1
|
Li Y, Ruan P, Chen J, Chen K, Ma Z, Guo L, Lv G, Wu Y. Visible-light-induced C-H alkylation of 2-amino-1,4-naphthoquinones. Org Biomol Chem 2024; 22:6016-6021. [PMID: 39007287 DOI: 10.1039/d4ob00764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Simple and practical strategies for visible-light-induced C-H alkylation of 2-amino-1,4-naphthoquinones with cyclobutanone oxime esters and hydroxamic acid derivatives have been developed under mild and redox-neutral conditions. These two reactions can be carried out at room temperature and obtain a variety of 2-amino-1,4-naphthoquinone derivatives with cyano and amide groups. Moreover, the cyanoalkylation reaction of 2-amino-1,4-naphthoquinones can proceed smoothly in the absence of photocatalysts.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Pingping Ruan
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Kang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Zhaohui Ma
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Guanghui Lv
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
2
|
Devi M, Kumar P, Singh R, Sindhu J, Kumar A, Lal S, Singh D, Kumar H. α-amylase inhibition and in silico studies of novel naphtho[2,3- d]imidazole-4,9-dione linked N-acyl hydrazones. Future Med Chem 2023; 15:1511-1525. [PMID: 37610859 DOI: 10.4155/fmc-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Aim: To enrich the pool of α-amylase inhibitors to manage Type 2 diabetes. Methods: Synthesis, conformational study, α-amylase inhibitory action and various in silico studies of novel N'-(arylbenzylidene)-2-(4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d]imidazol-1-yl)acetohydrazides carried out. Results: Compound H6 demonstrated the highest activity (IC50 = 0.0437 μmol mL-1) among the tested compounds. Structure-activity relationship study suggested that variable substitution at the aryl ring has a pivotal role in determining the inhibitory action of tested compounds. Docking simulations of the most active compound (H6) confirmed its interaction potential with active site residues of A. oryzae α-amylase. The root-mean-square deviation fluctuations substantiated the stability of protein-ligand complex. Absorption, distribution, metabolism and excretion prediction revealed optimal values for absorption, distribution, metabolism and excretion parameters. Conclusion: The developed molecules could be beneficial for the development of novel α-amylase inhibitors to treat Type 2 diabetes.
Collapse
Affiliation(s)
- Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences, Central University Haryana, Mahendergarh, 123031, India
| |
Collapse
|
3
|
Sulyman AO, Aje OO, Ajani EO, Abdulsalam RA, Balogun FO, Sabiu S. Bioprospection of Selected Plant Secondary Metabolites as Modulators of the Proteolytic Activity of Plasmodium falciparum Plasmepsin V. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6229503. [PMID: 37388365 PMCID: PMC10307063 DOI: 10.1155/2023/6229503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Malaria is a devastating disease, and its management is only achieved through chemotherapy. However, resistance to available medication is still a challenge; therefore, there is an urgent need for the discovery and development of therapeutics with a novel mechanism of action to counter the resistance scourge consistent with the currently available antimalarials. Recently, plasmepsin V was validated as a therapeutic target for the treatment of malaria. The pepsin-like aspartic protease anchored in the endoplasmic reticulum is responsible for the trafficking of parasite-derived proteins to the erythrocytic surface of the host cells. In this study, a small library of compounds was preliminarily screened in vitro to identify novel modulators of Plasmodium falciparum plasmepsin V (PfPMV). The results obtained revealed kaempferol, quercetin, and shikonin as possible PfPMV inhibitors, and these compounds were subsequently probed for their inhibitory potentials using in vitro and in silico methods. Kaempferol and shikonin noncompetitively and competitively inhibited the specific activity of PfPMV in vitro with IC50 values of 22.4 and 43.34 μM, respectively, relative to 62.6 μM obtained for pepstatin, a known aspartic protease inhibitor. Further insight into the structure-activity relationship of the compounds through a 100 ns molecular dynamic (MD) simulation showed that all the test compounds had a significant affinity for PfPMV, with quercetin (-36.56 kcal/mol) being the most prominent metabolite displaying comparable activity to pepstatin (-35.72 kcal/mol). This observation was further supported by the compactness and flexibility of the resulting complexes where the compounds do not compromise the structural integrity of PfPMV but rather stabilized and interacted with the active site amino acid residues critical to PfPMV modulation. Considering the findings in this study, quercetin, kaempferol, and shikonin could be proposed as novel aspartic protease inhibitors worthy of further investigation in the treatment of malaria.
Collapse
Affiliation(s)
- Abdulhakeem Olarewaju Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Oluwapelumi Oluwaseun Aje
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Emmanuel Oladipo Ajani
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete, Ilorin, Nigeria
| | - Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
4
|
Dong Y, Chen Y, Zhang ZY, Qian JH, Peng ZZ, Chang B, Shi ZC, Li ZH, He B. A one-pot access to 2-(N-substituted Amino)-Quinones or 3-indolyl-Quinones from naphthol/hydroquinone. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
5
|
Devi M, Kumar P, Singh R, Narayan L, Kumar A, Sindhu J, Lal S, Hussain K, Singh D. A comprehensive review on synthesis, biological profile and photophysical studies of heterocyclic compounds derived from 2,3-diamino-1,4-naphthoquinone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Wang W, Chang CT, Zhang Q. 1,4‐Naphthoquinone Analogs and Their Application as Antibacterial Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202203330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Weiding Wang
- Department of Chemistry Xi'an Jiaotong-Liverpool University No. 111 Ren Ai Road Suzhou 215123 China
| | - Cheng‐Wei Tom Chang
- Department of Chemistry and Biochemistry Utah State University, 0300 Old Main Hill Logan Utah 84322-0300 United States
| | - Qian Zhang
- Department of Chemistry Xi'an Jiaotong-Liverpool University No. 111 Ren Ai Road Suzhou 215123 China
| |
Collapse
|
7
|
Koumpoura CL, Robert A, Athanassopoulos CM, Baltas M. Antimalarial Inhibitors Targeting Epigenetics or Mitochondria in Plasmodium falciparum: Recent Survey upon Synthesis and Biological Evaluation of Potential Drugs against Malaria. Molecules 2021; 26:molecules26185711. [PMID: 34577183 PMCID: PMC8467436 DOI: 10.3390/molecules26185711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
Despite many efforts, malaria remains among the most problematic infectious diseases worldwide, mainly due to the development of drug resistance by P. falciparum. Over the past decade, new essential pathways have been emerged to fight against malaria. Among them, epigenetic processes and mitochondrial metabolism appear to be important targets. This review will focus on recent evolutions concerning worldwide efforts to conceive, synthesize and evaluate new drug candidates interfering selectively and efficiently with these two targets and pathways. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties on DNA methyltransferases and HDAC’s for epigenetics, and on cytochrome bc1 and dihydroorotate dehydrogenase for mitochondrion.
