFC, MVPA discriminated facial expressions less accurately in older than young adults. These findings suggest that facial expression representations in FFA and OFC reflect age-related dedifferentiation and positivity effect. Second, HC-OFC connectivity showed subsequent memory effects (SMEs) for happy expressions in both age groups, HC-FFA connectivity exhibited SMEs for happy and neutral expressions in young adults, and HC-pSTS interactions displayed SMEs for happy expressions in older adults. These results could be related to compensatory mechanisms and positivity effects in older adults. Taken together, the results clarify the effects of aging on the neural mechanisms in perceiving and encoding facial expressions.
Collapse
|
17
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
18
|
Intranasal Oxytocin Modulates the Salience Network in Aging. Neuroimage 2022; 253:119045. [PMID: 35259525 PMCID: PMC9450112 DOI: 10.1016/j.neuroimage.2022.119045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Growing evidence supports a role of the neuropeptide oxytocin in promoting social cognition and prosocial behavior, possibly via modulation of the salience of social information. The effect of intranasal oxytocin administration on the salience network, however, is not well understood, including in the aging brain. To address this research gap, 42 young (22.52 ± 3.02 years; 24 in the oxytocin group) and 43 older (71.12 ± 5.25 years; 21 in the oxytocin group) participants were randomized to either self-administer intranasal oxytocin or placebo prior to resting-state functional imaging. The salience network was identified using independent component analysis (ICA). Independent t-tests showed that individuals in the oxytocin compared to the placebo group had lower within-network resting-state functional connectivity, both for left amygdala (MNI coordinates: x = −18, y = 0, z = −15; corrected p < 0.05) within a more ventral salience network and for right insula (MNI coordinates: x = 39, y = 6, z = −6; corrected p < 0.05) within a more dorsal salience network. Age moderation analysis furthermore demonstrated that the oxytocin-reduced functional connectivity between the ventral salience network and the left amygdala was only present in older participants. These findings suggest a modulatory role of exogenous oxytocin on resting-state functional connectivity within the salience network and support age-differential effects of acute intranasal oxytocin administration on this network.
Collapse
|
19
|
Cárdenas-Tueme M, Trujillo-Villarreal LÁ, Ramírez-Amaya V, Garza-Villarreal EA, Camacho-Morales A, Reséndez-Pérez D. Fornix volumetric increase and microglia morphology contribute to spatial and recognition-like memory decline in ageing male mice. Neuroimage 2022; 252:119039. [PMID: 35227858 DOI: 10.1016/j.neuroimage.2022.119039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022] Open
Abstract
Ageing displays a low-grade pro-inflammatory profile in blood and the brain. Accumulation of pro-inflammatory cytokines, microglia activation and volumetric changes in the brain correlate with cognitive decline in ageing models. However, the interplay between them is not totally understood. Here, we aimed to globally identify an age-dependent pro-inflammatory profile and microglia morphological plasticity that favors major volume changes in the brain associated with cognitive decline. Cluster analysis of behavioral data obtained from 2-,12- and 20-month-old male C57BL/6 mice revealed age-dependent cognitive decline after the Y-maze, Barnes maze, object recognition (NORT) and object location tests (OLT). Global magnetic resonance imageing (MRI) analysis by deformation-based morphometry (DBM) in the brain identified a volume increase in the fornix and a decrease in the left medial entorhinal cortex (MEntC) during ageing. Notably, the fornix shows an increase in the accumulation of pro-inflammatory cytokines, whereas the left MEntC displays a decrease. Morphological assessment of microglia also confirms an active and dystrophic phenotype in the fornix and a surveillance phenotype in the left MEntC. Finally, biological modeling revealed that age-related volume increase in the fornix was associated with dystrophic microglia and cognitive impairment, as evidenced by failure on tasks examining memory of object location and novelty. Our results propose that the morphological plasticity of microglia might contribute to volumetric changes in brain regions associated with cognitive decline during physiological ageing.
Collapse
Affiliation(s)
- Marcela Cárdenas-Tueme
- Universidad Autonoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, San Nicolás de los Garza, Nuevo León, México
| | - Luis Ángel Trujillo-Villarreal
- Universidad Autonoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica, Monterrey, Nuevo León, México; Universidad Autonoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud, Unidad de Neurometabolismo, Monterrey, Nuevo León, México
| | - Victor Ramírez-Amaya
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET- UNC, Friuli 2434, Colinas de Vélez Sarsfield, Córdoba 5016, Argentina
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, México
| | - Alberto Camacho-Morales
- Universidad Autonoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica, Monterrey, Nuevo León, México; Universidad Autonoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la Salud, Unidad de Neurometabolismo, Monterrey, Nuevo León, México.
| | - Diana Reséndez-Pérez
- Universidad Autonoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, San Nicolás de los Garza, Nuevo León, México.
| |
Collapse
|
20
|
Morrison KE, Stenson AF, Marx-Rattner R, Carter S, Michopoulos V, Gillespie CF, Powers A, Huang W, Kane MA, Jovanovic T, Bale TL. Developmental Timing of Trauma in Women Predicts Unique Extracellular Vesicle Proteome Signatures. Biol Psychiatry 2022; 91:273-282. [PMID: 34715991 PMCID: PMC9219961 DOI: 10.1016/j.biopsych.2021.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Exposure to traumatic events is a risk factor for negative physical and mental health outcomes. However, the underlying biological mechanisms that perpetuate these lasting effects are not known. METHODS We investigated the impact and timing of sexual trauma, a specific type of interpersonal violence, experienced during key developmental windows of childhood, adolescence, or adulthood on adult health outcomes and associated biomarkers, including circulating cell-free mitochondrial DNA levels and extracellular vesicles (EVs), in a predominantly Black cohort of women (N = 101). RESULTS Significant changes in both biomarkers examined, circulating cell-free mitochondrial DNA levels and EV proteome, were specific to developmental timing of sexual trauma. Specifically, we identified a large number of keratin-related proteins from EVs unique to the adolescent sexual trauma group. Remarkably, the majority of these keratin proteins belong to a 17q21 gene cluster, which suggests a potential local epigenetic regulatory mechanism altered by adolescent trauma to impact keratinocyte EV secretion or its protein cargo. These results, along with changes in fear-potentiated startle and skin conductance detected in these women, suggest that sexual violence experienced during the specific developmental window of adolescence may involve unique programming of the skin, the body's largest stress organ. CONCLUSIONS Together, these descriptive studies provide novel insight into distinct biological processes altered by trauma experienced during specific developmental windows. Future studies will be required to mechanistically link these biological processes to health outcomes.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anaïs F Stenson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Ruth Marx-Rattner
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sierra Carter
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Tracy L Bale
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
21
|
Moore TL, Young DA, Killiany RJ, Fonseca KR, Volfson D, Gray DL, Balice-Gordon R, Kozak R. The Effects of a Novel Non-catechol Dopamine Partial Agonist on Working Memory in the Aged Rhesus Monkey. Front Aging Neurosci 2021; 13:757850. [PMID: 34899271 PMCID: PMC8662559 DOI: 10.3389/fnagi.2021.757850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
Aged-related declines in cognition, especially working memory and executive function, begin in middle-age and these abilities are known to be mediated by the prefrontal cortex (PFC) and more specifically the dopamine (DA) system within the PFC. In both humans and monkeys, there is significant evidence that the PFC is the first cortical region to change with age and the PFC appears to be particularly vulnerable to age-related loss of dopamine (DA). Therefore, the DA system is a strong candidate for therapeutic intervention to slow or reverse age related declines in cognition. In the present study, we administered a novel selective, potent, non-catechol DA D1 R agonist PF-6294 (Pfizer, Inc.) to aged female rhesus monkeys and assessed their performance on two benchmark tasks of working memory - the Delayed Non-match to Sample Task (DNMS) and Delayed Recognition Span Task (DRST). The DNMS task was administered first with the standard 10 s delay and then with 5 min delays, with and without distractors. The DRST was administered each day with four trials with unique sequences and one trial of a repeated sequence to assess evidence learning and retention. Overall, there was no significant effect of drug on performance on any aspect of the DNMS task. In contrast, we demonstrated that a middle range dose of PF-6294 significantly increased memory span on the DRST on the first and last days of testing and by the last day of testing the increased memory span was driven by the performance on the repeated trials.
