1
|
Bahrami S, Andishmand H, Pilevar Z, Hashempour-Baltork F, Torbati M, Dadgarnejad M, Rastegar H, Mohammadi SA, Azadmard-Damirchi S. Innovative perspectives on bacteriocins: advances in classification, synthesis, mode of action, and food industry applications. J Appl Microbiol 2024; 135:lxae274. [PMID: 39496524 DOI: 10.1093/jambio/lxae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/24/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024]
Abstract
Bacteriocins, natural antimicrobial peptides produced by bacteria, present eco-friendly, non-toxic, and cost-effective alternatives to traditional chemical antimicrobial agents in the food industry. This review provides a comprehensive update on the classification of bacteriocins in food preservation. It highlights the significant industrial potential of pediocin-like and two-peptide bacteriocins, emphasizing chemical synthesis methods like Fmoc-SPPS to meet the demand for bioactive bacteriocins. The review details the mode of action, focusing on mechanisms such as transmembrane potential disruption and pH-dependent effects. Furthermore, it addresses the limitations of bacteriocins in food preservation and explores the potential of nanotechnology-based encapsulation to enhance their antimicrobial efficacy. The benefits of nanoencapsulation, including improved stability, extended antimicrobial spectrum, and enhanced functionality, are underscored. This understanding is crucial for advancing the application of bacteriocins to ensure food safety and quality.
Collapse
Affiliation(s)
- Sara Bahrami
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Dadgarnejad
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Ali Mohammadi
- Faculty of Nursing and Midwifery, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Sosa-Fajardo A, Díaz-Muñoz C, Van der Veken D, Pradal I, Verce M, Weckx S, Leroy F. Genomic exploration of the fermented meat isolate Staphylococcus shinii IMDO-S216 with a focus on competitiveness-enhancing secondary metabolites. BMC Genomics 2024; 25:575. [PMID: 38849728 PMCID: PMC11161930 DOI: 10.1186/s12864-024-10490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.
Collapse
Affiliation(s)
- Ana Sosa-Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Pham NP, Layec S, Dugat-Bony E, Vidal M, Irlinger F, Monnet C. Comparative genomic analysis of Brevibacterium strains: insights into key genetic determinants involved in adaptation to the cheese habitat. BMC Genomics 2017; 18:955. [PMID: 29216827 PMCID: PMC5719810 DOI: 10.1186/s12864-017-4322-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background Brevibacterium strains are widely used for the manufacturing of surface-ripened cheeses, contributing to the breakdown of lipids and proteins and producing volatile sulfur compounds and red-orange pigments. The objective of the present study was to perform comparative genomic analyses in order to better understand the mechanisms involved in their ability to grow on the cheese surface and the differences between the strains. Results The genomes of 23 Brevibacterium strains, including twelve strains isolated from cheeses, were compared for their gene repertoire involved in salt tolerance, iron acquisition, bacteriocin production and the ability to use the energy compounds present in cheeses. All or almost all the genomes encode the enzymes involved in ethanol, acetate, lactate, 4-aminobutyrate and glycerol catabolism, and in the synthesis of the osmoprotectants ectoine, glycine-betaine and trehalose. Most of the genomes contain two contiguous genes encoding extracellular proteases, one of which was previously characterized for its activity on caseins. Genes encoding a secreted triacylglycerol lipase or involved in the catabolism of galactose and D-galactonate or in the synthesis of a hydroxamate-type siderophore are present in part of the genomes. Numerous Fe3+/siderophore ABC transport components are present, part of them resulting from horizontal gene transfers. Two cheese-associated strains have also acquired catecholate-type siderophore biosynthesis gene clusters by horizontal gene transfer. Predicted bacteriocin biosynthesis genes are present in most of the strains, and one of the corresponding gene clusters is located in a probable conjugative transposon that was only found in cheese-associated strains. Conclusions Brevibacterium strains show differences in their gene repertoire potentially involved in the ability to grow on the cheese surface. Part of these differences can be explained by different phylogenetic positions or by horizontal gene transfer events. Some of the distinguishing features concern biotic interactions with other strains such as the secretion of proteases and triacylglycerol lipases, and competition for iron or bacteriocin production. In the future, it would be interesting to take the properties deduced from genomic analyses into account in order to improve the screening and selection of Brevibacterium strains, and their association with other ripening culture components. Electronic supplementary material The online version of this article (10.1186/s12864-017-4322-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyen-Phuong Pham
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Séverine Layec
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Eric Dugat-Bony
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Marie Vidal
- US 1426, GeT-PlaGe, Genotoul, INRA, 31326, Castanet-Tolosan, France
| | - Françoise Irlinger
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Christophe Monnet