Collapse
Affiliation(s)
- Christina L. Koumpoura
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | - Anne Robert
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | | | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
- Correspondence:
| |
Collapse
|
8
|
Shestak OP, Novikov VL, Glazunov VP. Direct amination of naphthopurpurin and mompain, sea urchin pigments, and their O-methyl ethers by the reaction with ammonia. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3152-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Akhtar MS, Yang W, Kim SH, Lee YR. Organic‐Inorganic Dual Catalytic System for the Regioselective Construction of Diverse Quinone Derivatives
via
Benzannulation. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Muhammad Saeed Akhtar
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Won‐Guen Yang
- Analysis Research Division, Daegu Center Korea Basic Science Institute Daegu 41566 Republic of Korea
| | - Sung Hong Kim
- Analysis Research Division, Daegu Center Korea Basic Science Institute Daegu 41566 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
10
|
Paengsri W, Promsawan N, Baramee A. Synthesis and Evaluation of 2-Hydroxy-1,4-naphthoquinone Derivatives as Potent Antimalarial Agents. Chem Pharm Bull (Tokyo) 2021; 69:253-257. [PMID: 33431728 DOI: 10.1248/cpb.c20-00770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of 3-substituted-2-hydroxy-1,4-naphthoquinone derivatives with a variety of side chains were successfully synthesized by Mannich reaction of 2-hydroxy-1,4-naphthoquinone (lawsone) with selected amines and aldehydes. All substances (1-16) were evaluated for in-vitro antimalarial activity against strains of Plasmodium falciparum by microculture radioisotope technique. Bioassay data revealed that ten derivatives (1-8, 11 and 13) displayed significantly good activity with values of IC50 ranging from 0.77 to 4.05 µg/mL. The best biological profile (IC50 = 0.77 µg/mL) was observed in compound 1, possessing a n-butyl substituted aminomethyl group. Experimental results support the potential use of our active Mannich components as promising antimalarial agents in the fight against malaria infections and multidrug resistance problems.
Collapse
Affiliation(s)
- Wanthani Paengsri
- Department of Chemistry, Faculty of Science, Chiang Mai Universit.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University
| | | | - Apiwat Baramee
- Department of Chemistry, Faculty of Science, Chiang Mai Universit
| |
Collapse
|
11
|
Sun B, Shi X, Zhuang X, Huang P, Shi R, Zhu R, Jin C. Photoinduced EDA Complexes Enabled Radical Tandem Cyclization/Arylation of Unactivated Alkene with 2-Amino-1,4-naphthoquinones. Org Lett 2021; 23:1862-1867. [DOI: 10.1021/acs.orglett.1c00268] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiayue Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Panyi Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rongcheng Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rui Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
12
|
Ibis C, Sahinler Ayla S, Babayeva E. Reactions of quinones with some amino alcohols, thiols and a UV-Vis study. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1714619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Cemil Ibis
- Department of Chemistry, Engineering Faculty, University of Istanbul, Istanbul, Turkey
| | - Sibel Sahinler Ayla
- Department of Chemistry, Engineering Faculty, University of Istanbul, Istanbul, Turkey
| | - Elvira Babayeva
- Department of Chemistry, Engineering Faculty, University of Istanbul, Istanbul, Turkey
| |
Collapse
|
13
|
do Nascimento MFA, Borgati TF, de Souza LCR, Tagliati CA, de Oliveira AB. In silico, in vitro and in vivo evaluation of natural Bignoniaceous naphthoquinones in comparison with atovaquone targeting the selection of potential antimalarial candidates. Toxicol Appl Pharmacol 2020; 401:115074. [PMID: 32464218 DOI: 10.1016/j.taap.2020.115074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 01/01/2023]
Abstract
The natural naphthoquinones lapachol, α- and β-lapachone are found in Bignoniaceous Brazilian plant species of the Tabebuia genus (synonym Handroanthus) and are recognized for diverse bioactivities, including as antimalarial. The aim of the present work was to perform in silico, in vitro and in vivo studies to evaluating the antimalarial potential of these three naphthoquinones in comparison with atovaquone, a synthetic antimalarial. The ADMET properties of these compounds were predicted in silico by the preADMET program. The in vitro toxicity assays were experimentally determined in immortalized and tumoral cells from different organs. In vivo acute oral toxicity was also evaluated for lapachol. Several favorable pharmacokinetics data were predicted although, as expected, high cytotoxicity was experimentally determined for β-lapachone. Lapachol was not cytotoxic or showed low cytotoxicity to all of the cells assayed (HepG2, A549, Neuro 2A, LLC-PK1, MRC-5), it was nontoxic in the acute oral test and disclosed the best parasite selectivity index in the in vitro assays against chloroquine resistant Plasmodium falciparum W2 strain. On the other hand, α- and β-lapachone were more potent than lapachol in the antiplasmodial assays but with low parasite selectivity due to their cytotoxicity. The diversity of data here reported disclosed lapachol as a promising candidate to antimalarial drug development.