Collapse
Affiliation(s)
- Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States.,Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Damon A Young
- Internal Medicine Research Unit Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| | - Ronald J Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States.,Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Kari R Fonseca
- Medicine Design, Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| | - Dmitri Volfson
- Internal Medicine Research Unit Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| | - David L Gray
- Internal Medicine Research Unit Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| | - Rita Balice-Gordon
- Internal Medicine Research Unit Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| | - Rouba Kozak
- Internal Medicine Research Unit Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| |
Collapse
|
22
|
Charroud C, Turella L. Subcortical grey matter changes associated with motor symptoms evaluated by the Unified Parkinson's disease Rating Scale (part III): A longitudinal study in Parkinson's disease. NEUROIMAGE-CLINICAL 2021; 31:102745. [PMID: 34225020 PMCID: PMC8264213 DOI: 10.1016/j.nicl.2021.102745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 01/18/2023]
Abstract
Decreased grey matter volume over time suggests a subcortical alteration in PD. Decreased volume in the thalamus may be related to the decline in motor skills. Increased volume in the pallidum may contribute to motor impairment. Structural changes in line with the model of basal ganglia-thalamocortical circuits. VBM and volumetry might capture complementary aspects of structural changes in PD.
Parkinson disease (PD) is characterized by motor deficits related to structural changes in the basal ganglia-thalamocortical circuits. However, it is still unclear the exact nature of the association between grey matter alterations and motor symptoms. Therefore, the aim of our investigation was to identify the subcortical modifications associated with motor symptoms of PD over time - adopting voxel-based morphometry (VBM) and automated volumetry methods. We selected fifty subjects with PD from the Parkinson’s Progression Markers Initiative (PPMI) database, who performed an MRI session at two time points: at baseline (i.e. at maximum 2 years after clinical diagnosis of PD) and after 48 months. Motor symptoms were assessed using the part III of the Unified Parkinson’s Disease Rating Scale at the two time points. Our VBM and volumetric analyses showed a general atrophy in all subcortical regions when comparing baseline with 48 months. These findings confirmed previous observations indicating a subcortical alteration over time in PD. Furthermore, our findings supported the idea that a reduced volume in the thalamus and an increased volume in pallidum may be related to the decline in motor skills. These structural modifications are in accordance with the functional model of the basal ganglia-thalamocortical circuits controlling movements. Moreover, VBM and volumetry provided partially overlapping results, suggesting that these methods might capture complementary aspects of brain degeneration in PD.
Collapse
Affiliation(s)
- Céline Charroud
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy.
| | - Luca Turella
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy
| |
Collapse
|
23
|
Pearson AG, Miller KB, Corkery AT, Eisenmann NA, Howery AJ, Carl AE, Eldridge MW, Barnes JN. Impact of age and cyclooxygenase inhibition on the hemodynamic response to acute cognitive challenges. Am J Physiol Regul Integr Comp Physiol 2021; 321:R208-R219. [PMID: 34161746 DOI: 10.1152/ajpregu.00048.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Structural and functional changes in the cerebral vasculature occur with advancing age, which may lead to impaired neurovascular coupling (NVC) and cognitive decline. Cyclooxygenase (COX) inhibition abolishes age-related differences in cerebrovascular reactivity, but it is unclear if COX inhibition impacts NVC. The purpose of this study was to examine the influence of aging on NVC before and after COX inhibition. Twenty-three young (age = 25 ± 4 yr) and 21 older (age = 64 ± 5 yr) adults completed two levels of difficulty of the Stroop and n-back tests before and after COX inhibition. Middle cerebral artery blood velocity (MCAv) was measured using transcranial Doppler ultrasound and mean arterial blood pressure (MAP) was measured using a finger cuff. Hemodynamic variables were measured at rest and in response to cognitive challenges. During the Stroop test, older adults demonstrated a greater increase in MCAv (young: 2.2 ± 6.8% vs. older: 5.9 ± 5.8%; P = 0.030) and MAP (young: 2.0 ± 4.9% vs. older: 4.8 ± 4.9%; P = 0.036) compared with young adults. There were no age-related differences during the n-back test. COX inhibition reduced MCAv by 30% in young and 26% in older adults (P < 0.001 for both). During COX inhibition, there were no age-related differences in the percent change in MCAv or MAP in response to the cognitive tests. Our results show that older adults require greater increases in MCAv and MAP during a test of executive function compared with young adults and that any age-related differences in NVC were abolished during COX inhibition. Collectively, this suggests that aging is associated with greater NVC necessary to accomplish a cognitive task.
Collapse
Affiliation(s)
- Andrew G Pearson
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kathleen B Miller
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Adam T Corkery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicole A Eisenmann
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anna J Howery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alexandra E Carl
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Marlowe W Eldridge
- Division of Critical Care, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin.,Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
24
|
Kiesow H, Uddin LQ, Bernhardt BC, Kable J, Bzdok D. Dissecting the midlife crisis: disentangling social, personality and demographic determinants in social brain anatomy. Commun Biol 2021; 4:728. [PMID: 34140617 PMCID: PMC8211729 DOI: 10.1038/s42003-021-02206-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
In any stage of life, humans crave connection with other people. In midlife, transitions in social networks can relate to new leadership roles at work or becoming a caregiver for aging parents. Previous neuroimaging studies have pinpointed the medial prefrontal cortex (mPFC) to undergo structural remodelling during midlife. Social behavior, personality predisposition, and demographic profile all have intimate links to the mPFC according in largely disconnected literatures. Here, we explicitly estimated their unique associations with brain structure using a fully Bayesian framework. We weighed against each other a rich collection of 40 UK Biobank traits with their interindividual variation in social brain morphology in ~10,000 middle-aged participants. Household size and daily routines showed several of the largest effects in explaining variation in social brain regions. We also revealed male-biased effects in the dorsal mPFC and amygdala for job income, and a female-biased effect in the ventral mPFC for health satisfaction. Hannah Kiesow et al. combine 40 behavioral indicators and neuroimaging data from the UK Biobank to investigate how the transitions in midlife in the domains of social, personality, and demographic determinants impact brain anatomy. Through Bayesian analyses, the authors were able to disentangle which specific traits, relative to other considered candidate traits, contributed the most to explaining differences in social brain volume.