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
| |
Collapse
|
4
|
Lopes R, Cerdeira L, Tavares GS, Ruiz JC, Blom J, Horácio ECA, Mantovani HC, Queiroz MVD. Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens. World J Microbiol Biotechnol 2017; 33:185. [DOI: 10.1007/s11274-017-2347-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/19/2017] [Indexed: 02/02/2023]
|
5
|
Characterization of Four Novel Plasmids from Lactobacillus plantarum BM4. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.12894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Tansirichaiya S, Mullany P, Roberts AP. PCR-based detection of composite transposons and translocatable units from oral metagenomic DNA. FEMS Microbiol Lett 2016; 363:fnw195. [PMID: 27521260 PMCID: PMC5024762 DOI: 10.1093/femsle/fnw195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/29/2022] Open
Abstract
A composite transposon is a mobile genetic element consisting of two insertion sequences (ISs) flanking a segment of cargo DNA often containing antibiotic resistance (AR) genes. Composite transposons can move as a discreet unit. There have been recently several reports on a novel mechanism of movement of an IS26-based composite transposon through the formation of a translocatable unit (TU), carrying the internal DNA segment of a composite transposon and one copy of a flanking IS. In this study, we determined the presence of composite transposons and TUs in human oral metagenomic DNA using PCR primers from common IS elements. Analysis of resulting amplicons showed four different IS1216 composite transposons and one IS257 composite transposon in our metagenomic sample. As our PCR strategy would also detect TUs, PCR was carried out to detect circular TUs predicted to originate from these composite transposons. We confirmed the presence of two novel TUs, one containing an experimentally proven antiseptic resistance gene and another containing a putative universal stress response protein (UspA) encoding gene. This is the first report of a PCR strategy to amplify the DNA segment on composite transposons and TUs in metagenomic DNA. This can be used to identify AR genes associated with a variety of mobile genetic elements from metagenomes. Using a PCR approach, we have detected composite transposons and TUs directly from human oral metagenomic DNA.
Collapse
Affiliation(s)
- Supathep Tansirichaiya
- Department of Microbial Diseases, University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1×8LD, UK
| | - Peter Mullany
- Department of Microbial Diseases, University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1×8LD, UK
| | - Adam P Roberts
- Department of Microbial Diseases, University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1×8LD, UK
| |
Collapse
|
7
|
Cui Y, Hu T, Qu X, Zhang L, Ding Z, Dong A. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments. Int J Mol Sci 2015; 16:13172-202. [PMID: 26068451 PMCID: PMC4490491 DOI: 10.3390/ijms160613172] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/09/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022] Open
Abstract
Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.
Collapse
Affiliation(s)
- Yanhua Cui
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Tong Hu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China.
| | - Lanwei Zhang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhongqing Ding
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Aijun Dong
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Ainsworth S, Stockdale S, Bottacini F, Mahony J, van Sinderen D. The Lactococcus lactis plasmidome: much learnt, yet still lots to discover. FEMS Microbiol Rev 2014; 38:1066-88. [PMID: 24861818 DOI: 10.1111/1574-6976.12074] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/20/2023] Open
Abstract
Lactococcus lactis is used extensively worldwide for the production of a variety of fermented dairy products. The ability of L. lactis to successfully grow and acidify milk has long been known to be reliant on a number of plasmid-encoded traits. The recent availability of low-cost, high-quality genome sequencing, and the quest for novel, technologically desirable characteristics, such as novel flavour development and increased stress tolerance, has led to a steady increase in the number of available lactococcal plasmid sequences. We will review both well-known and very recent discoveries regarding plasmid-encoded traits of biotechnological significance. The acquired lactococcal plasmid sequence information has in recent years progressed our understanding of the origin of lactococcal dairy starter cultures. Salient points on the acquisition and evolution of lactococcal plasmids will be discussed in this review, as well as prospects of finding novel plasmid-encoded functions.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
9
|