Collapse
Affiliation(s)
- Maria Fernanda Alves do Nascimento
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31.270-901, Brazil
| | - Tatiane Freitas Borgati
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31.270-901, Brazil
| | - Larissa Camila Ribeiro de Souza
- Departamento de Inovação Tecnológica, Instituto de Ciências Biológicas, Universidade Federal de Minas, Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31.270-901, Brazil
| | - Carlos Alberto Tagliati
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas, Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31.270-901, Brazil
| | - Alaíde Braga de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31.270-901, Brazil.
| |
Collapse
|
14
|
Design, synthesis, characterization, and antimicrobial activity of novel piperazine substituted 1,4-benzoquinones. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Zininga T, Shonhai A. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. Int J Mol Sci 2019; 20:E5930. [PMID: 31775392 PMCID: PMC6929125 DOI: 10.3390/ijms20235930] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Obligate protozoan parasites of the kinetoplastids and apicomplexa infect human cells to complete their life cycles. Some of the members of these groups of parasites develop in at least two systems, the human host and the insect vector. Survival under the varied physiological conditions associated with the human host and in the arthropod vectors requires the parasites to modulate their metabolic complement in order to meet the prevailing conditions. One of the key features of these parasites essential for their survival and host infectivity is timely expression of various proteins. Even more importantly is the need to keep their proteome functional by maintaining its functional capabilities in the wake of physiological changes and host immune responses. For this reason, molecular chaperones (also called heat shock proteins)-whose role is to facilitate proteostasis-play an important role in the survival of these parasites. Heat shock protein 90 (Hsp90) and Hsp70 are prominent molecular chaperones that are generally induced in response to physiological stress. Both Hsp90 and Hsp70 members are functionally regulated by nucleotides. In addition, Hsp70 and Hsp90 cooperate to facilitate folding of some key proteins implicated in cellular development. In addition, Hsp90 and Hsp70 individually interact with other accessory proteins (co-chaperones) that regulate their functions. The dependency of these proteins on nucleotide for their chaperone function presents an Achille's heel, as inhibitors that mimic ATP are amongst potential therapeutic agents targeting their function in obligate intracellular human parasites. Most of the promising small molecule inhibitors of parasitic heat shock proteins are either antibiotics or anticancer agents, whose repurposing against parasitic infections holds prospects. Both cancer cells and obligate human parasites depend upon a robust protein quality control system to ensure their survival, and hence, both employ a competent heat shock machinery to this end. Furthermore, some inhibitors that target chaperone and co-chaperone networks also offer promising prospects as antiparasitic agents. The current review highlights the progress made so far in design and application of small molecule inhibitors against obligate intracellular human parasites of the kinetoplastida and apicomplexan kingdoms.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou 0950, South Africa;
| |
Collapse
|
16
|
Oramas-Royo S, López-Rojas P, Amesty Á, Gutiérrez D, Flores N, Martín-Rodríguez P, Fernández-Pérez L, Estévez-Braun A. Synthesis and Antiplasmodial Activity of 1,2,3-Triazole-Naphthoquinone Conjugates. Molecules 2019; 24:molecules24213917. [PMID: 31671684 PMCID: PMC6864696 DOI: 10.3390/molecules24213917] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
A series of 34 1,2,3-triazole-naphthoquinone conjugates were synthesized via copper-catalyzed cycloaddition (CuAAC). They were evaluated for their in vitro antimalarial activity against chloroquine-sensitive strains of Plasmodium falciparum and against three different tumor cell lines (SKBr-3, MCF-7, HEL). The most active antimalarial compounds showed a low antiproliferative activity. Simplified analogues were also obtained and some structure–activity relationships were outlined. The best activity was obtained by compounds 3s and 3j, having IC50 of 0.8 and 1.2 μM, respectively. Molecular dockings were also carried on Plasmodium falciparum enzyme dihydroorotate dehydrogenase (PfDHODH) in order to rationalize the results.
Collapse
Affiliation(s)
- Sandra Oramas-Royo
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206 Tenerife, Spain.
| | - Priscila López-Rojas
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206 Tenerife, Spain.
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206 Tenerife, Spain.
| | - David Gutiérrez
- Instituto de Investigaciones Fármaco Bioquímicas, Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, Av. Saavedra 2024, 2° piso, Miraflores, La Paz 2314, Bolivia.
| | - Ninoska Flores
- Instituto de Investigaciones Fármaco Bioquímicas, Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, Av. Saavedra 2024, 2° piso, Miraflores, La Paz 2314, Bolivia.
| | - Patricia Martín-Rodríguez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Departamento de Ciencias Clínicas, BIOPHARM, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain.
| | - Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Departamento de Ciencias Clínicas, BIOPHARM, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain.
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, 38206 Tenerife, Spain.
| |
Collapse
|
17
|
Lagishetti C, Banne S, You H, Tang M, Guo J, Qi N, He Y. Construction of Bridged-Ring-Fused Naphthalenone Derivatives Through an Unexpected Zn(OTf) 2-Catalyzed Cascade Transformation. Org Lett 2019; 21:5301-5304. [PMID: 31247780 DOI: 10.1021/acs.orglett.9b01912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unexpected cascade transformation of aminonaphthoquinones with N-substituents bearing a p-methoxybenzyl ether into bridged-ring-fused naphthalenone derivatives is reported. This cascade transformation was initiated by a catalytic amount of Zn(OTf)2 and involved with subsequent functional group migration and cyclization. The process proceeded through the cleavage of two bonds and the formation of three new bonds in one pot and was proven to be efficient and tolerant to various substituents.