Collapse
Affiliation(s)
- Hannah Kiesow
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Joseph Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montréal, QC, Canada. .,Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada.
| |
Collapse
|
25
|
Quantitative Analysis of Mobile Proteins in Normal Brain Tissue by Amide Proton Transfer Imaging: Age Dependence and Sex Differences. J Comput Assist Tomogr 2021; 45:277-284. [PMID: 33661152 DOI: 10.1097/rct.0000000000001141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The aims of this study were to evaluate the relationship between age change and amide proton transfer (APT) signal in each region of the whole brain and to derive the standard value of APT signal in each brain region of normal adults. MATERIALS AND METHODS Using the mDIXON 3-dimensional-APT sequence of the fast spin echo method, an APT image was obtained. In total, 60 patients (mean age, 49.8 ± 16.9 years) with no abnormal findings on magnetic resonance imaging data were included. For image analysis, registration parameters were created using the FMRIB Software Library 5.0.11, and then a region of interest was set in the Montreal Neurological Institute structural atlas for analysis. Statistical analyses were performed using the age-dependent and sex differences in APT signals from each brain region. RESULTS No significant correlation was seen between APT signal and age and sex in all brain regions. CONCLUSION Under the APT imaging parameter conditions used in this study, local brain APT signals in healthy adults are independent of age and sex.
Collapse
|
26
|
Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021; 13:986. [PMID: 33803760 PMCID: PMC8003191 DOI: 10.3390/nu13030986] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of docosahexaenoic acid (DHA) and arachidonic acid (AA) in neurogenesis and brain development throughout the life cycle is fundamental. DHA and AA are long-chain polyunsaturated fatty acids (LCPUFA) vital for many human physiological processes, such as signaling pathways, gene expression, structure and function of membranes, among others. DHA and AA are deposited into the lipids of cell membranes that form the gray matter representing approximately 25% of the total content of brain fatty acids. Both fatty acids have effects on neuronal growth and differentiation through the modulation of the physical properties of neuronal membranes, signal transduction associated with G proteins, and gene expression. DHA and AA have a relevant role in neuroprotection against neurodegenerative pathologies such as Alzheimer's disease and Parkinson's disease, which are associated with characteristic pathological expressions as mitochondrial dysfunction, neuroinflammation, and oxidative stress. The present review analyzes the neuroprotective role of DHA and AA in the extreme stages of life, emphasizing the importance of these LCPUFA during the first year of life and in the developing/prevention of neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Alfonso Valenzuela
- Faculty of Medicine, School of Nutrition, Universidad de Los Andes, Santiago 8380000, Chile;
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| |
Collapse
|
27
|
Li C, Qiao K, Mu Y, Jiang L. Large-Scale Morphological Network Efficiency of Human Brain: Cognitive Intelligence and Emotional Intelligence. Front Aging Neurosci 2021; 13:605158. [PMID: 33732136 PMCID: PMC7959829 DOI: 10.3389/fnagi.2021.605158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Network efficiency characterizes how information flows within a network, and it has been used to study the neural basis of cognitive intelligence in adolescence, young adults, and elderly adults, in terms of the white matter in the human brain and functional connectivity networks. However, there were few studies investigating whether the human brain at different ages exhibited different underpins of cognitive and emotional intelligence (EI) from young adults to the middle-aged group, especially in terms of the morphological similarity networks in the human brain. In this study, we used 65 datasets (aging 18–64), including sMRI and behavioral measurements, to study the associations of network efficiency with cognitive intelligence and EI in young adults and the middle-aged group. We proposed a new method of defining the human brain morphological networks using the morphological distribution similarity (including cortical volume, surface area, and thickness). Our results showed inverted age × network efficiency interactions in the relationship of surface-area network efficiency with cognitive intelligence and EI: a negative age × global efficiency (nodal efficiency) interaction in cognitive intelligence, while a positive age × global efficiency (nodal efficiency) interaction in EI. In summary, this study not only proposed a new method of morphological similarity network but also emphasized the developmental effects on the brain mechanisms of intelligence from young adult to middle-aged groups and may promote mental health study on the middle-aged group in the future.
Collapse
Affiliation(s)
- Chunlin Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Kaini Qiao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Mu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Jiang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Lin HY, Huang CC, Chou KH, Yang AC, Lo CYZ, Tsai SJ, Lin CP. Differential Patterns of Gyral and Sulcal Morphological Changes During Normal Aging Process. Front Aging Neurosci 2021; 13:625931. [PMID: 33613271 PMCID: PMC7886979 DOI: 10.3389/fnagi.2021.625931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
The cerebral cortex is a highly convoluted structure with distinct morphologic features, namely the gyri and sulci, which are associated with the functional segregation or integration in the human brain. During the lifespan, the brain atrophy that is accompanied by cognitive decline is a well-accepted aging phenotype. However, the detailed patterns of cortical folding change during aging, especially the changing age-dependencies of gyri and sulci, which is essential to brain functioning, remain unclear. In this study, we investigated the morphology of the gyral and sulcal regions from pial and white matter surfaces using MR imaging data of 417 healthy participants across adulthood to old age (21–92 years). To elucidate the age-related changes in the cortical pattern, we fitted cortical thickness and intrinsic curvature of gyri and sulci using the quadratic model to evaluate their age-dependencies during normal aging. Our findings show that comparing to gyri, the sulcal thinning is the most prominent pattern during the aging process, and the gyrification of pial and white matter surfaces were also affected differently, which implies the vulnerability of functional segregation during aging. Taken together, we propose a morphological model of aging that may provide a framework for understanding the mechanisms underlying gray matter degeneration.
Collapse
Affiliation(s)
- Hsin-Yu Lin
- Centre for Research and Development in Learning, Nanyang Technological University, Singapore, Singapore.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Chu-Chung Huang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,School of Psychology and Cognitive Science, East China Normal University, Institute of Cognitive Neuroscience, Shanghai, China
| | - Kun-Hsien Chou
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
Ferreira BLC, Fabrício DDM, Chagas MHN. Are facial emotion recognition tasks adequate for assessing social cognition in older people? A review of the literature. Arch Gerontol Geriatr 2020; 92:104277. [PMID: 33091714 DOI: 10.1016/j.archger.2020.104277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Facial emotion recognition (FER) is a component of social cognition and important to interpersonal relations. Therefore, tasks have been developed to assess this skill in different population. Regarding older people, even healthy individuals have a poorer performance compared to rate of correct answers commonly used to assess such tasks. Perform a systematic review to analyze studies addressing the performance of healthy older adults on FER tasks compared to the 70% correct response rate commonly used for the creation of stimulus banks. MATERIAL AND METHODS Searches were conducted up to May 2019 in the Pubmed, PsycInfo, Web of Science, and Scopus databases using the keywords ("faces" OR "facial") AND ("recognition" OR "expression" OR "emotional") AND ("elderly" OR "older adults"). RESULTS Twenty-seven articles were included in the present review. In 16 studies (59.2%), older people had correct response rates on FER lower than 70% on at least one of the emotions evaluated. Among the studies that evaluated each emotion specifically, 62.5% found correct response rates lower than 70% for the emotion fear, 50% for surprise, 50% for sadness, 37.5% for anger, 21.4% for disgust, and 5.9% for happiness. Moreover, the studies that evaluated the level of intensity of the emotions demonstrated a lower rate of correct responses when the intensity of the facial expression was low. CONCLUSION That studies employ methods and facial stimuli that may not be adequate for measuring this skill in older people. Thus, it is important to create adequate tasks for assessing the skill in this population.
