1
|
Jeong SH, Jang JH, Lee YB. Inter-individual exposure variability interpretation through reflection of biological age algorithm in physiologically based toxicokinetic model: Application to human risk assessment of di-isobutyl-phthalate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122388. [PMID: 37598929 DOI: 10.1016/j.envpol.2023.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Age-related changes and interindividual variability in the degree of exposure to hazardous substances in the environment are pertinent factors to be considered in human risk assessment. Existing risk assessments remain in a one-size-fits-all approach, often without due consideration of inter-individual toxicokinetic variability factors, such as age. The purpose of this study was to advance from the existing risk assessment of hazardous substances based on toxicokinetics to a precise human risk assessment by additionally considering the effects of physiologic and metabolic fluctuations and interindividual variability in age. Qualitative age-associated physiologic and metabolic changes in humans, obtained through a meta-analysis, were quantitatively modeled to produce the final biological age algorithm (BAA). The developed BAAs (for males) were extended and applied to the reported testicular reproductive toxicity-focused di-isobutyl-phthalate (DiBP)-mono-isobutyl-phthalate (MiBP) physiologically based toxicokinetic (PBTK) model in males. The advanced PBTK model combined with the BAA was applied to the human risk assessment based on MiBP biomonitoring data. As a result, the specialized DiBP external exposure values for each age could be estimated. Additionally, by applying the Monte Carlo simulation, the distribution of internal exposure diversity among individuals according to the same external exposure dose could be estimated. The contributions of physiologic and metabolic factors to the age-dependent toxicokinetic changes were approximately 93.41-99.99 and 0.01-6.59%, respectively. In addition, the relative contribution of metabolic factors was major in infants and continued to decrease as age increased (up to about age 30 years). This study provides a step-by-step platform that can be widely applied to overcome the limitations of existing toxicokinetic models that still require interindividual pharmacokinetic variability explanations. This will be important for the rationalization and explanation of inter-individual variability in the pharmacokinetics of many substances.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-si, Jeollanam-do, 57922, Republic of Korea; College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon-Si 57922, Republic of Korea.
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Dubbelboer IR, Le Roux-Pullen L, Gehring R. Systematic review of physiologically based kinetic lactation models for transfer of xenobiotic compounds to milk. Toxicol Appl Pharmacol 2023; 467:116495. [PMID: 36996912 DOI: 10.1016/j.taap.2023.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Lactational elimination has been described mathematically for nearly 50 years. Over 40 published articles, containing >50 physiologically based kinetic (PBK) lactation models were included in the systematic review. These PBK models described the lactational elimination of xenobiotic compounds in humans, rats, mice, and dairy cows and goats. A total of 78 compounds have been modelled, ranging from industrial chemicals, pesticides, to pain medication, antibiotics, and caffeine. Few models included several species or compounds, and models were thus generally not translational or generic. Three dairy cow models mechanistically described the intramammary disposition of pharmaceuticals after intramammary administration, including volume changes caused by milking, while empirically describing the remaining pharmacokinetics. The remaining models were semi- or whole body PBK models, describing long-term exposure of environmental pollutants, or short-term exposure of pharmaceuticals. The absolute majority described the disposition to the mammary gland or milk with perfusion limited compartments, but permeability limited models were available as well. With long-term exposure, models often included changes in milk volume and/or consumption by the offspring, and changes in body weight of offspring. Periodic emptying of the mammary gland, as with feeding or milking, was sparsely applied. Rodent models used similar physiological parameters, while values of physiological parameters applied in human models could range widely. When milk composition was included in the models, it most often included the fat content. The review gives an extensive overview of the applied functions and modelling strategies of PBK lactation models.