Collapse
Affiliation(s)
- Chandraiah Lagishetti
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P.R. China.,Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P.R. China
| | - Sreenivas Banne
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P.R. China
| | - Hengyao You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P.R. China
| | - Meng Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P.R. China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P.R. China
| | - Na Qi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P.R. China.,Biomedicine and Health Engineering Laboratory, College of Bioengineering , Chongqing University , Chongqing 401331 , P.R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , P.R. China
| |
Collapse
|
18
|
Mendoza L, Vivanco M, Melo R, Castro P, Araya-Maturana R, Cotoras M. Detoxification Mechanism of 8,8-Dimethyl-3-[( R-phenyl)amino]-1,4,5(8 H)-naphthalentrione Derivatives by Botrytis cinerea. Molecules 2019; 24:molecules24030544. [PMID: 30717324 PMCID: PMC6384572 DOI: 10.3390/molecules24030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 11/16/2022] Open
Abstract
The effect of 8,8-dimethyl-3-[(R-phenyl)amino]-1,4,5(8H)-naphthalentrione derivatives (compounds 1⁻13) on the mycelial growth of Botrytis cinerea was evaluated. The fungitoxic effect depended on the substituent and its position in the aromatic ring. Compounds substituted with halogens in meta and/or para positions (compounds 3, 4, 5 and 7), methyl (compounds 8 and 9), methoxyl (compounds 10 and 11), or ethoxy-carbonyl groups (compound 12) presented higher antifungal activity than compound 1, which had an unsubstituted aromatic ring. In addition, compounds with halogens in the ortho position, such as compounds 2 and 6, and a substitution with an acetyl group in the para position (compound 13) were less active. The role of the ABC efflux pump Bctr B-type as a defense mechanism of B. cinerea against these naphthalentrione derivatives was analyzed. This pump could be involved in the detoxification of compounds 2, 6, and 13. On the contrary, this mechanism would not participate in the detoxification of compounds 1, 7, 9 and 12. Finally, the biotransformation of compound 7 by B. cinerea was studied. A mixture of two biotransformed products was obtained. One of them was compound 7A, which is reduced at C1 and C4, compared to compound 7. The other product of biotransformation, 7B, is oxidized at C7.
Collapse
Affiliation(s)
- Leonora Mendoza
- Laboratorio de Micología, Facultad de Biología y Química, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago 9160000, Chile.
| | - Marcela Vivanco
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580000, Chile.
| | - Ricardo Melo
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580000, Chile.
| | - Paulo Castro
- Laboratorio de Micología, Facultad de Biología y Química, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago 9160000, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales and Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, casilla 747, Talca 3460000, Chile.
| | - Milena Cotoras
- Laboratorio de Micología, Facultad de Biología y Química, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago 9160000, Chile.
| |
Collapse
|
19
|
Ravichandiran P, Subramaniyan SA, Kim SY, Kim JS, Park BH, Shim KS, Yoo DJ. Synthesis and Anticancer Evaluation of 1,4-Naphthoquinone Derivatives Containing a Phenylaminosulfanyl Moiety. ChemMedChem 2019; 14:532-544. [DOI: 10.1002/cmdc.201800749] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School and Hydrogen and Fuel Cell Research Center; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Sivakumar Allur Subramaniyan
- Department of Animal Biotechnology, College of Agriculture and Life Sciences; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute; 111-27, Wonjangdong-gil, Deokjin-gu Jeonju Jeonbuk 54810 Republic of Korea
| | - Jong-Soo Kim
- Division of Chemical Engineering; College of Engineering; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry; Chonbuk National University Medical School; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School and Hydrogen and Fuel Cell Research Center; Chonbuk National University; Jeonju Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
20
|
Synthesis, SAR, and Docking Studies Disclose 2-Arylfuran-1,4-naphthoquinones as In Vitro Antiplasmodial Hits. J Trop Med 2017; 2017:7496934. [PMID: 29225629 PMCID: PMC5684547 DOI: 10.1155/2017/7496934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/11/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
A total of 28 lapachol-related naphthoquinones with four different scaffolds were synthesized and spectroscopically characterized. In vitro antiplasmodial activity was assayed against the chloroquine-resistant Plasmodium falciparum W2 strain by the parasite lactate dehydrogenase (pLDH) method. Cytotoxicity against Hep G2A16 cell was determined by the MTT assay. All compounds disclosed higher in vitro antiplasmodial activity than lapachol. Ortho- and para-naphthoquinones with a furan ring fused to the quinonoid moiety were more potent than 2-hydroxy-3-(1′-alkenyl)-1,4-naphthoquinones, while ortho-furanonaphthoquinones were more cytotoxic. Molecular docking to Plasmodium targets Pfcyt bc1 complex and PfDHOD enzyme showed that five out of the 28 naphthoquinones disclosed favorable binding energies. Furanonaphthoquinones endowed with an aryl moiety linked to the furan ring are highlighted as new in vitro antiplasmodial lead compounds and warrant further investigation.
Collapse
|
21
|
Kapadia GJ, Soares IAO, Rao GS, Badoco FR, Furtado RA, Correa MB, Tavares DC, Cunha WR, Magalhães LG. Antiparasitic activity of menadione (vitamin K 3) against Schistosoma mansoni in BABL/c mice. Acta Trop 2017; 167:163-173. [PMID: 28017859 DOI: 10.1016/j.actatropica.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 11/03/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
Abstract
Schistosomiasis is one of the neglected tropical diseases affecting nearly quarter of a billion people in economically challenged tropical and subtropical countries of the world. Praziquantel (PZQ) is the only drug currently available to treat this parasitic disease in spite being ineffective against juvenile worms and concerns about developing resistance to treat reinfections. Our earlier in vitro viability studies demonstrated significant antiparasitic activity of menadione (MEN) (vitamin K3) against Schistosoma mansoni adult worms. To gain insight into plausible mechanism of antischistosomal activity of MEN, its effect on superoxide anion levels in adult worms were studied in vitro which showed significant increases in both female and male worms. Further confirmation of the deleterious morphological changes in their teguments and organelles were obtained by ultrastructural analysis. Genotoxic and cytotoxic studies in male Swiss mice indicated that MEN was well tolerated at the oral dose of 500mg/kg using the criteria of MNPCE frequency and PCE/RBC ratio in the bone marrow of infected animals. The in vivo antiparasitic activity of MEN was conducted in female BALB/c mice infected with S. mansoni and significant reductions (P<0.001) in total worm burden were observed at single oral doses of 40 and 400mg/kg (48.57 and 61.90%, respectively). Additionally, MEN significantly reduced (P<0.001) the number of eggs in the liver of infected mice by 53.57 and 58.76%, respectively. Similarly, histological analysis of the livers showed a significant reduction (P<0.001) in the diameter of the granulomas. Since MEN is already in use globally as an over-the-counter drug for a variety of common ailments and a dietary supplement with a safety record in par with similar products when used in recommended doses, the above antiparasitic results which compare reasonably well with PZQ, make a compelling case for considering MEN to treat S. mansoni infection in humans.