Collapse
Affiliation(s)
- Bianca Letícia C Ferreira
- Department of Neurosciences and Behavioral Sciences, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Daiene de Morais Fabrício
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Marcos Hortes N Chagas
- Department of Neurosciences and Behavioral Sciences, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, SP, Brazil; Bairral Institute of Psychiatry, Itapira, SP, Brazil
| |
Collapse
|
30
|
Nuzzi D, Pellicoro M, Angelini L, Marinazzo D, Stramaglia S. Synergistic information in a dynamical model implemented on the human structural connectome reveals spatially distinct associations with age. Netw Neurosci 2020; 4:910-924. [PMID: 33615096 PMCID: PMC7888489 DOI: 10.1162/netn_a_00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/08/2020] [Indexed: 11/24/2022] Open
Abstract
We implement the dynamical Ising model on the large-scale architecture of white matter connections of healthy subjects in the age range 4-85 years, and analyze the dynamics in terms of the synergy, a quantity measuring the extent to which the joint state of pairs of variables is projected onto the dynamics of a target one. We find that the amount of synergy in explaining the dynamics of the hubs of the structural connectivity (in terms of degree strength) peaks before the critical temperature, and can thus be considered as a precursor of a critical transition. Conversely, the greatest amount of synergy goes into explaining the dynamics of more central nodes. We also find that the aging of structural connectivity is associated with significant changes in the simulated dynamics: There are brain regions whose synergy decreases with age, in particular the frontal pole, the subcallosal area, and the supplementary motor area; these areas could then be more likely to show a decline in terms of the capability to perform higher order computation (if structural connectivity was the sole variable). On the other hand, several regions in the temporal cortex show a positive correlation with age in the first 30 years of life, that is, during brain maturation.
Collapse
Affiliation(s)
- Davide Nuzzi
- Dipartimento Interateneo di Fisica, Universitá degli Studi Aldo Moro, Bari and INFN, Bari, Italy
| | - Mario Pellicoro
- Dipartimento Interateneo di Fisica, Universitá degli Studi Aldo Moro, Bari and INFN, Bari, Italy
| | - Leonardo Angelini
- Dipartimento Interateneo di Fisica, Universitá degli Studi Aldo Moro, Bari and INFN, Bari, Italy
| | | | - Sebastiano Stramaglia
- Dipartimento Interateneo di Fisica, Universitá degli Studi Aldo Moro, Bari and INFN, Bari, Italy
- Center of Innovative Technologies for Signal Detection and Processing (TIRES), Universitá degli Studi Aldo Moro, Bari, Italy
| |
Collapse
|
31
|
Alexander GE, Lin L, Yoshimaru ES, Bharadwaj PK, Bergfield KL, Hoang LT, Chawla MK, Chen K, Moeller JR, Barnes CA, Trouard TP. Age-Related Regional Network Covariance of Magnetic Resonance Imaging Gray Matter in the Rat. Front Aging Neurosci 2020; 12:267. [PMID: 33005147 PMCID: PMC7479213 DOI: 10.3389/fnagi.2020.00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 11/13/2022] Open
Abstract
Healthy human aging has been associated with brain atrophy in prefrontal and selective temporal regions, but reductions in other brain areas have been observed. We previously found regional covariance patterns of gray matter with magnetic resonance imaging (MRI) in healthy humans and rhesus macaques, using multivariate network Scaled Subprofile Model (SSM) analysis and voxel-based morphometry (VBM), supporting aging effects including in prefrontal and temporal cortices. This approach has yet to be applied to neuroimaging in rodent models of aging. We investigated 7.0T MRI gray matter covariance in 10 young and 10 aged adult male Fischer 344 rats to identify, using SSM VBM, the age-related regional network gray matter covariance pattern in the rodent. SSM VBM identified a regional pattern that distinguished young from aged rats, characterized by reductions in prefrontal, temporal association/perirhinal, and cerebellar areas with relative increases in somatosensory, thalamic, midbrain, and hippocampal regions. Greater expression of the age-related MRI gray matter pattern was associated with poorer spatial learning in the age groups combined. Aging in the rat is characterized by a regional network pattern of gray matter reductions corresponding to aging effects previously observed in humans and non-human primates. SSM MRI network analyses can advance translational aging neuroscience research, extending from human to small animal models, with potential for evaluating mechanisms and interventions for cognitive aging.
Collapse
Affiliation(s)
- Gene E. Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Lan Lin
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Eriko S. Yoshimaru
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Pradyumna K. Bharadwaj
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Kaitlin L. Bergfield
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Lan T. Hoang
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ, United States
| | - Monica K. Chawla
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ, United States
| | - Kewei Chen
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- Banner Samaritan PET Center and Banner Alzheimer’s Institute, Banner Good Samaritan Medical Center, Phoenix, AZ, United States
| | - James R. Moeller
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Carol A. Barnes
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
- Department of Neuroscience, University of Arizona, Tucson, AZ, United States
| | - Theodore P. Trouard
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
32
|
Daley RT, Bowen HJ, Fields EC, Parisi KR, Gutchess A, Kensinger EA. Neural mechanisms supporting emotional and self-referential information processing and encoding in older and younger adults. Soc Cogn Affect Neurosci 2020; 15:405-421. [PMID: 32301982 PMCID: PMC8561439 DOI: 10.1093/scan/nsaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Emotion and self-referential information can both enhance memory, but whether they do so via common mechanisms across the adult lifespan remains underexplored. To address this gap, the current study directly compared, within the same fMRI paradigm, the encoding of emotionally salient and self-referential information in older adults and younger adults. Behavioral results replicated the typical patterns of better memory for emotional than neutral information and for self-referential than non-self-referential materials; these memory enhancements were present for younger and older adults. In neural activity, young and older adults showed similar modulation by emotion, but there were substantial age differences in the way self-referential processing affected neural recruitment. Contrary to our hypothesis, we found little evidence for overlap in the neural mechanisms engaged for emotional and self-referential processing. These results reveal that-just as in cognitive domains-older adults can show similar performance to younger adults in socioemotional domains even though the two age groups engage distinct neural mechanisms. These findings demonstrate the need for future research delving into the neural mechanisms supporting older adults' memory benefits for socioemotional material.
Collapse
Affiliation(s)
- Ryan T Daley
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA
| | - Holly J Bowen
- Department of Psychology, Southern Methodist University, Dallas, TX 75206, USA
| | - Eric C Fields
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA.,Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Katelyn R Parisi
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA.,Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Angela Gutchess
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Elizabeth A Kensinger
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
33
|
Van Assche L, Van de Ven L, Vandenbulcke M, Luyten P. Ghosts from the past? The association between childhood interpersonal trauma, attachment and anxiety and depression in late life. Aging Ment Health 2020; 24:898-905. [PMID: 30739477 DOI: 10.1080/13607863.2019.1571017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objectives: Research suggests that vulnerability for anxiety and depression in late life results from a complex interaction between (neuro)biological and environmental factors. In this context, there is growing evidence for the role of childhood trauma on vulnerability for both anxiety and depression throughout the course of life, mainly through its effects on attachment as a biologically based neurodevelopmental stress regulation system. Yet, the impact of childhood trauma on depression and anxiety in late life specifically remains unclear. The current study therefore aims to investigate the association between retrospectively reported childhood interpersonal trauma, attachment dimensions and levels of anxiety and depression in late life.Method: A sample of 81 community dwelling older adults completed measures of early and current adversity, attachment dimensions, and levels of anxiety and depression.Results: The occurrence and frequency of childhood trauma, but not later negative adult life events, was associated with late life anxiety and depression. Both attachment anxiety and avoidance were related to anxiety and depression. Only attachment anxiety affected the association between childhood trauma, and emotional neglect in particular, and late life anxiety and depression.Conclusion: Childhood trauma may be associated with anxiety and depression in late life. Part of this association is probably indirect, via the effect of insecure attachment and high levels of attachment anxiety in particular.