Campelo AB, Roces C, Mohedano ML, López P, Rodríguez A, Martínez B. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microb Cell Fact 2014; 13:77. [PMID: 24886591 PMCID: PMC4055356 DOI: 10.1186/1475-2859-13-77] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/16/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lactococcus lactis is widely used as a dairy starter and has been extensively studied. Based on the acquired knowledge on its physiology and metabolism, new applications have been envisaged and there is an increasing interest of using L. lactis as a cell factory. Plasmids constitute the main toolbox for L. lactis genetic engineering and most rely on antibiotic resistant markers for plasmid selection and maintenance. In this work, we have assessed the ability of the bacteriocin Lactococcin 972 (Lcn972) gene cluster to behave as a food-grade post-segregational killing system to stabilize recombinant plasmids in L. lactis in the absence of antibiotics. Lcn972 is a non-lantibiotic bacteriocin encoded by the 11-kbp plasmid pBL1 with a potent antimicrobial activity against Lactococcus. RESULTS Attempts to clone the full lcn972 operon with its own promoter (P972), the structural gene lcn972 and the immunity genes orf2-orf3 in the unstable plasmid pIL252 failed and only plasmids with a mutated promoter were recovered. Alternatively, cloning under other constitutive promoters was approached and achieved, but bacteriocin production levels were lower than those provided by pBL1. Segregational stability studies revealed that the recombinant plasmids that yielded high bacteriocin titers were maintained for at least 200 generations without antibiotic selection. In the case of expression vectors such as pTRL1, the Lcn972 gene cluster also contributed to plasmid maintenance without compromising the production of the fluorescent mCherry protein. Furthermore, unstable Lcn972 recombinant plasmids became integrated into the chromosome through the activity of insertion sequences, supporting the notion that Lcn972 does apply a strong selective pressure against susceptible cells. Despite of it, the Lcn972 gene cluster was not enough to avoid the use of antibiotics to select plasmid-bearing cells right after transformation. CONCLUSIONS Inserting the Lcn972 cluster into segregational unstable plasmids prevents their lost by segregation and probable could be applied as an alternative to the use of antibiotics to support safer and more sustainable biotechnological applications of genetically engineered L. lactis.
Collapse
Affiliation(s)
- Ana B Campelo
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Clara Roces
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - M Luz Mohedano
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas CIB (CSIC), 28040 Madrid, Spain
| | - Paloma López
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas CIB (CSIC), 28040 Madrid, Spain
| | - Ana Rodríguez
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Beatriz Martínez
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
10
|
Characterization of plasmids in a human clinical strain of Lactococcus garvieae. PLoS One 2012; 7:e40119. [PMID: 22768237 PMCID: PMC3387028 DOI: 10.1371/journal.pone.0040119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/01/2012] [Indexed: 02/04/2023] Open
Abstract
The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen.
Collapse
|
11
|
Lytic activity of LysH5 endolysin secreted by Lactococcus lactis using the secretion signal sequence of bacteriocin Lcn972. Appl Environ Microbiol 2012; 78:3469-72. [PMID: 22344638 DOI: 10.1128/aem.00018-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage endolysins have an interesting potential as antimicrobials. The endolysin LysH5, encoded by Staphylococcus aureus phage vB_SauS-phi-IPLA88, was expressed and secreted in Lactococcus lactis using the signal peptide of bacteriocin lactococcin 972 and lactococcal constitutive and inducible promoters. Up to 80 U/mg of extracellular active endolysin was detected in culture supernatants, but most of the protein (up to 323 U/mg) remained in the cell extracts.
Collapse
|
12
|
The Lcn972 bacteriocin-encoding plasmid pBL1 impairs cellobiose metabolism in Lactococcus lactis. Appl Environ Microbiol 2011; 77:7576-85. [PMID: 21890668 DOI: 10.1128/aem.06107-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
pBL1 is a Lactococcus lactis theta-replicating 10.9-kbp plasmid that encodes the synthetic machinery of the bacteriocin Lcn972. In this work, the transcriptomes of exponentially growing L. lactis strains with and without pBL1 were compared. A discrete response was observed, with a total of 10 genes showing significantly changed expression. Upregulation of the lactococcal oligopeptide uptake (opp) system was observed, which was likely linked to a higher nitrogen demand required for Lcn972 biosynthesis. Strikingly, celB, coding for the membrane porter IIC of the cellobiose phosphoenolpyruvate-dependent phosphotransferase system (PTS), and the upstream gene llmg0186 were downregulated. Growth profiles for L. lactis strains MG1363, MG1363/pBL1, and MG1363 ΔcelB grown in chemically defined medium (CDM) containing cellobiose confirmed slower growth of MG1363/pBL1 and MG1363 ΔcelB, while no differences were observed with growth on glucose. The presence of pBL1 shifted the fermentation products toward a mixed acid profile and promoted substantial changes in intracellular pool sizes for glycolytic intermediates in cells growing on cellobiose as determined by high-pressure liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Overall, these data support the genetic evidence of a constriction in cellobiose uptake. Notably, several cell wall precursors accumulated, while other UDP-activated sugar pools were lower, which could reflect rerouting of precursors toward the production of structural or storage polysaccharides. Moreover, cells growing slowly on cellobiose and those lacking celB were more tolerant to Lcn972 than cellobiose-adapted cells. Thus, downregulation of celB could help to build up a response against the antimicrobial activity of Lcn972, enhancing self-immunity of the producer cells.