Collapse
Affiliation(s)
- Govind J Kapadia
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Ingrid A O Soares
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - G Subba Rao
- Global Biotechnology Resource Center, 145 Rosewood Drive, Streamwood, IL 60107, USA
| | - Fernanda R Badoco
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Ricardo A Furtado
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Mariana B Correa
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Denise C Tavares
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Wilson R Cunha
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil.
| |
Collapse
|
22
|
Factors Affecting the Formation of 2:1 Host:Guest Inclusion Complexes of 2-[(R-Phenyl)amine]-1,4-naphthalenediones (PAN) in β- and γ-Cyclodextrins. Molecules 2016; 21:molecules21111568. [PMID: 27869734 PMCID: PMC6274144 DOI: 10.3390/molecules21111568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/03/2022] Open
Abstract
The molecular hosts cyclodextrins form inclusion complexes with a wide variety of guests, resulting in complexes with various host:guest stoichiometries. In the case of a series of 19 1,4-naphthoquinolines as guests with either β- or γ-cyclodextrin studied using electrospray mass spectroscopy, in most cases only 1:1 complexes were observed, with 2:1 host:guest complexes observed in just 6 out of 38 host:guest combinations. It is shown that these higher-order complexes were observed only in the case of small (or no) electronically withdrawing substituents, and were much less likely in the case of the larger γ-cyclodextrin host. The size and electronic properties of the substituents involved shows that both steric and electronic factors must be taken into account in predicting which cyclodextrin host:guest stoichiometries will be stable enough to form (or once formed, be robust enough to be observed in the ESI-MS experiments). It is clear that the prediction of host-guest stoichiometry for a specific host-guest pair is complicated, and involves a subtle interplay of both electronic and steric factors. However, there are definite trends, which can be used to help predict host:guest stoichiometry for a given host-guest pair.
Collapse
|
23
|
Synthesis and studies of the antifungal activity of 2-anilino-/2,3-dianilino-/2-phenoxy- and 2,3-diphenoxy-1,4-naphthoquinones. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2732-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Silva EO, Ruano-González A, Dos Santos RA, Sánchez-Maestre R, Furtado NAJC, Collado IG, Aleu J. Antifungal and Cytotoxic Assessment of Lapachol Derivatives Produced by Fungal Biotransformation. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the screening for biological active compounds, the biotransformation processes catalyzed by filamentous fungi are useful because they can provide information about the possible appearance of toxic metabolites after oral administration and also generate new leads. In this paper, biotransformation of lapachol (1) by three fungal strains, Mucor circinelloides NRRL3631, Botrytis cinerea UCA992 and Botrytis cinerea 2100, has been investigated for the first time. Lapachol (1) was biotransformed into avicequinone-A (2) by M. circinelloides, 3′-hydroxylapachol (3) by B. cinerea, and into dehydro-α-lapachone (4) by both fungi. All these compounds were evaluated for their cytotoxic activities. The metabolite 2 displayed non-selective cytotoxicity against tumor and normal cell lines, 3 did not show cytotoxicity against the same cells, while 4 showed higher cytotoxicity against cancer cell lines than lapachol (1). The transformation of 1 into harmless and reactive metabolites evidences the importance of the evaluation of drug metabolism in the drug discovery process. Antifungal potential of lapachol (1) and its metabolites 2 and 4 against B. cinerea has also been evaluated. Dehydro-α-lapachone (4) has been shown to be less toxic to fungal growth than lapachol (1), which indicates a detoxification mechanism of the phytopathogen.
Collapse
Affiliation(s)
- Eliane O. Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Antonio Ruano-González
- Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz 11510, Spain
| | - Raquel A. Dos Santos
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, São Paulo 14404-600, Brazil
| | - Rosario Sánchez-Maestre
- Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz 11510, Spain
| | - Niege A. J. C. Furtado
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Isidro G. Collado
- Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz 11510, Spain
| | - Josefina Aleu
- Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz 11510, Spain
| |
Collapse
|
25
|
Agarwal G, Lande DN, Chakrovarty D, Gejji SP, Gosavi-Mirkute P, Patil A, Salunke-Gawali S. Bromine substituted aminonaphthoquinones: synthesis, characterization, DFT and metal ion binding studies. RSC Adv 2016. [DOI: 10.1039/c6ra20970j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bromine substituted aminonaphthoquinones – chemosensors for metal ions.