Collapse
Affiliation(s)
- Lies Van Assche
- Section of Geriatric Psychiatry, Department of Psychiatry, University Hospitals Leuven, KUL, Belgium
| | - Luc Van de Ven
- Section of Geriatric Psychiatry, Department of Psychiatry, University Hospitals Leuven, KUL, Belgium
| | - Mathieu Vandenbulcke
- Section of Geriatric Psychiatry, Department of Psychiatry, University Hospitals Leuven, KUL, Belgium
| | - Patrick Luyten
- Faculty of Psychology and Educational Sciences, University of Leuven, Leuven, Belgium.,Research Department of Clinical Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
34
|
Liu J, Fan W, Jia Y, Su X, Wu W, Long X, Sun X, Liu J, Sun W, Zhang T, Gong Q, Shi H, Zhu Q, Wang J. Altered Gray Matter Volume in Patients With Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2020; 11:45. [PMID: 32117070 PMCID: PMC7031205 DOI: 10.3389/fendo.2020.00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/24/2020] [Indexed: 02/05/2023] Open
Abstract
Background and Purpose: Many imaging studies have reported structure alterations in patients with type 1 diabetes mellitus (T1DM) by using voxel-based morphometry (VBM). Nevertheless, the results reported were inconsistent and had not been reviewed quantitatively. Accordingly, the quantitative meta-analysis which including VBM studies of patients with T1DM was conducted. Materials and Methods: The gray matter volume alterations in patients with T1DM was estimated by using the software seed-based d mapping. Meantime, the meta-regression was applied to detect the effects of some demographics and clinical characteristics. Results: Six studies were finally included, which with 6 datasets comprising 414 T1DM patients and 216 healthy controls. The pooled meta-analyses detected that patients with T1DM showed robustly increased gray matter volume in the left dorsolateral superior frontal gyrus and middle frontal gyrus and a decreased gray matter volume in the right lingual gyrus, cerebellum, precuneus, the left inferior temporal gyrus, and middle temporal gyrus. The meta-regression showed that the mean age, the female patient's ratio, duration of illness and HbAlc% for T1DM patients were not linearly related with gray matter alterations. Conclusion: This meta-analysis demonstrates that gray matter volume decreases in T1DM patients were mainly locates in the cortical regions and cerebellum.
Collapse
Affiliation(s)
- Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuxi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoyun Su
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenjun Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xi Long
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xin Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jie Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wengang Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | | | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Haojun Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- *Correspondence: Haojun Shi
| | - Qing Zhu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Qing Zhu
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Jing Wang
| |
Collapse
|
35
|
Ye Z, Zhang G, Li S, Zhang Y, Xiao W, Zhou X, Münte TF. Age differences in the fronto-striato-parietal network underlying serial ordering. Neurobiol Aging 2019; 87:115-124. [PMID: 31918954 DOI: 10.1016/j.neurobiolaging.2019.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 11/30/2022]
Abstract
Maintaining the ability to arrange thoughts and actions in an appropriate serial order is crucial for complex behavior. We aimed to investigate age differences in the fronto-striato-parietal network underlying serial ordering using functional magnetic resonance imaging. We exposed 25 young and 27 older healthy adults to a digit ordering task, where they had to reorder and recall sequential digits or simply to recall them. We detected a network comprising of the lateral and medial prefrontal, posterior parietal, and striatal regions. In young adults, the prefrontal and parietal regions were more activated and more strongly connected with the supplementary motor area for "reorder & recall" than "pure recall" trials (psychophysiological interaction, PPI). In older adults, the prefrontal and parietal activations were elevated, but the PPI was attenuated. Individual adults who had a stronger PPI performed more accurately in "reorder & recall" trials. The decreased PPI appeared to be compensated by increased physiological correlations between the prefrontal/parietal cortex and the striatum, and by that between the striatum and the supplementary motor area.
Collapse
Affiliation(s)
- Zheng Ye
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Guanyu Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuaiqi Li
- Center for Brain and Cognitive Sciences, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Weizhong Xiao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaolin Zhou
- Center for Brain and Cognitive Sciences, School of Psychological and Cognitive Sciences, Peking University, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
36
|
van Leeuwen JMC, Vink M, Joëls M, Kahn RS, Hermans EJ, Vinkers CH. Reward-Related Striatal Responses Following Stress in Healthy Individuals and Patients With Bipolar Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:966-974. [PMID: 31471186 DOI: 10.1016/j.bpsc.2019.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Stress has a major impact on the onset and recurrence of mood episodes in bipolar disorder (BD), but the underlying mechanisms remain unknown. Previous studies have shown distinct time-dependent effects of stress on reward processing in healthy individuals. Impaired reward processing is a core characteristic of BD, and altered reward processing during recovery from stress could influence the development and course of bipolar disorder. METHODS We investigated brain responses during reward processing 50 minutes after stress using functional magnetic resonance imaging in 40 healthy control subjects and 40 patients with euthymic BD assigned to either an acute stress test (Trier Social Stress Test) or a no-stress condition. RESULTS Acute stress increased cortisol levels in both healthy control subjects and patients with BD. Ventral striatal responses to reward outcome were increased in healthy control subjects during stress recovery but not in patients with BD. For anticipation, no differences were found between the groups following stress. CONCLUSIONS For the first time, we show altered reward processing in patients with BD during the recovery phase of stress. These data suggest reduced neural flexibility of hedonic signaling in response to environmental challenges. This may increase the susceptibility to stressful life events in the future and play a role in the development of further psychopathology in the longer term.
Collapse
Affiliation(s)
- Judith M C van Leeuwen
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Matthijs Vink
- Department of Experimental Psychology, Utrecht University, Utrecht, the Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands; University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - René S Kahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erno J Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Psychiatry/GGZ InGeest, Amsterdam UMC (location VUmc), Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, the Netherlands
| |
Collapse
|
37
|
Herold F, Törpel A, Schega L, Müller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. Eur Rev Aging Phys Act 2019; 16:10. [PMID: 31333805 PMCID: PMC6617693 DOI: 10.1186/s11556-019-0217-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/26/2019] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND During the aging process, physical capabilities (e.g., muscular strength) and cognitive functions (e.g., memory) gradually decrease. Regarding cognitive functions, substantial functional (e.g., compensatory brain activity) and structural changes (e.g., shrinking of the hippocampus) in the brain cause this decline. Notably, growing evidence points towards a relationship between cognition and measures of muscular strength and muscle mass. Based on this emerging evidence, resistance exercises and/or resistance training, which contributes to the preservation and augmentation of muscular strength and muscle mass, may trigger beneficial neurobiological processes and could be crucial for healthy aging that includes preservation of the brain and cognition. Compared with the multitude of studies that have investigated the influence of endurance exercises and/or endurance training on cognitive performance and brain structure, considerably less work has focused on the effects of resistance exercises and/or resistance training. While the available evidence regarding resistance exercise-induced changes in cognitive functions is pooled, the underlying neurobiological processes, such as functional and structural brain changes, have yet to be summarized. Hence, the purpose of this systematic review is to provide an overview of resistance exercise-induced functional and/or structural brain changes that are related to cognitive functions. METHODS AND RESULTS A systematic literature search was conducted by two independent researchers across six electronic databases; 5957 records were returned, of which 18 were considered relevant and were analyzed. SHORT CONCLUSION Based on our analyses, resistance exercises and resistance training evoked substantial functional brain changes, especially in the frontal lobe, which were accompanied by improvements in executive functions. Furthermore, resistance training led to lower white matter atrophy and smaller white matter lesion volumes. However, based on the relatively small number of studies available, the findings should be interpreted cautiously. Hence, future studies are required to investigate the underlying neurobiological mechanisms and to verify whether the positive findings can be confirmed and transferred to other needy cohorts, such as older adults with dementia, sarcopenia and/or dynapenia.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Alexander Törpel
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany
| | - Lutz Schega
- Institute III, Department of Sport Science, Otto von Guericke University Magdeburg, Zschokkestr. 32, 39104 Magdeburg, Germany
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Brenneckestraße 6, 39118 Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
38
|
Calso C, Besnard J, Allain P. Study of the theory of mind in normal aging: focus on the deception detection and its links with other cognitive functions. AGING NEUROPSYCHOLOGY AND COGNITION 2019; 27:430-452. [PMID: 31188065 DOI: 10.1080/13825585.2019.1628176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Detection of deception is crucial to avoid negative circumstances (financial frauds, social tricks) in daily living. Considering that this cognitive function is especially supported by the prefrontal cortex of the human brain and that these cerebral regions change with advanced age, deception detection may also change with aging. Our purpose is to study this complex ability and its potential links with other cognitive functions, such as the executive control, in normal aging. Thirty-five young adults (YA) aged from 20 to 40, thirty-five old adults (OA) aged from 65 to 79 and thirty very old adults (VOA) aged from 80 to 95 were involved in this study. We propose a novel neuropsychological test (inspired by Theory of Mind Picture Story task) assessing the ability to understand deceptive and cooperative interactions, and tasks involving executive processes (monitoring, task setting, flexibility) to all participants. Between-group analyses show that older participants performed worse than YA on deceptive, cooperative and mixed situations (involving deception and reciprocity) of our task. Significant correlations exist between the deception-cooperation detection and the executive functions. Our results show that these frontal abilities decline after 65 years, even more after 80 years, and they are involved on the deceptive-cooperative situations. The verbal IQ is also linked with the deception-cooperation detection. This suggests that mixed cognitive trainings would allow older adults to detect more easily bad intentions of others, to adjust their behavior to context and to achieve their goals with less risk.