Collapse
|
3
|
Gui SY, Chen YN, Wu KJ, Liu W, Wang WJ, Liang HR, Jiang ZX, Li ZL, Hu CY. Association Between Exposure to Per- and Polyfluoroalkyl Substances and Birth Outcomes: A Systematic Review and Meta-Analysis. Front Public Health 2022; 10:855348. [PMID: 35400049 PMCID: PMC8988915 DOI: 10.3389/fpubh.2022.855348] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Background A large body of emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) affect birth outcomes in various pathways, but the evidence is inconsistent. Therefore, this study aimed to systematically review the epidemiological evidence on PFAS exposure and birth outcomes. Methods Three electronic databases were searched for epidemiological studies through February 13, 2021. We used random-effects meta-analysis for eight birth outcome indicators to calculate summary effect estimates for various exposure types. The risk of bias and the overall quality and level of evidence for each exposure-outcome pair were assessed. Results The initial search identified 58 potentially eligible studies, of which 46 were ultimately included. Many PFAS were found to have previously unrecognized statistically significant associations with birth outcomes. Specifically, birth weight (BW) was associated with PFAS, with effect sizes ranging from −181.209 g (95% confidence interval (CI) = −360.620 to −1.798) per 1 ng/ml increase in perfluoroheptanesulfonate (PFHpS) to −24.252 g (95% CI = −38.574 to −9.930) per 1 ln (ng/ml) increase in perfluorodecaoic acid (PFDA). Similar patterns were observed between other PFAS and birth outcomes: perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with birth length (BL) and ponderal index (PI), PFOS and perfluorododecanoic acid (PFDoDA) with head circumference (HC), PFHpS with gestational age (GA), and perfluorononanoic acid (PFNA) and PFHpS with preterm birth (PTB). Additionally, PFDA showed a statistically significant association with small for gestational age (SGA). The level of the combined evidence for each exposure-outcome pair was considered to be “moderate”. Conclusion This study showed that PFAS exposure was significantly associated with increased risks of various adverse birth outcomes and that different birth outcome indicators had different degrees of sensitivity to PFAS. Further studies are needed to confirm our results by expanding the sample size, clarifying the effects of different types or doses of PFAS and the time of blood collection on birth outcomes, and fully considering the possible confounders.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yue-Nan Chen
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, Hefei, China
| | - Ke-Jia Wu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen Liu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen-Jing Wang
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, Hefei, China
| | - Huan-Ru Liang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ze-Lian Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ze-Lian Li
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Cheng-Yang Hu
| |
Collapse
|
4
|
Chen L, Tong C, Huo X, Zhang J, Tian Y. Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and birth outcomes: A longitudinal cohort with repeated measurements. CHEMOSPHERE 2021; 267:128899. [PMID: 33220988 DOI: 10.1016/j.chemosphere.2020.128899] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Previous studies on perfluoroalkyl and polyfluoroalkyl substances (PFAS) showed inconsistent results when biological samples were collected in different time of pregnancy. OBJECTIVES To describe the change of PFAS concentration during pregnancy and to identify a sensitive window for adverse effects of PFAS on the fetus. METHODS A total of 255 pregnant women were selected from the Shanghai Birth Cohort (SBC). We quantified 10 PFAS with high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) in maternal plasma at three trimesters and cord blood at delivery. Multiple linear regression analyses were used to analyze the association between PFAS and birth outcomes, including birth weight, birth length, and head circumference. RESULTS The concentrations of most PFAS declined substantially during pregnancy. PFOS, PFNA, PFDA, PFUA and PFDoA were negatively related to birth length only in the first trimester. The coefficients and 95% confidence intervals (CI) of birth length change with a log-unit increase in PFOS, PFNA, PFDA, PFUS and PFDoA concentrations were -0.27 cm (-0.51, -0.02), -0.34 cm (-0.65, -0.03), -0.27 cm (-0.53, -0.01), -0.29 cm (-0.58, -0.01), and -0.54 cm (-1.00, -0.08), respectively. The effects were only observed for female fetuses. No association between PFAS and birth weight or head circumference was observed. CONCLUSION The concentrations of most PFAS in the maternal circulation declined during pregnancy. There were negative associations between several PFAS and birth length. The sensitive window of exposure appeared to be the first trimester. The association was stronger for female fetuses.
Collapse
Affiliation(s)
- Lin Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanliang Tong
- The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaona Huo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Chou WC, Lin Z. Development of a Gestational and Lactational Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctane Sulfonate (PFOS) in Rats and Humans and Its Implications in the Derivation of Health-Based Toxicity Values. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37004. [PMID: 33730865 PMCID: PMC7969127 DOI: 10.1289/ehp7671] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND There is a great concern on potential adverse effects of exposure to perfluorooctane sulfonate (PFOS) in sensitive subpopulations, such as pregnant women, fetuses, and neonates, due to its reported transplacental and lactational transfer and reproductive and developmental toxicities in animals and humans. OBJECTIVES This study aimed to develop a gestational and lactational physiologically based pharmacokinetic (PBPK) model in rats and humans for PFOS to aid risk assessment in sensitive human subpopulations. METHODS Based upon existing PBPK models for PFOS, the present model addressed a data gap of including a physiologically based description of basolateral and apical membrane transporter-mediated renal reabsorption and excretion in kidneys during gestation and lactation. The model was calibrated with published rat toxicokinetic and human biomonitoring data and was independently evaluated with separate data. Monte Carlo simulation was used to address the interindividual variability. RESULTS Model simulations were generally within 2-fold of observed PFOS concentrations in maternal/fetal/neonatal plasma and liver in rats and humans. Estimated fifth percentile human equivalent doses (HEDs) based on selected critical toxicity studies in rats following U.S. Environmental Protection Agency (EPA) guidelines ranged from 0.08 to 0.91 μ g / kg per day . These values are lower than the HEDs estimated in U.S. EPA guidance (0.51 - 1.6 μ g / kg per day ) using an empirical toxicokinetic model in adults. CONCLUSIONS The results support the importance of renal reabsorption/excretion during pregnancy and lactation in PFOS dosimetry and suggest that the derivation of health-based toxicity values based on developmental toxicity studies should consider gestational/lactational dosimetry estimated from a life stage-appropriate PBPK model. This study provides a quantitative tool to aid risk reevaluation of PFOS, especially in sensitive human subpopulations, and it provides a basis for extrapolating to other per- and polyfluoroalkyl substances (PFAS). All model codes and detailed tutorials are provided in the Supplemental Materials to allow readers to reproduce our results and to use this model. https://doi.org/10.1289/EHP7671.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
6
|
Junqué E, Garcia S, Martínez MÁ, Rovira J, Schuhmacher M, Grimalt JO. Changes of organochlorine compound concentrations in maternal serum during pregnancy and comparison to serum cord blood composition. ENVIRONMENTAL RESEARCH 2020; 182:108994. [PMID: 31838409 DOI: 10.1016/j.envres.2019.108994] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
The concentrations of organochlorine compounds (OCs), including pentachlorobenzene, hexachlorobenzene (HCB), hexachlorocyclohexanes (α-, β-, γ- and δ-HCH), polychlorobiphenyls (PCBs 28, 52, 101, 118, 138, 153 and 180), DDT and metabolites, were measured in maternal serum samples collected at the first trimester of pregnancy, at delivery and in umbilical cord from a cohort of mother-newborn pairs from Tarragona (Spain) (n = 50), representing general population of a Mediterranean area from Southern Europe. The observed concentrations were generally low in comparison with previous studies in other world areas. Higher OC concentrations were observed in the maternal serum collected at delivery than in the first trimester and the cord blood concentrations were lower than the maternal levels. These results show for the first time a small but statistically significant increase in maternal venous concentration of OCs between the first trimester and delivery when measured in ng/ml. HCB, β-HCH and the PCB congeners in cord blood were significantly correlated with the concentrations of these compounds in maternal venous blood and the coefficients were stronger for the samples collected at delivery which was consistent with OC transfer from mother to foetus. In the case of DDT compounds, only 4,4'-DDT showed maternal-cord blood correlation which documented the low metabolic capacity of newborns for OC transformation, e.g. DDT into DDE. Maternal age was the most significant driver of the observed maternal venous OC concentrations in both periods, older ages involving higher concentrations. Higher body mass index was only significantly correlated with higher 4,4'-DDE concentrations in maternal venous blood and cord blood. In some cases, social class and education level were significantly correlated with OC concentrations, e.g. 4,4'-DDE in maternal venous blood from the first trimester and cord blood and PCB153 in maternal venous blood at delivery. In these cases, highest concentrations were found in the women with highest education level and most affluent social class. Comparison of the maternal OC concentrations of this cohort with those observed in 2002 in population of the same geographic area and age range shows decreases between two and ten times over this fourteen-year period.
Collapse
Affiliation(s)
- Eva Junqué
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Sergi Garcia
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - María Ángeles Martínez
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Bouazza N, Foissac F, Hirt D, Urien S, Benaboud S, Lui G, Treluyer JM. Methodological Approaches to Evaluate Fetal Drug Exposure. Curr Pharm Des 2020; 25:496-504. [PMID: 30892158 DOI: 10.2174/1381612825666190319102812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug prescriptions are usual during pregnancy, however, women and their fetuses still remain an orphan population with regard to drugs efficacy and safety. Most xenobiotics diffuse through the placenta and some of them can alter fetus development resulting in structural abnormalities, growth or functional deficiencies. METHODS To summarize the different methodologies developed towards the prediction of fetal drug exposure. RESULTS Neonatal cord blood concentration is the most specific measurement of the transplacental drug transfer at the end of pregnancy. Using the cord blood and mother drug concentrations altogether, drug exchanges between the mother and fetus can be modeled and quantified via a population pharmacokinetic analysis. Thereafter, it is possible to estimate the fetus exposure and the fetus-to-mother exposure ratio. However, the prediction of placental transfer before any administration to pregnant women is desirable. Animal studies remain difficult to interpret due to structural and functional inter-species placenta differences. The ex-vivo perfusion of the human placental cotyledon is the method of reference to study the human placental transfer of drugs because it is thought to mimic the functional placental tissue. However, extrapolation of data to in vivo situation remains difficult. Some research groups have extensively worked on physiologically based models (PBPK) to predict fetal drug exposure and showed very encouraging results. CONCLUSION PBPK models appeared to be a very promising tool in order to predict fetal drug exposure in-silico. However, these models mainly picture the end of pregnancy and knowledge regarding both, development of the placental permeability and transporters is strongly needed.