Collapse
|
13
|
Górecki RK, Koryszewska-Bagińska A, Gołębiewski M, Żylińska J, Grynberg M, Bardowski JK. Adaptative potential of the Lactococcus lactis IL594 strain encoded in its 7 plasmids. PLoS One 2011; 6:e22238. [PMID: 21789242 PMCID: PMC3138775 DOI: 10.1371/journal.pone.0022238] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 06/22/2011] [Indexed: 11/19/2022] Open
Abstract
The extrachromosomal gene pool plays a significant role both in evolution and in the environmental adaptation of bacteria. The L. lactis subsp. lactis IL594 strain contains seven plasmids, named pIL1 to pIL7, and is the parental strain of the plasmid-free L. lactis IL1403, which is one of the best characterized lactococcal strains of LAB. Complete nucleotide sequences of pIL1 (6,382 bp), pIL2 (8,277 bp), pIL3 (19,244 bp), pIL4 (48,979), pIL5 (23,395), pIL6 (28,435 bp) and pIL7 (28,546) were established and deposited in the generally accessible database (GeneBank). Nine highly homologous repB-containing replicons, belonging to the lactococcal theta-type replicons, have been identified on the seven plasmids. Moreover, a putative region involved in conjugative plasmid mobilization was found on four plasmids, through identification of the presence of mob genes and/or oriT sequences. Detailed bioinformatic analysis of the plasmid nucleotide sequences provided new insight into the repertoire of plasmid-encoded functions in L. lactis, and indicated that plasmid genes from IL594 strain can be important for L. lactis adaptation to specific environmental conditions (e.g. genes coding for proteins involved in DNA repair or cold shock response) as well as for technological processes (e.g. genes encoding citrate and lactose utilization, oligopeptide transport, restriction-modification system). Moreover, global gene analysis indicated cooperation between plasmid- and chromosome-encoded metabolic pathways.
Collapse
Affiliation(s)
- Roman K. Górecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marcin Gołębiewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Żylińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek K. Bardowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
14
|
Sun Z, Kong J, Kong W. Characterization of a cryptic plasmid pD403 from Lactobacillus plantarum and construction of shuttle vectors based on its replicon. Mol Biotechnol 2010; 45:24-33. [PMID: 20077035 DOI: 10.1007/s12033-010-9242-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A cryptic plasmid pD403 was isolated from Lactobacillus plantarum D403 derived from fermented dairy products. It was 2,791 bp in size with a G+C content of 37%. Nucleotide sequence analysis revealed two open reading frames, orf1 and orf2. ORF1 (318 amino acids) was identified as a replication protein (RepA). ORF2 (137 amino acids) shared 31% similarity with the transcriptional regulator of Ralstonia pickettii 12D. Functional investigation indicated that ORF2 (Tra) had the ability of improving the transformation efficiency. The origin of replication was predicted, suggesting that pD403 was a rolling-circle-replication (RCR) plasmid. An Escherichia coli/Lactobacillus shuttle vector pCD4032 was constructed based on the pD403 replicon, and proved to be successfully transformed into various lactobacilli including Lactobacillus casei, Lactobacillus plantarum, Lactobacillus fermentum, and Lactobacillus brevis. The transformation efficiencies were ranged from 1.3 x 10(2) to 7 x 10(4) transformants per microgram DNA. Furthermore, an expression vector pCD4033 was developed with the promoter of the lactate dehydrogenase from Lactobacillus delbrueckii 11842. The green fluorescent protein (gfp) as a reporter was expressed successfully in various lactobacilli tested, suggesting that the expression vector pCD4033 had the potential to be used as a molecular tool for heterologous gene cloning and expression in lactobacilli.