Collapse
Affiliation(s)
- Cristina Calso
- Laboratoire de Psychologie des Pays de la Loire (EA 4638), Université d'Angers, Maison de la recherche Germaine-Tillion, Angers cedex 01, France.,Unité Transversale de Recherche Psychogenèse et Psychopathologie. Cliniques, psychopathologie et psychanalyse (EA 4403), Université Paris 13-Sorbonne Paris Cité, Villetaneuse, France
| | - Jérémy Besnard
- Laboratoire de Psychologie des Pays de la Loire (EA 4638), Université d'Angers, Maison de la recherche Germaine-Tillion, Angers cedex 01, France
| | - Philippe Allain
- Laboratoire de Psychologie des Pays de la Loire (EA 4638), Université d'Angers, Maison de la recherche Germaine-Tillion, Angers cedex 01, France.,Unité de neuropsychologie, Département de neurologie, CHU d'Angers, Angers cedex 01, France
| |
Collapse
|
39
|
Ruitenberg MFL, Cassady KE. Commentary: Age Differentiation within Gray Matter, White Matter, and between Memory and White Matter in an Adult Life Span Cohort. Front Aging Neurosci 2019; 11:93. [PMID: 31057393 PMCID: PMC6482270 DOI: 10.3389/fnagi.2019.00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
- Marit F. L. Ruitenberg
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
- *Correspondence: Marit F. L. Ruitenberg
| | - Kaitlin E. Cassady
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
40
|
Cortical morphology of chronic users of codeine-containing cough syrups: association with sulcal depth, gyrification, and cortical thickness. Eur Radiol 2019; 29:5901-5909. [DOI: 10.1007/s00330-019-06165-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
41
|
Pergher V, Demaerel P, Soenen O, Saarela C, Tournoy J, Schoenmakers B, Karrasch M, Van Hulle MM. Identifying brain changes related to cognitive aging using VBM and visual rating scales. NEUROIMAGE-CLINICAL 2019; 22:101697. [PMID: 30739844 PMCID: PMC6370556 DOI: 10.1016/j.nicl.2019.101697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Aging is often associated with changes in brain structures as well as in cognitive functions. Structural changes can be visualized with Magnetic Resonance Imaging (MRI) using voxel-based grey matter morphometry (VBM) and visual rating scales to assess atrophy level. Several MRI studies have shown that possible neural correlates of cognitive changes can be seen in normal aging. It is still not fully understood how cognitive function as measured by tests and demographic factors are related to brain changes in the MRI. We recruited 55 healthy elderly subjects aged 50–79 years. A battery of cognitive tests was administered to all subjects prior to MRI scanning. Our aim was to assess correlations between age, sex, education, cognitive test performance, and the said two MRI-based measures. Our results show significant differences in VBM grey matter volume for education level (≤ 12 vs. > 12 years), with a smaller amount of grey matter volume in subjects with lower educational levels, and for age in interaction with education, indicating larger grey matter volume for young, higher educated adults. Also, grey matter volume was found to be correlated with working memory function (Digit Span Backward). Furthermore, significant positive correlations were found between visual ratings and both age and education, showing larger atrophy levels with increasing age and decreasing level of education. These findings provide supportive evidence that MRI-VBM detects structural differences for education level, and correlates with educational level and age, and working memory task performance. VBM grey matter volume differences were significant for the interaction of age and education level. Grey matter volume correlated with education level and working memory function (Digit Span Backward). Significant correlations were found between visual rating scales and both age and education. VBM is able to detect structural differences for age and education, and correlates with education and working memory.
Collapse
Affiliation(s)
- Valentina Pergher
- KU Leuven -University of Leuven, Department of Neurosciences, Laboratory for Neuro-& Psychophysiology, Leuven, Belgium.
| | - Philippe Demaerel
- Department of Radiology, University Hospitals Leuven, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Olivier Soenen
- Department of Radiology, University Hospitals Leuven, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Carina Saarela
- Department of Psychology, Åbo Akademi University, Turku, Finland; Department of Psychology, University of Turku, Turku, Finland
| | - Jos Tournoy
- Department of Chronic Diseases, Metabolism and Ageing, University Hospitals Leuven, KU Leuven, Belgium
| | - Birgitte Schoenmakers
- Academic Centre of General Practice, KU Leuven - University of Leuven, Leuven, Belgium
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Marc M Van Hulle
- KU Leuven -University of Leuven, Department of Neurosciences, Laboratory for Neuro-& Psychophysiology, Leuven, Belgium
| |
Collapse
|
42
|
Wagshul ME, Lucas M, Ye K, Izzetoglu M, Holtzer R. Multi-modal neuroimaging of dual-task walking: Structural MRI and fNIRS analysis reveals prefrontal grey matter volume moderation of brain activation in older adults. Neuroimage 2019; 189:745-754. [PMID: 30710680 DOI: 10.1016/j.neuroimage.2019.01.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/28/2022] Open
Abstract
It has been well established over the last two decades that walking is not merely an automatic, motoric activity; it also utilizes executive function circuits, which play an increasingly important role in walking for older people and those with mobility and cognitive deficits. Dual-task walking, such as walking while performing a cognitive task, is a necessary skill for everyday functioning, and has been shown to activate prefrontal lobe areas in healthy older people. Another well-established point in healthy aging is the loss of grey matter, and in particular loss of frontal lobe grey matter volume. However, the relationship between increased frontal lobe activity during dual-task walking and loss of frontal grey matter in healthy aging remains unknown. In the current study, we combined oxygenated hemoglobin (HbO2) data from functional near-infrared spectroscopy (fNIRS), taken during dual-task walking, with structural MRI volumetrics in a cohort of healthy older subjects to identify this relationship. We studied fifty-five relatively healthy, older participants (≥65 years) during two separate sessions: fNIRS to measure HbO2 changes between single-task (i.e., normal walking) and dual-task walking-while-talking, and high-resolution, structural MRI to measure frontal lobe grey matter volumes. Linear mixed effects modeling was utilized to determine the moderation effect of grey matter volume on the change in prefrontal oxygenated hemoglobin between the two walking tasks, while controlling for covariates including task performance. We found a highly significant interaction effect between frontal grey matter volume and task on HbO2 levels (p < 0.0001). Specifically, increased HbO2 levels during dual-task compared to single-task walking were associated with reduced frontal grey matter volume. Regional analysis identified bilateral superior and rostral middle gyri as the primary areas driving these results. The findings provide support for the concept of neural inefficiency: in the absence of behavioral gains, grey matter loss in relatively healthy, older individuals leads to over-activation of frontal lobe during a cognitively demanding walking task with established clinical and predictive utility.