Collapse
Affiliation(s)
- Naïm Bouazza
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France
| | - Frantz Foissac
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France
| | - Déborah Hirt
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France.,Service de Pharmacologie Clinique, Hôpital Cochin, AP-HP, Groupe Hospitalier Paris Centre, Paris, France
| | - Saïk Urien
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France
| | - Sihem Benaboud
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France.,Service de Pharmacologie Clinique, Hôpital Cochin, AP-HP, Groupe Hospitalier Paris Centre, Paris, France
| | - Gabrielle Lui
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Service de Pharmacologie Clinique, Hôpital Cochin, AP-HP, Groupe Hospitalier Paris Centre, Paris, France
| | - Jean-Marc Treluyer
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France.,Service de Pharmacologie Clinique, Hôpital Cochin, AP-HP, Groupe Hospitalier Paris Centre, Paris, France
| |
Collapse
|
8
|
Codaccioni M, Bois F, Brochot C. Placental transfer of xenobiotics in pregnancy physiologically-based pharmacokinetic models: Structure and data. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Sharma RP, Schuhmacher M, Kumar V. The development of a pregnancy PBPK Model for Bisphenol A and its evaluation with the available biomonitoring data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:55-68. [PMID: 29247905 DOI: 10.1016/j.scitotenv.2017.12.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/03/2017] [Accepted: 12/03/2017] [Indexed: 05/20/2023]
Abstract
Recent studies suggest universal fetal exposure to Bisphenol A (BPA) and its association with the adverse birth outcomes. Estimation of the fetal plasma BPA concentration from the maternal plasma BPA would be highly useful to predict its associated risk to this specific population. The objective of current work is to develop a pregnancy-physiologically based pharmacokinetic (P-PBPK) model to predict the toxicokinetic profile of BPA in the fetus during gestational growth, and to evaluate the developed model using biomonitoring data obtained from different pregnancy cohort studies. To achieve this objective, first, the adult PBPK model was developed and validated with the human BPA toxicokinetic data. This validated human PBPK model was extended to develop a P-PBPK model, which included the physiological changes during pregnancy and the fetus sub-model. The developed model would be able to predict the BPA pharmacokinetics (PKs) in both mother and fetus. Transplacental BPA kinetics parameters for this study were taken from the previous pregnant mice study. Both oral and dermal exposure routes were included into the model to simulate total BPA internal exposure. The impact of conjugation and deconjugation of the BPA and its metabolites on fetal PKs was investigated. The developed P-PBPK model was evaluated against the observed BPA concentrations in cord blood, fetus liver and amniotic fluid considering maternal blood concentration as an exposure source. A range of maternal exposure dose for the oral and dermal routes was estimated, so that simulation concentration matched the observed highest and lowest mother plasma concentration in different cohorts' studies. The developed model could be used to address the concerns regarding possible adverse health effects in the fetus being exposed to BPA and might be useful in identifying critical windows of exposure during pregnancy.
Collapse
Affiliation(s)
- Raju Prasad Sharma
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Vikas Kumar
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
10
|
De Sousa Mendes M, Lui G, Zheng Y, Pressiat C, Hirt D, Valade E, Bouazza N, Foissac F, Blanche S, Treluyer JM, Urien S, Benaboud S. A Physiologically-Based Pharmacokinetic Model to Predict Human Fetal Exposure for a Drug Metabolized by Several CYP450 Pathways. Clin Pharmacokinet 2017; 56:537-550. [PMID: 27766562 DOI: 10.1007/s40262-016-0457-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pregnant women and their fetuses are exposed to numerous drugs; however, they are orphan populations with respect to the safety and efficacy of drugs. Therefore, the prediction of maternal and fetal drug exposure prior to administration would be highly useful. METHODS A physiologically-based pharmacokinetic (PBPK) model for nevirapine, which is metabolized by the cytochrome P450 (CYP) 3A4, 2B6 and 2D6 pathways, was developed to predict maternal and fetal pharmacokinetics (PK). The model was developed in both non-pregnant and pregnant women, and all physiological and enzymatic changes that could impact nevirapine PK were taken into account. Transplacental parameters estimated from ex vivo human placenta perfusion experiments were included in this PBPK model. To validate the model, observed maternal and cord blood concentrations were compared with predicted concentrations, and the impact of fetal clearance on fetal PK was investigated. RESULTS By implementing physiological changes, including CYP3A4, 2D6 and 2B6 inductions, we predicted a clearance increase of 21 % in late pregnancy. The PBPK model successfully predicted the disposition for both non-pregnant and pregnant populations. Parameters obtained from the ex vivo experiments allowed the prediction of nevirapine concentrations that matched observed cord blood concentrations. The fetal-to-maternal area under the curve ratio (0-24 h interval) was 0.77, and fetal metabolism had no significant effect on fetal PK. CONCLUSIONS The PBPK approach is a useful tool for quantifying a priori the drug exposure of metabolized drugs during pregnancy, and can be applied to evaluate alternative dosing regimens to optimize drug therapy. This approach, including ex vivo human placental perfusion parameters, is a promising approach for predicting human fetal exposure.