Collapse
Affiliation(s)
- Zhilan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | | | | |
Collapse
|
15
|
Smith RM, Diffin FM, Savery NJ, Josephsen J, Szczelkun MD. DNA cleavage and methylation specificity of the single polypeptide restriction-modification enzyme LlaGI. Nucleic Acids Res 2010; 37:7206-18. [PMID: 19808936 PMCID: PMC2790903 DOI: 10.1093/nar/gkp790] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
LlaGI is a single polypeptide restriction-modification enzyme encoded on the naturally-occurring plasmid pEW104 isolated from Lactococcus lactis ssp. cremoris W10. Bioinformatics analysis suggests that the enzyme contains domains characteristic of an mrr endonuclease, a superfamily 2 DNA helicase and a gamma-family adenine methyltransferase. LlaGI was expressed and purified from a recombinant clone and its properties characterised. An asymmetric recognition sequence was identified, 5'-CTnGAyG-3' (where n is A, G, C or T and y is C or T). Methylation of the recognition site occurred on only one strand (the non-degenerate dA residue of 5'-CrTCnAG-3' being methylated at the N6 position). Double strand DNA breaks at distant, random sites were only observed when two head-to-head oriented, unmethylated copies of the site were present; single sites or pairs in tail-to-tail or head-to-tail repeat only supported a DNA nicking activity. dsDNA nuclease activity was dependent upon the presence of ATP or dATP. Our results are consistent with a directional long-range communication mechanism that is necessitated by the partial site methylation. In the accompanying manuscript [Smith et al. (2009) The single polypeptide restriction-modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops], we demonstrate that this communication is via 1-dimensional DNA loop translocation. On the basis of this data and that in the third accompanying manuscript [Smith et al. (2009) An Mrr-family nuclease motif in the single polypeptide restriction-modification enzyme LlaGI], we propose that LlaGI is the prototype of a new sub-classification of Restriction-Modification enzymes, named Type I SP (for Single Polypeptide).
Collapse
Affiliation(s)
- Rachel M Smith
- DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | |
Collapse
|
16
|
Identification of a replicon from pCC3, a cryptic plasmid from Leuconostoc citreum C4 derived from kimchi, and development of a new host–vector system. Biotechnol Lett 2009; 31:685-96. [DOI: 10.1007/s10529-009-9912-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/27/2022]
|
17
|
Nomoto K, Kiwaki M, Tsuji H. Genetic Modification of Probiotic Microorganisms. HANDBOOK OF PROBIOTICS AND PREBIOTICS 2008:189-255. [DOI: 10.1002/9780470432624.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Alvarez-Martín P, O'Connell-Motherway M, van Sinderen D, Mayo B. Functional analysis of the pBC1 replicon from Bifidobacterium catenulatum L48. Appl Microbiol Biotechnol 2007; 76:1395-402. [PMID: 17704917 DOI: 10.1007/s00253-007-1115-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/06/2007] [Accepted: 07/07/2007] [Indexed: 10/22/2022]
Abstract
To determine the minimal replicon of pBC1 (a 2.5-kb cryptic plasmid of Bifidobacterium catenulatum L48) and to check the functionality of its identified open reading frames (ORFs) and surrounding sequences, different segments of pBC1 were amplified by polymerase chain reaction (PCR) and cloned into pBif, a replication probe vector for bifidobacteria. The largest fragment tested in this manner encompassed most of the pBC1 sequence, while the shortest just included the repB gene and its immediate upstream sequences. Derivatives were all shown to allow replication in bifidobacteria. Surprisingly, both the transformation frequency and segregational stability in the absence of antibiotic selection decreased with reducing plasmid length. The relative copy number of the constructs (ranging from around 3 to 23 copies per chromosome equivalent, as compared to 30 copies for the original pBC1) was shown to be strain dependent and to decrease with reducing plasmid length. These results suggest that, although not essential, the copG-like and orfX-like genes of pBC1 play important roles in pBC1 replication. Interruption of repB produced a construct incapable of replicating in bifidobacteria. The analysis of pBC1 will allow its use in the construction of general and specific cloning vectors.