Collapse
Affiliation(s)
- Mark E Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA; Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Melanie Lucas
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
43
|
Wang YM, Zou LQ, Xie WL, Yang ZY, Zhu XZ, Cheung EFC, Sørensen TA, Møller A, Chan RCK. Altered grey matter volume and cortical thickness in patients with schizo-obsessive comorbidity. Psychiatry Res Neuroimaging 2018; 276:65-72. [PMID: 29628272 DOI: 10.1016/j.pscychresns.2018.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 02/05/2023]
Abstract
Recent findings suggest that schizo-obsessive comorbidity (SOC) may be a unique diagnostic entity. We examined grey matter (GM) volume and cortical thickness in 22 patients with SOC, and compared them with 21 schizophrenia (SCZ) patients, 22 obsessive-compulsive disorder (OCD) patients and 22 healthy controls (HCs). We found that patients with SOC exhibited reduced GM volume in the left thalamus, the left inferior semi-lunar lobule of the cerebellum, the bilateral medial orbitofrontal cortex (medial oFC), the medial superior frontal gyrus (medial sFG), the rectus gyrus and the anterior cingulate cortex (aCC) compared with HCs. Patients with SOC also exhibited reduced cortical thickness in the right superior temporal gyrus (sTG), the right angular gyrus, the right supplementary motor area (SMA), the right middle cingulate cortex (mCC) and the right middle occipital gyrus (mOG) compared with HCs. Together with the differences in GM volume and cortical thickness between patients with SOC and patients with only SCZ or only OCD, these findings highlight the GM changes specific to patients with SOC.
Collapse
Affiliation(s)
- Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, PR China; Sino-Danish Center for Education and Research, Beijing 100190, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Lai-Quan Zou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, PR China
| | - Wen-Lan Xie
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhuo-Ya Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiong-Zhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, PR China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, PR China
| | - Thomas Alrik Sørensen
- Sino-Danish Center for Education and Research, Beijing 100190, PR China; Centre for Cognitive Neuroscience, Institute of Communication and Psychology, Aalborg University, Denmark
| | - Arne Møller
- Sino-Danish Center for Education and Research, Beijing 100190, PR China; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark; Centre of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, PR China; Sino-Danish Center for Education and Research, Beijing 100190, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
44
|
Varikuti DP, Genon S, Sotiras A, Schwender H, Hoffstaedter F, Patil KR, Jockwitz C, Caspers S, Moebus S, Amunts K, Davatzikos C, Eickhoff SB. Evaluation of non-negative matrix factorization of grey matter in age prediction. Neuroimage 2018; 173:394-410. [PMID: 29518572 PMCID: PMC5911196 DOI: 10.1016/j.neuroimage.2018.03.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/28/2018] [Accepted: 03/03/2018] [Indexed: 11/24/2022] Open
Abstract
The relationship between grey matter volume (GMV) patterns and age can be captured by multivariate pattern analysis, allowing prediction of individuals' age based on structural imaging. Raw data, voxel-wise GMV and non-sparse factorization (with Principal Component Analysis, PCA) show good performance but do not promote relatively localized brain components for post-hoc examinations. Here we evaluated a non-negative matrix factorization (NNMF) approach to provide a reduced, but also interpretable representation of GMV data in age prediction frameworks in healthy and clinical populations. This examination was performed using three datasets: a multi-site cohort of life-span healthy adults, a single site cohort of older adults and clinical samples from the ADNI dataset with healthy subjects, participants with Mild Cognitive Impairment and patients with Alzheimer's disease (AD) subsamples. T1-weighted images were preprocessed with VBM8 standard settings to compute GMV values after normalization, segmentation and modulation for non-linear transformations only. Non-negative matrix factorization was computed on the GM voxel-wise values for a range of granularities (50-690 components) and LASSO (Least Absolute Shrinkage and Selection Operator) regression were used for age prediction. First, we compared the performance of our data compression procedure (i.e., NNMF) to various other approaches (i.e., uncompressed VBM data, PCA-based factorization and parcellation-based compression). We then investigated the impact of the granularity on the accuracy of age prediction, as well as the transferability of the factorization and model generalization across datasets. We finally validated our framework by examining age prediction in ADNI samples. Our results showed that our framework favorably compares with other approaches. They also demonstrated that the NNMF based factorization derived from one dataset could be efficiently applied to compress VBM data of another dataset and that granularities between 300 and 500 components give an optimal representation for age prediction. In addition to the good performance in healthy subjects our framework provided relatively localized brain regions as the features contributing to the prediction, thereby offering further insights into structural changes due to brain aging. Finally, our validation in clinical populations showed that our framework is sensitive to deviance from normal structural variations in pathological aging.
Collapse
Affiliation(s)
- Deepthi P Varikuti
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Aristeidis Sotiras
- Section for Biomedical Image Analysis, Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
| | - Susanne Moebus
- Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christos Davatzikos
- Section for Biomedical Image Analysis, Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Juelich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
45
|
Reed MJ, Damodarasamy M, Pathan JL, Erickson MA, Banks WA, Vernon RB. The Effects of Normal Aging on Regional Accumulation of Hyaluronan and Chondroitin Sulfate Proteoglycans in the Mouse Brain. J Histochem Cytochem 2018; 66:697-707. [PMID: 29782809 DOI: 10.1369/0022155418774779] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The brain changes in volume and composition with normal aging. Cellular components of the brain are supported by an extracellular matrix (ECM) comprised largely of hyaluronan (HA) and HA-associated members of the lectican family of chondroitin sulfate proteoglycans (CSPGs). We examined regional differences in microvascular density, neuronal and glial markers, and accumulation of HA and CSPGs in mouse brains during normal aging. The cortex, hippocampus, dentate gyrus, and cerebellum of young (4 months), middle-aged (14 months), and aged (24-26 months) brains were analyzed. Microvascular density decreased in cerebral cortex and cerebellum with age. There were no detectable differences in neuronal density. There was an increase in astrocytes in the hippocampus with aging. HA accumulation was higher in aged brain relative to young brain in the cerebral cortex and cerebellum, but not in other regions examined. In contrast, CSPGs did not change with aging in any of the brain regions examined. HA and CSPGs colocalized with a subset of neuronal cell bodies and astrocytes, and at the microvasculature. Differences in accumulation of ECM in the aging brain, in the setting of decreased microvascular density and/or increased glial activation, might contribute to age-related regional differences in vulnerability to injury and ischemia.