Collapse
Affiliation(s)
- Maïlys De Sousa Mendes
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France.
| | - Gabrielle Lui
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris, France
| | - Yi Zheng
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris, France
| | - Claire Pressiat
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France
| | - Deborah Hirt
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris, France
| | - Elodie Valade
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France
| | - Naïm Bouazza
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France
| | - Frantz Foissac
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France
| | - Stephane Blanche
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France.,AP-HP, Hôpital Necker-Enfants-malades, Unité d'immunologie, hématologie et rhumatologie pédiatriques, 75015, Paris, France
| | - Jean-Marc Treluyer
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris, France
| | - Saik Urien
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France
| | - Sihem Benaboud
- EA 7323: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de recherche clinique Paris centre, 75006, Paris, France.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris, France
| |
Collapse
|
11
|
Poet T, Hays S. Extrapolation of plasma clearance to understand species differences in toxicokinetics of bisphenol A. Xenobiotica 2017; 48:891-897. [DOI: 10.1080/00498254.2017.1379626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Torka Poet
- Summit Toxicology, L.L.P, Richland, WA, USA and
| | - Sean Hays
- Summit Toxicology, L.L.P, Bozeman, MT, USA
| |
Collapse
|
12
|
Linakis MW, Job KM, Liu X, Collingwood SC, Pangburn HA, Ott DK, Sherwin CMT. Riding (High) into the danger zone: a review of potential differences in chemical exposures in fighter pilots resulting from high altitude and G-forces. Expert Opin Drug Metab Toxicol 2017; 13:925-934. [PMID: 28772091 DOI: 10.1080/17425255.2017.1360867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION When in flight, pilots of high performance aircraft experience conditions unique to their profession. Training flights, performed as often as several times a week, can expose these pilots to altitudes in excess of 15 km (~50,000 ft, with a cabin pressurized to an altitude of ~20,000 ft), and the maneuvers performed in flight can exacerbate the G-forces felt by the pilot. While the pilots specifically train to withstand these extreme conditions, the physiologic stress could very likely lead to differences in the disposition of chemicals in the body, and consequently, dangerously high exposures. Unfortunately, very little is known about how the conditions experienced by fighter pilots affects chemical disposition. Areas covered: The purpose of this review is to present information about the effects of high altitude, G-forces, and other conditions experienced by fighter pilots on chemical disposition. Using this information, the expected changes in chemical exposure will be discussed, using isopropyl alcohol as an example. Expert opinion: There is a severe lack of information concerning the effects of the fighter pilot environment on the pharmacokinetics and pharmacodynamics of chemicals. Given the possibility of exposure prior to or during flight, it is important that these potential effects be investigated further.
Collapse
Affiliation(s)
- Matthew W Linakis
- a Division of Clinical Pharmacology, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA.,b Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Kathleen M Job
- a Division of Clinical Pharmacology, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| | - Xiaoxi Liu
- a Division of Clinical Pharmacology, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| | - Scott C Collingwood
- a Division of Clinical Pharmacology, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| | - Heather A Pangburn
- c Department of Aeromedical Research , United States Air Force School of Aerospace Medicine , Dayton , OH , USA
| | - Darrin K Ott
- c Department of Aeromedical Research , United States Air Force School of Aerospace Medicine , Dayton , OH , USA
| | - Catherine M T Sherwin
- a Division of Clinical Pharmacology, Department of Pediatrics , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
13
|
Bhat VS, Meek M(B, Valcke M, English C, Boobis A, Brown R. Evolution of chemical-specific adjustment factors (CSAF) based on recent international experience; increasing utility and facilitating regulatory acceptance. Crit Rev Toxicol 2017; 47:729-749. [DOI: 10.1080/10408444.2017.1303818] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Virunya S. Bhat
- WHO Collaborating Centre on Water and Indoor Air Quality and Food Safety, NSF International, Ann Arbor, MI, USA
| | - M.E. (Bette) Meek
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ontario, Canada
| | - Mathieu Valcke
- Toxicological and Radiological Risk Assessment Group, Institut National de Santé Publique du Québec (INSPQ), Montreal, Canada
- Department of Environmental and Occupational Health, École de Santé Publique, Université de Montréal (ESPUM), Québec, Canada
| | - Caroline English