Collapse
Affiliation(s)
- Gunjan Agarwal
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Dipali N. Lande
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | | - Shridhar P. Gejji
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | | - Amit Patil
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | |
Collapse
|
26
|
Pingaew R, Prachayasittikul V, Worachartcheewan A, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Novel 1,4-naphthoquinone-based sulfonamides: Synthesis, QSAR, anticancer and antimalarial studies. Eur J Med Chem 2015; 103:446-59. [DOI: 10.1016/j.ejmech.2015.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/11/2015] [Accepted: 09/02/2015] [Indexed: 11/28/2022]
|
27
|
Leyva E, Baines KM, Espinosa-González CG, López LI, Magaldi-Lara DA, Leyva S. Synthesis of novel 2-(fluoroanilino)-3-(2,4-dinitroanilino) derivatives of 1,4-naphthoquinone. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Zhang Q, Chang CWT. Divergent and facile Lewis acid-mediated synthesis of N-alkyl 2-aminomethylene-1,3-indanediones and 2-alkylamino-1,4-naphthoquinones. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
2-Phenylaminonaphthoquinones and related compounds: Synthesis, trypanocidal and cytotoxic activities. Bioorg Med Chem 2014; 22:4609-20. [DOI: 10.1016/j.bmc.2014.07.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/08/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022]
|
30
|
Sukphan P, Sritularak B, Mekboonsonglarp W, Lipipun V, Likhitwitayawuid K. Chemical Constituents of Dendrobium venustum and their Antimalarial and Anti-herpetic Properties. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A MeOH extract from the whole plant Dendrobium venustum exhibited significant antimalarial and anti-herpetic activities. Bioassay-guided isolation of the plant extract resulted in the isolation of seven known phenolic compounds. Densiflorol B (3) and phoyunnanin E (6) showed the strongest antimalarial activity and a high selectivity index, whereas gigantol (2), batatasin III (5) and phoyunnanin C (7) exhibited moderate activity. Compounds 2 and 5 also showed weak activity against the Herpes simplex virus. This study is the first report on the chemical and biological activities of D. venustum.
Collapse
Affiliation(s)
- Prapapun Sukphan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Centre Chulalongkorn University, Bangkok 10330, Thailand
| | - Vimolmas Lipipun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
31
|
Oliveira Silva E, Cruz de Carvalho T, Parshikov IA, Alves dos Santos R, Silva Emery F, Jacometti Cardoso Furtado NA. Cytotoxicity of lapachol metabolites produced by probiotics. Lett Appl Microbiol 2014; 59:108-14. [PMID: 24635204 DOI: 10.1111/lam.12251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/17/2014] [Accepted: 03/13/2014] [Indexed: 12/20/2022]
Abstract
UNLABELLED Probiotics are currently added to a variety of functional foods to provide health benefits to the host and are commonly used by patients with gastrointestinal complaints or diseases. The therapeutic effects of lapachol continue to inspire studies to obtain derivatives with improved bioactivity and lower unwanted effects. Therefore, the general goal of this study was to show that probiotics are able to convert lapachol and are important to assess the effects of bacterial metabolism on drug performance and toxicity. The microbial transformations of lapachol were carried out by Bifidobacterium sp. and Lactobacillus acidophilus and different metabolites were produced in mixed and isolated cultures. The cytotoxic activities against breast cancer and normal fibroblast cell lines of the isolated metabolites (4α-hydroxy-2,2-dimethyl-5-oxo-2,3,4,4α,5,9β-hexahydroindeno[1,2-β]pyran-9β-carboxilic acid, a new metabolite produced by mixed culture and dehydro-α-lapachone produced by isolated cultures) were assessed and compared with those of lapachol. The new metabolite displayed a lower activity against a breast cancer cell line (IC50 = 532.7 μmol l(-1) ) than lapachol (IC50 = 72.3 μmol l(-1) ), while dehydro-α-lapachone (IC50 = 10.4 μmol l(-1) ) displayed a higher activity than lapachol. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. SIGNIFICANCE AND IMPACT OF THE STUDY Probiotics have been used in dairy products to promote human health and have the ability to metabolize drugs and other xenobiotics. Naphthoquinones, such as lapachol, are considered privileged scaffolds due to their high propensity to interact with biological targets. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. The developed approach highlights the importance of probiotics to assess the effects of bacterial metabolism on drug performance and toxicity.
Collapse
Affiliation(s)
- E Oliveira Silva
- Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
García-Barrantes PM, Lamoureux GV, Pérez AL, García-Sánchez RN, Martínez AR, San Feliciano A. Synthesis and biological evaluation of novel ferrocene–naphthoquinones as antiplasmodial agents. Eur J Med Chem 2013; 70:548-57. [DOI: 10.1016/j.ejmech.2013.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 11/28/2022]
|
33
|
Rezende LCDD, Fumagalli F, Bortolin MS, Oliveira MGD, Paula MHD, Andrade-Neto VFD, Emery FDS. In vivo antimalarial activity of novel 2-hydroxy-3-anilino-1,4-naphthoquinones obtained by epoxide ring-opening reaction. Bioorg Med Chem Lett 2013; 23:4583-6. [DOI: 10.1016/j.bmcl.2013.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
|
34
|
Jordão AK, Novais J, Leal B, Escobar AC, dos Santos HM, Castro HC, Ferreira VF. Synthesis using microwave irradiation and antibacterial evaluation of new N,O-acetals and N,S-acetals derived from 2-amino-1,4-naphthoquinones. Eur J Med Chem 2013; 63:196-201. [PMID: 23474905 DOI: 10.1016/j.ejmech.2013.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Alessandro K Jordão
- Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Batista, s/n°, Niterói 24020-141, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Eyong KO, Puppala M, Kumar PS, Lamshöft M, Folefoc GN, Spiteller M, Baskaran S. A mechanistic study on the Hooker oxidation: synthesis of novel indanecarboxylic acid derivatives from lapachol. Org Biomol Chem 2013. [DOI: 10.1039/c2ob26737c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Resende JALC, Gomez JA. tert-Butyl N-{3-[(3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino]propyl}carbamate. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o2361. [PMID: 22904827 PMCID: PMC3414294 DOI: 10.1107/s1600536812029674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022]
Abstract
In the title compound, C18H21ClN2O4, the molecular sytructure is stabilized by two intramolecular N—H⋯O hydrogen bonds. In the crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with graph-set motif R22(10). N—H⋯O hydrogen bonds further link the dimers into C(10) chains along [010].