Collapse
Affiliation(s)
- May J Reed
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Mamatha Damodarasamy
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Jasmine L Pathan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Michelle A Erickson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington
| | - Robert B Vernon
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| |
Collapse
|
46
|
Giroud N, Lemke U, Reich P, Bauer J, Widmer S, Meyer M. Are you surprised to hear this? Longitudinal spectral speech exposure in older compared to middle-aged normal hearing adults. Eur J Neurosci 2017; 47:58-68. [DOI: 10.1111/ejn.13772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Nathalie Giroud
- Department of Psychology; Research Unit for Neuroplasticity and Learning in the Healthy Aging Brain; University of Zurich; Zurich Switzerland
- Department of Psychology; University Research Priority Program “Dynamics of Healthy Aging”; University of Zurich; Zurich Switzerland
| | - Ulrike Lemke
- Science & Technology; Phonak AG; Stäfa Switzerland
| | - Philip Reich
- Department of Psychology; Research Unit for Neuroplasticity and Learning in the Healthy Aging Brain; University of Zurich; Zurich Switzerland
| | - Julia Bauer
- Department of Psychology; Research Unit for Neuroplasticity and Learning in the Healthy Aging Brain; University of Zurich; Zurich Switzerland
| | - Susann Widmer
- Department of Psychology; Research Unit for Neuroplasticity and Learning in the Healthy Aging Brain; University of Zurich; Zurich Switzerland
| | - Martin Meyer
- Department of Psychology; Research Unit for Neuroplasticity and Learning in the Healthy Aging Brain; University of Zurich; Zurich Switzerland
- Department of Psychology; University Research Priority Program “Dynamics of Healthy Aging”; University of Zurich; Zurich Switzerland
- Department of Psychology; Cognitive Neuroscience; University of Klagenfurt; Klagenfurt Austria
| |
Collapse
|
47
|
Jannusch K, Jockwitz C, Bidmon HJ, Moebus S, Amunts K, Caspers S. A Complex Interplay of Vitamin B1 and B6 Metabolism with Cognition, Brain Structure, and Functional Connectivity in Older Adults. Front Neurosci 2017; 11:596. [PMID: 29163003 PMCID: PMC5663975 DOI: 10.3389/fnins.2017.00596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/10/2017] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults (N > 600; age: 55-85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels.
Collapse
Affiliation(s)
- Kai Jannusch
- C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA–BRAIN, Jülich Aachen Research Alliance, Research Centre Jülich, Jülich, Germany
| | - Hans-Jürgen Bidmon
- C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Susanne Moebus
- Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Amunts
- C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA–BRAIN, Jülich Aachen Research Alliance, Research Centre Jülich, Jülich, Germany
| | - Svenja Caspers
- C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA–BRAIN, Jülich Aachen Research Alliance, Research Centre Jülich, Jülich, Germany
| |
Collapse
|
48
|
Yu T, Korgaonkar MS, Grieve SM. Gray Matter Atrophy in the Cerebellum-Evidence of Increased Vulnerability of the Crus and Vermis with Advancing Age. THE CEREBELLUM 2017; 16:388-397. [PMID: 27395405 DOI: 10.1007/s12311-016-0813-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examined patterns of cerebellar volumetric gray matter (GM) loss across the adult lifespan in a large cross-sectional sample. Four hundred and seventy-nine healthy participants (age range: 7-86 years) were drawn from the Brain Resource International Database who provided T1-weighted MRI scans. The spatially unbiased infratentorial template (SUIT) toolbox in SPM8 was used for normalisation of the cerebellum structures. Global volumetric and voxel-based morphometry analyses were performed to evaluate age-associated trends and gender-specific age-patterns. Global cerebellar GM shows a cross-sectional reduction with advancing age of 2.5 % per decade-approximately half the rate seen in the whole brain. The male cerebellum is larger with a lower percentage of GM, however, after controlling for total brain volume, no gender difference was detected. Analysis of age-related changes in GM volume revealed large bilateral clusters involving the vermis and cerebellar crus where regional loss occurred at nearly twice the average cerebellar rate. No gender-specific patterns were detected. These data confirm that regionally specific GM loss occurs in the cerebellum with age, and form a solid base for further investigation to find functional correlates for this global and focal loss.
Collapse
Affiliation(s)
- Teresa Yu
- The Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School, Sydney, NSW, Australia
| | - Mayuresh S Korgaonkar
- The Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School, Sydney, NSW, Australia.,Discipline of Psychiatry, Sydney Medical School, The University of Sydney, Westmead Hospital, Sydney, NSW, Australia.,Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Stuart M Grieve
- The Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School, Sydney, NSW, Australia. .,Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia. .,Department of Radiology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
49
|
Zois E, Vollstädt-Klein S, Hoffmann S, Reinhard I, Charlet K, Beck A, Jorde A, Kirsch M, Walter H, Heinz A, Kiefer F. Orbitofrontal structural markers of negative affect in alcohol dependence and their associations with heavy relapse-risk at 6 months post-treatment. Eur Psychiatry 2017; 46:16-22. [PMID: 28992531 DOI: 10.1016/j.eurpsy.2017.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alcohol relapse is often occurring to regulate negative affect during withdrawal. On the neurobiological level, alcoholism is associated with gray matter (GM) abnormalities in regions that regulate emotional experience such as the orbitofrontal cortex (OFC). However, no study to our knowledge has investigated the neurobiological unpinning of affect in alcoholism at early withdrawal and the associations of OFC volume with long-term relapse risk. METHODS One hundred and eighty-two participants were included, 95 recently detoxified alcohol dependent patients (ADP) and 87 healthy controls (HC). We measured affective states using the positive and negative affect schedule (PANAS). We collected T1-weighted brain structural images and performed Voxel-based morphometry (VBM). RESULTS Findings revealed GM volume decrease in alcoholics in the prefrontal cortex (including medial OFC), anterior cingulate gyrus, and insula. GM volume in the medial OFC was positively associated with NA in the ADP group. Cox regression analysis predicted that risk to heavy relapse at 6 months increases with decreased GM volume in the medial OFC. CONCLUSIONS Negative affect during alcohol withdrawal was positively associated with OFC volume. What is more, increased GM volume in the OFC also moderated risk to heavy relapse at 6 months. Reduced GM in the OFC poses as risk to recovery from alcohol dependence and provides valuable insights into transient negative affect states during withdrawal that can trigger relapse. Implications exist for therapeutic interventions signifying the OFC as a neurobiological marker to relapse and could explain the inability of ADP to regulate internal negative affective states.
Collapse
Affiliation(s)
- E Zois
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany.
| | - S Vollstädt-Klein
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| | - S Hoffmann
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| | - I Reinhard
- Department of biostatistics, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| | - K Charlet
- Department of psychiatry and psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Beck
- Department of psychiatry and psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Jorde
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| | - M Kirsch
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| | - H Walter
- Department of psychiatry and psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Heinz
- Department of psychiatry and psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - F Kiefer
- Department of addictive behaviour and addiction medicine, central institute of mental health, Mannheim, university of Heidelberg, Mannheim, Germany
| |
Collapse
|
50
|
Cansino S, Trejo-Morales P, Estrada-Manilla C, Pasaye-Alcaraz EH, Aguilar-Castañeda E, Salgado-Lujambio P, Sosa-Ortiz AL. Effective connectivity during successful and unsuccessful recollection in young and old adults. Neuropsychologia 2017; 103:168-182. [DOI: 10.1016/j.neuropsychologia.2017.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/27/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
|