- WHO Collaborating Centre on Water and Indoor Air Quality and Food Safety, NSF International, Ann Arbor, MI, USA
| | - Alan Boobis
- Department of Medicine, Imperial College, London, UK
| | - Richard Brown
- International Programme on Chemical Safety, World Health Organization, Geneva, Switzerland
| |
Collapse
|
14
|
De Sousa Mendes M, Hirt D, Urien S, Valade E, Bouazza N, Foissac F, Blanche S, Treluyer JM, Benaboud S. Physiologically-based pharmacokinetic modeling of renally excreted antiretroviral drugs in pregnant women. Br J Clin Pharmacol 2015; 80:1031-41. [PMID: 26011128 DOI: 10.1111/bcp.12685] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 12/12/2022] Open
Abstract
AIM Physiological changes during pregnancy can affect drug disposition. Anticipating these changes will help to maximize drug efficacy and safety in pregnant women. Our objective was to determine if physiologically-based pharmacokinetics (PBPK) can accurately predict changes in the disposition of renally excreted antiretroviral drugs during pregnancy. METHODS Whole body PBPK models were developed for three renally excreted antiretroviral drugs, tenofovir (TFV), emtricitabine (FTC) and lamivudine (3TC). To assess the impact of pregnancy on PK, time-varying pregnancy-related physiological parameters available within the p-PBPK Simcyp software package were used. Renal clearance during pregnancy followed glomerular filtration changes with or without alterations in secretion. PK profiles were simulated and compared with observed data, i.e. area under the curves (AUC), peak plasma concentrations (Cmax ) and oral clearances (CL/F). RESULTS PBPK models successfully predicted TFV, FTC and 3TC disposition for non-pregnant and pregnant populations. Both renal secretion and filtration changed during pregnancy. Changes in renal clearance secretion were related to changes in renal plasma flow. The maximum clearance increases were approximately 30% (TFV 33%, FTC 31%, 3TC 29%). CONCLUSIONS Pregnancy PBPK models are useful tools to quantify a priori the drug exposure changes during pregnancy for renally excreted drugs. These models can be applied to evaluate alternative dosing regimens to optimize drug therapy during pregnancy.
Collapse
Affiliation(s)
- Maïlys De Sousa Mendes
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris
| | - Deborah Hirt
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris
| | - Saik Urien
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris.,CIC-1419 Inserm, Cochin-Necker, Paris
| | - Elodie Valade
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris
| | - Naïm Bouazza
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris
| | - Frantz Foissac
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris
| | - Stephane Blanche
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris.,AP-HP, hôpital Necker-Enfants-malades, unité d'immunologie, hématologie et rhumatologie pédiatriques, 75015, Paris, France
| | - Jean-Marc Treluyer
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris
| | - Sihem Benaboud
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris
| |
Collapse
|
15
|
Martin SA, McLanahan ED, Bushnell PJ, Hunter ES, El-Masri H. Species extrapolation of life-stage physiologically-based pharmacokinetic (PBPK) models to investigate the developmental toxicology of ethanol using in vitro to in vivo (IVIVE) methods. Toxicol Sci 2014; 143:512-35. [PMID: 25410581 DOI: 10.1093/toxsci/kfu246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To provide useful alternatives to in vivo animal studies, in vitro assays for dose-response assessments of xenobiotic chemicals must use concentrations in media and target tissues that are within biologically-plausible limits. Determining these concentrations is a complex matter, which can be facilitated by applying physiologically-based pharmacokinetic (PBPK) models in an in vitro to in vivo extrapolation (IVIVE) paradigm. We used ethanol (EtOH), a ubiquitous chemical with defined metrics for in vivo and in vitro embryotoxicity, as a model chemical to evaluate this paradigm. A published series of life-stage PBPK models for rats was extended to mice, yielding simulations that adequately predicted in vivo blood EtOH concentrations (BECs) from oral, intraperitoneal, and intravenous routes in nonpregnant and pregnant adult mice. The models were then extrapolated to nonpregnant and pregnant humans, replicating BEC data within a factor of two. The rodent models were then used to conduct IVIVEs for rodent and whole-embryo culture embryotoxicity data (neural tube closure defects, morphological changes). A second IVIVE was conducted for exposure scenarios in pregnant women during critical windows of susceptibility for developmental toxicity, such as the first 6-to-8 weeks (prerecognition period) or mid-to-late pregnancy period, when EtOH consumption is associated with fetal alcohol spectrum disorders. Incorporation of data from human embryonic stem cell studies led to a model-supported linkage of in vitro concentrations with plausible exposure ranges for pregnant women. This effort demonstrates benefits and challenges associated with use of multispecies PBPK models to estimate in vivo tissue concentrations associated with in vitro embryotoxicity studies.