Collapse
|
37
|
Campos VR, Santos EAD, Ferreira VF, Montenegro RC, de Souza MCBV, Costa-Lotufo LV, de Moraes MO, Regufe AKP, Jordão AK, Pinto AC, Resende JALC, Cunha AC. Synthesis of carbohydrate-based naphthoquinones and their substituted phenylhydrazono derivatives as anticancer agents. RSC Adv 2012. [DOI: 10.1039/c2ra21514d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
38
|
Aly AA, Ishak EA, Alsharari MA, Al-Muaikel NS, Bedair TMI. Aminonaphthoquinones in heterocyclization. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Cockburn IL, Pesce ER, Pryzborski JM, Davies-Coleman MT, Clark PG, Keyzers RA, Stephens LL, Blatch GL. Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: inhibition of the plasmodial chaperone PfHsp70-1. Biol Chem 2011; 392:431-8. [DOI: 10.1515/bc.2011.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
Plasmodium falciparum heat shock protein 70 (PfHsp70-1) is thought to play an essential role in parasite survival and virulence in the human host, making it a potential antimalarial drug target. A malate dehydrogenase based aggregation suppression assay was adapted for the screening of small molecule modulators of Hsp70. A number of small molecules of natural (marine prenylated alkaloids and terrestrial plant naphthoquinones) and related synthetic origin were screened for their effects on the protein aggregation suppression activity of purified recombinant PfHsp70-1. Five compounds (malonganenone A-C, lapachol and bromo-β-lapachona) were found to inhibit the chaperone activity of PfHsp70-1 in a concentration dependent manner, with lapachol preferentially inhibiting PfHsp70-1 compared to another control Hsp70. Using growth inhibition assays on P. falciparum infected erythrocytes, all of the compounds, except for malonganenone B, were found to inhibit parasite growth with IC50 values in the low micromolar range. Overall, this study has identified two novel classes of small molecule inhibitors of PfHsp70-1, one representing a new class of antiplasmodial compounds (malonganenones). In addition to demonstrating the validity of PfHsp70-1 as a possible drug target, the compounds reported in this study will be potentially useful as molecular probes for fundamental studies on Hsp70 chaperone function.
Collapse
|
40
|
Aly AA. Facile Synthesis of Imidazoisoindolones and Quinoxalinediones from 2,3-diamino-1,4-naphthoquinone. JOURNAL OF CHEMICAL RESEARCH 2011. [DOI: 10.3184/174751911x13001124874111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In aqueous acetic acid, 2,3-diamino-1,4-naphthoquinone reacted with phthalic anhydride and 4,5,6,7-tetrabromophthalic anhydride to give naphtho[2’,3’:4,5]imidazo[2,1- a]isoindole-6,11,13-triones. In the same solvent, the reaction of diaminonaphthoquinone with 2,2-dihydroxy-1 H-indene-1,3(2 H)-dione gave 11 H-benzo[ g]indeno [1,2- b]quinoxaline-6,11,13-trione. Under the same conditions, diaminonaphthoquinone reacted with succinic anhydride and with maleic anhydride, the corresponding 4-(3-amino-1,4-dioxo-1,4-dihydronaphthalene-2-ylamino)-4-oxobutanoic acid and 3,5,10-trioxo-3,4,5,10-tetrahydrobenzo[ g]-quinoxaline-2(1 H)-ylidene-acetic acid derivatives were obtained. The reaction of 2,3-diamino-1,4-naphthoquinone with ( E)-1,2-dibenzoylethylene and 1,4-diphenylbut-2-yne-1,4-dione in aqueous acetic acid afforded dihydrobenzo[ g]quinoxaline-5,10-diones.
Collapse
Affiliation(s)
- Ashraf A. Aly
- Chemistry Department, College of Science, Al-Jouf University, Sakaka, KSA
- Chemistry Department, Faculty of Science, El-Minia University, 61519-El-Minia, Egypt
| |
Collapse
|
41
|
Grellier P, Marozienė A, Nivinskas H, Šarlauskas J, Aliverti A, Čėnas N. Antiplasmodial activity of quinones: Roles of aziridinyl substituents and the inhibition of Plasmodium falciparum glutathione reductase. Arch Biochem Biophys 2010; 494:32-9. [DOI: 10.1016/j.abb.2009.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 11/29/2022]
|
42
|
Phutdhawong WS, Ruensamran W, Phutdhawong W, Taechowisan T. Synthesis of 1,6,7,8-tetrahydro-naphtho[2,3-d]-azepino[4,5-b]indole-9,14-diones and their inhibitory effects on pro-inflammatory cytokines. Bioorg Med Chem Lett 2009; 19:5753-6. [DOI: 10.1016/j.bmcl.2009.07.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/20/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
|
43
|
Polonik SG, Polonik NS, Denisenko VA, Moiseenko OP, Anufriev VF. Synthesis and transformation of 2-amino-3-hydroxynaphthazarin. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2009. [DOI: 10.1134/s1070428009090164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Cheng WY, Lien JC, Hsiang CY, Wu SL, Li CC, Lo HY, Chen JC, Chiang SY, Liang JA, Ho TY. Comprehensive evaluation of a novel nuclear factor-kappaB inhibitor, quinoclamine, by transcriptomic analysis. Br J Pharmacol 2009; 157:746-56. [PMID: 19422389 DOI: 10.1111/j.1476-5381.2009.00223.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The transcription factor nuclear factor-kappaB (NF-kappaB) has been linked to the cell growth, apoptosis and cell cycle progression. NF-kappaB blockade induces apoptosis of cancer cells. Therefore, NF-kappaB is suggested as a potential therapeutic target for cancer. Here, we have evaluated the anti-cancer potential of a novel NF-kappaB inhibitor, quinoclamine (2-amino-3-chloro-1,4-naphthoquinone). EXPERIMENTAL APPROACH In a large-scale screening test, we found that quinoclamine was a novel NF-kappaB inhibitor. The global transcriptional profiling of quinoclamine in HepG2 cells was therefore analysed by transcriptomic tools in this study. KEY RESULTS Quinoclamine suppressed endogenous NF-kappaB activity in HepG2 cells through the inhibition of IkappaB-alpha phosphorylation and p65 translocation. Quinoclamine also inhibited induced NF-kappaB activities in lung and breast cancer cell lines. Quinoclamine-regulated genes interacted with NF-kappaB or its downstream genes by network analysis. Quinoclamine affected the expression levels of genes involved in cell cycle or apoptosis, suggesting that quinoclamine exhibited anti-cancer potential. Furthermore, quinoclamine down-regulated the expressions of UDP glucuronosyltransferase genes involved in phase II drug metabolism, suggesting that quinoclamine might interfere with drug metabolism by slowing down the excretion of drugs. CONCLUSION AND IMPLICATIONS This study provides a comprehensive evaluation of quinoclamine by transcriptomic analysis. Our findings suggest that quinoclamine is a novel NF-kappaB inhibitor with anti-cancer potential.