Collapse
Affiliation(s)
- Pablo Alvarez-Martín
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (CSIC), Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
19
|
Alvarez-Martín P, Flórez AB, Mayo B. Screening for plasmids among human bifidobacteria species: sequencing and analysis of pBC1 from Bifidobacterium catenulatum L48. Plasmid 2006; 57:165-74. [PMID: 16930703 DOI: 10.1016/j.plasmid.2006.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 07/03/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
Analysis of 72 bifidobacterial isolates for plasmid DNA identified six different plasmid profiles, two profiles consisted of a single plasmid and four contained at least two. A plasmid identified in a Bifidobacterium catenulatum strain (pBC1) was chosen for further characterization based on its small size and stability. The plasmid was shown to be a circular molecule of 2540 base pairs with an overall G+C content of 64%. At the putative origin of replication a direct repeat of 24 nucleotides repeated three and a half times was observed, as well as five inverted repeats, which resembled the organization of theta-type replicating plasmids. Three open reading frames encoding peptides larger than 50 amino acids were also identified: repB, encoding a replicase of 315 amino acids, a transcriptionally coupled gene (orfX-like), similar to the orfX of some theta-replicating lactococcal plasmids, and copG-like in the complementary strand, which showed a conserved domain present in proteins of the CopG family. Comparison of the deduced RepB protein of pBC1 to other replication proteins in databases, identified pMB1 from Bifidobacterium longum as its closest relative (81% amino acid identity). The pBC1 replicon proved to be functional in several Bifidobacterium species, including B. animalis, B. longum, and B. pseudocatenulatum. Hybridization experiments showed the replicon was uncommon among bifidobacteria. The relative copy number of pBC1 was estimated to be 30.9+/-4.62 by quantitative real-time polymerase chain reaction.
Collapse
Affiliation(s)
- Pablo Alvarez-Martín
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Carretera de Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | | | | |
Collapse
|
20
|
Mills S, McAuliffe OE, Coffey A, Fitzgerald GF, Ross RP. Plasmids of lactococci – genetic accessories or genetic necessities? FEMS Microbiol Rev 2006; 30:243-73. [PMID: 16472306 DOI: 10.1111/j.1574-6976.2005.00011.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Lactococci are one of the most exploited microorganisms used in the manufacture of food. These intensively used cultures are generally characterized by having a rich plasmid complement. It could be argued that it is the plasmid complement of commercially utilized cultures that gives them their technical superiority and individuality. Consequently, it is timely to reflect on the desirable characteristics encoded on lactococcal plasmids. It is argued that plasmids play a key role in the evolution of modern starter strains and are a lot more than just selfish replicosomes but more essential necessities of intensively used commercial starters. Moreover, the study of plasmid biology provides a genetic blueprint that has proved essential for the generation of molecular tools for the genetic improvement of Lactococcus lactis.
Collapse
Affiliation(s)
- Susan Mills
- Teagasc, Dairy Products Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | | | |
Collapse
|
21
|
Sánchez C, Mayo B. Sequence and analysis of pBM02, a novel RCR cryptic plasmid from Lactococcus lactis subsp cremoris P8-2-47. Plasmid 2003; 49:118-29. [PMID: 12726765 DOI: 10.1016/s0147-619x(03)00013-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This paper reports the complete nucleotide sequence of the 3.85 kbp plasmid pBM02 from Lactococcus lactis subsp. cremoris P8-2-47. Analysis of the sequence predicted six ORFs larger than 25 amino acids. They all were transcribed from the same strand and organized in two functional cassettes: the replication region and a putative mobilization region. In the replication region, two ORFs specifying proteins homologous to others found in some classes of rolling circle-replicating plasmids were encountered (copG and repB). In fact, single-stranded DNA was detected as a replication intermediate of pBM02. copG and repB, together with some upstream sequences, formed part of the minimal replication unit of the plasmid. Interestingly, pBM02 shared a 212 bp stretch with plasmids of the pWV01 type, in which the whole single-strand origin of replication is included. In the mobilization region, an ORF coding for a mobilization-like protein was present, preceded by a putative oriT sequence homologous to that of plasmid pMV158. The replicon of pBM02 is of the wide-host range type, and functions in both Gram-positive and Gram-negative bacteria, including Lactobacillus casei, Lactobacillus plantarum, Bacillus subtilis, and Escherichia coli.
Collapse
Affiliation(s)
- Claudia Sánchez
- Instituto de Productos Lácteos de Asturias (CSIC), Carretera de Infiesto s/n, 33300-Villaviciosa, Asturias, Spain
| | | |
Collapse
|