Collapse
Affiliation(s)
- Sheppard A Martin
- *National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency
| | - Eva D McLanahan
- *National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency
| | - Philip J Bushnell
- *National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency
| | - E Sidney Hunter
- *National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency
| | - Hisham El-Masri
- *National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency
| |
Collapse
|
16
|
Martin SA, McLanahan ED, El-Masri H, LeFew WR, Bushnell PJ, Boyes WK, Choi K, Clewell HJ, Campbell JL. Development of multi-route physiologically-based pharmacokinetic models for ethanol in the adult, pregnant, and neonatal rat. Inhal Toxicol 2012; 24:698-722. [DOI: 10.3109/08958378.2012.712165] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H. Anatomical, Physiological and Metabolic Changes with Gestational Age during Normal Pregnancy. Clin Pharmacokinet 2012; 51:365-96. [DOI: 10.2165/11597440-000000000-00000] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells. Biomed Microdevices 2011; 14:409-18. [DOI: 10.1007/s10544-011-9617-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Scollon EJ, Starr JM, Crofton KM, Wolansky MJ, DeVito MJ, Hughes MF. Correlation of tissue concentrations of the pyrethroid bifenthrin with neurotoxicity in the rat. Toxicology 2011; 290:1-6. [PMID: 21854826 DOI: 10.1016/j.tox.2011.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/25/2011] [Accepted: 08/02/2011] [Indexed: 11/30/2022]
Abstract
The potential for human exposure to pyrethroid pesticides has prompted pharmacodynamic and pharmacokinetic research to better characterize risk. This work tested the hypothesis that blood and brain concentrations of the pyrethroid bifenthrin are predictive of neurotoxic effects. Adult male Long Evans rats received a single oral dose of bifenthrin dissolved in corn oil. Using figure-eight mazes, motor activity was measured for 1h at 4- and 7-h following exposure to bifenthrin (0-16mg/kg or 0-9mg/kg, respectively; n=4-8/group). Whole blood and brains were collected immediately following motor activity assays. Bifenthrin concentrations in blood and brain were quantified using HPLC/MS/MS. Bifenthrin exposure decreased motor activity from 20% to 70% in a dose-dependent manner at both time points. The relationship between motor activity data and administered dose, and blood and brain bifenthrin concentrations were described using a sigmoidal E(max) model. The relationships between motor activity and administered dose or blood concentrations were different between the 4- and 7-h time points. The relationship between motor activity and brain concentration was not significantly different between the two time points. These data suggest that momentary brain concentration of bifenthrin may be a more precise dose metric for predicting behavioral effects because the relationship between brain concentration and locomotor activity is independent of the time of exposure.
Collapse
Affiliation(s)
- Edward J Scollon
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency Research Triangle Park, NC, United States
| | | | | | | | | | | |
Collapse
|
20
|
Yoon M, Schroeter JD, Nong A, Taylor MD, Dorman DC, Andersen ME, Clewell HJ. Physiologically based pharmacokinetic modeling of fetal and neonatal manganese exposure in humans: describing manganese homeostasis during development. Toxicol Sci 2011; 122:297-316. [PMID: 21622944 DOI: 10.1093/toxsci/kfr141] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Concerns for potential vulnerability to manganese (Mn) neurotoxicity during fetal and neonatal development have been raised due to increased needs for Mn for normal growth, different sources of exposure to Mn, and pharmacokinetic differences between the young and adults. A physiologically based pharmacokinetic (PBPK) model for Mn during human gestation and lactation was developed to predict Mn in fetal and neonatal brain using a parallelogram approach based upon extrapolation across life stages in rats and cross-species extrapolation to humans. Based on the rodent modeling, key physiological processes controlling Mn kinetics during gestation and lactation were incorporated, including alterations in Mn uptake, excretion, tissue-specific distributions, and placental and lactational transfer of Mn. Parameters for Mn kinetics were estimated based on human Mn data for milk, placenta, and fetal/neonatal tissues, along with allometric scaling from the human adult model. The model was evaluated by comparison with published Mn levels in cord blood, milk, and infant blood. Maternal Mn homeostasis during pregnancy and lactation, placenta and milk Mn, and fetal/neonatal tissue Mn were simulated for normal dietary intake and with inhalation exposure to environmental Mn. Model predictions indicate similar or lower internal exposures to Mn in the brains of fetus/neonate compared with the adult at or above typical environmental air Mn concentrations. This PBPK approach can assess expected Mn tissue concentration during early life and compares contributions of different Mn sources, such as breast or cow milk, formula, food, drinking water, and inhalation, with tissue concentration.