Collapse
Affiliation(s)
- W-Y Cheng
- Molecular Biology Laboratory, Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
General method for the high yield preparation of 2-(4-X-phenylene)amine-1,4-naphthoquinones (X=ferrocenyl, OMe, Me, I, Cl, and NO2) from 2-methoxy-1,4-naphthoquinone and investigation of H+ and Mg2+ catalysts with DFT calculations. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2008.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Munday R, Smith BL, Munday CM. Effect of inducers of DT-diaphorase on the haemolytic activity and nephrotoxicity of 2-amino-1,4-naphthoquinone in rats. Chem Biol Interact 2005; 155:140-7. [PMID: 16045903 DOI: 10.1016/j.cbi.2005.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
Reduction of naphthoquinones by DT-diaphorase is often described as a detoxification reaction. This is true for some naphthoquinone derivatives, such as alkyl and di-alkyl naphthoquinones, but the situation with other substances, such as 2-hydroxy-1,4-naphthoquinone, is more complex. In the present study, the effect of several substances that are known to increase tissue activities of DT-diaphorase on the toxicity of 2-amino-1,4-naphthoquinone has been investigated. Like 2-hydroxy-1,4-naphthoquinone, the 2-amino-derivative was found to cause both haemolytic anaemia and renal tubular necrosis in rats. Again like 2-hydroxy-1,4-naphthoquinone, the severity of the haemolysis induced by the 2-amino derivative was increased in animals pre-treated with inducers of DT-diaphorase, but the degree of nephrotoxicity was decreased. With these substances, therefore, DT-diaphorase both activates and detoxifies the quinone, depending on the target organ. It is not possible to generalize with regard to the effects of modulation of tissue levels of DT-diaphorase on naphthoquinone toxicity in vivo, since this may change not only the severity of the toxic effects, but also the target organ specificity. In evaluating the possible therapeutic applications of such compounds, the possibility of toxic effects upon the blood and kidney must be borne in mind. In man, renal damage by compounds such as 2-hydroxy- and 2-amino-1,4-naphthoquinone may be a particular problem, because of the low level of DT-diaphorase in human liver.
Collapse
Affiliation(s)
- Rex Munday
- AgResearch, Ruakura Agricultural Research Centre, Private Bag 3123, Hamilton 2001, New Zealand.
| | | | | |
Collapse
|
47
|
|
48
|
de Andrade-Neto VF, Goulart MOF, da Silva Filho JF, da Silva MJ, Pinto MDCFR, Pinto AV, Zalis MG, Carvalho LH, Krettli AU. Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg Med Chem Lett 2004; 14:1145-9. [PMID: 14980653 DOI: 10.1016/j.bmcl.2003.12.069] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 12/14/2003] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
The antimalarial activity of benzo[a]phenazines synthesized from 1,2-naphthoquinone, lapachol, beta-lapachone and several derivatives have been tested against Plasmodium falciparum in vitro using isolates of parasites with various susceptibilities to chloroquine and/or mefloquine. Parasite growth in the presence of the test drugs was measured by incorporation of [(3)H]-hipoxanthine in comparison to controls with no drugs, always testing in parallel chloroquine, a standard antimalarial. Among seven benzophenazines tested, four had significant in vitro activities; important, the parasites resistant to chloroquine were more susceptible to the active phenazines in vitro. The doses of phenazines causing 50% inhibition of parasite growth varied from 1.67 to 9.44 microM. The two most active ones were also tested in vivo against Plasmodium berghei in mice, in parallel with lapachol and beta-lapachone. The 3-sulfonic acid-beta-lapachone-derived phenazine was the most active causing up to 98% inhibition of parasitaemia in long term treatment (7 doses) subcutaneously, whereas the phenazine from 3-bromo-beta-lapachone was inactive. Thus, these simple phenazines, containing polar (-Br,-I) and ionizable (-SO(3)H, -OH) groups, easily synthesized from cheap, natural or synthetic precursors (lapachol and beta-lapachone), at rather low cost, provide prototypes for development of new antimalarials aiming the chloroquine resistant parasites.
Collapse
Affiliation(s)
- Valter F de Andrade-Neto
- Centro de Pesquisas René Rachou, Fiocruz and Departamento de Parasitologia-Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The morbidity and mortality associated with malaria have spurred efforts to find novel antimalarial agents with improved potency and selectivity. Leads for agents continue to be obtained from natural sources (plants and microorganisms) and chemical syntheses. Screening of commercial or specialized databases have also yielded promising leads. The structural diversity of compounds with good (micromolar and lower) activity point to the considerable tolerance for different structural elements in the "antimalarial pharmacophore." It may also be a reflection of the varied targets present in the plasmodia. The challenge in malaria chemotherapy is to find safe and selective agents whose potencies will not be compromised by plasmodial resistance. Modification of potential leads should also aim at improving "drug-like" character, viz. to ensure acceptable oral bioavailability. A review of the literature shows that there is a growing trend towards the development of target-specific antimalarial agents (for example, agents inhibiting plasmodial farnesyl transferase, cyclin dependent kinases, proteases, choline transport). An increasing number of reports focus on the development of chemosensitizers, agents that are capable of reversing plasmodial resistance.
Collapse
Affiliation(s)
- Mei-Lin Go
- Department of Pharmacy, National University of Singapore, Singapore.
| |
Collapse
|