Collapse
Affiliation(s)
- Miyoung Yoon
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Debia M, Krishnan K. Quantitative property-property relationships for computing occupational exposure limits and vapour hazard ratios of organic solvents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2010; 21:583-601. [PMID: 21120751 DOI: 10.1080/1062936x.2010.528241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Vapour Hazard Ratio (VHR) is used in solvent substitution to select the best replacement option regarding overexposure potential of solvents. However, VHR calculations are limited by the availability of Occupational Exposure Limits (OELs). The overall objective of this study was to develop quantitative property-property relationship (QPPR) approaches for computing OELs, in view of supporting the derivation of VHRs for solvents without OELs. QPPRs were developed for estimating OELs using a database of 88 solvents which have health-based Time-Weighted Average (TWA) OELs published by the American Conference of Governmental Industrial Hygienists (ACGIH). Three surrogates of biotic lipid : air partition coefficients [n-octanol : air (K(oa)), olive oil : air (K(oila)) and fat : air (K(fa))] were selected for evaluating the descriptive/predictive relationship with OELs for solvents with local modes of action. For solvents with systemic modes of action, the prediction of OEL needs to consider quantitative differences in toxicokinetics (i.e. kinetic variability factor, KVF) and toxicological potency (i.e. effective internal concentration, EIC). The n-octanol : water (K(ow)), the oil : water (K(oilw)) and the fat : water (K(fw)) partition coefficients were selected for evaluating the relationship with EICs. For local modes of action, K(oa) is the most accurate predictor of OELs [OEL (ppm) = 10(((-0.45 x log K(oa)) + 3.65)); n = 21, r²= 0.71, PRESS/SSY = 0.36, F = 45.5 with p < 0.001] and the mean (±SD) (range) of the recommended to predicted OELs was 1.04 ± 0.61 (0.2-2.5). For systemic modes of action, KVFs and EICs vary in a range from 0.73 to 41.4 µmol L⁻¹ and 1.20-848 µmol L⁻¹, respectively. K(ow) is an accurate predictor of calculated EICs [EIC (µmol L⁻¹) = 10 (((-1.16 x log K(ow)) + 3.65)); n = 27, r²= 0.88, PRESS/SSY = 0.12, F = 181 with p < 0.001] and 50% of the predicted OEL values were within a factor of two of the recommended TWA OELs. Overall, 61% and 87% of the predicted VHRs were within a factor of two and five, respectively, of the calculated VHRs. The QPPR models developed in this study represent potentially useful tools for estimating provisional OELs for solvents lacking such guideline values. These provisional OELs are developed only to support initial estimations of VHR for dealing with the challenge of solvent substitution where relative values rather than absolute values of OEL and vapour pressure guide the hygienist in making pragmatic decisions for managing occupational health hazards.
Collapse
Affiliation(s)
- M Debia
- Département de santé environnementale et santé au travail, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
22
|
Sweeney LM, Kirman CR, Gannon SA, Thrall KD, Gargas ML, Kinzell JH. Development of a physiologically based pharmacokinetic (PBPK) model for methyl iodide in rats, rabbits, and humans. Inhal Toxicol 2010; 21:552-82. [PMID: 19519155 DOI: 10.1080/08958370802601569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Methyl iodide (MeI) has been proposed as an alternative to methyl bromide as a pre-plant soil fumigant that does not deplete stratospheric ozone. In inhalation toxicity studies performed in animals as part of the registration process, three effects have been identified that warrant consideration in developing toxicity reference values for human risk assessment: nasal lesions (rat), acute neurotoxicity (rat), and fetal loss (rabbit). Uncertainties in the risk assessment can be reduced by using an internal measure of target tissue dose that is linked to the likely mode of action (MOA) for the toxicity of MeI, rather than the external exposure concentration. Physiologically based pharmacokinetic (PBPK) models have been developed for MeI and used to reduce uncertainties in the risk assessment extrapolations (e.g. interspecies, high to low dose, exposure scenario). PBPK model-derived human equivalent concentrations comparable to the animal study NOAELs (no observed adverse effect levels) for the endpoints of interest were developed for a 1-day, 24-hr exposure of bystanders or 8 hr/day exposure of workers. Variability analyses of the PBPK models support application of uncertainty factors (UF) of approximately 2 for intrahuman pharmacokinetic variability for the nasal effects and acute neurotoxicity.
Collapse
|
23
|
Beaudouin R, Micallef S, Brochot C. A stochastic whole-body physiologically based pharmacokinetic model to assess the impact of inter-individual variability on tissue dosimetry over the human lifespan. Regul Toxicol Pharmacol 2010; 57:103-16. [PMID: 20122977 DOI: 10.1016/j.yrtph.2010.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/21/2010] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models have proven to be successful in integrating and evaluating the influence of age- or gender-dependent changes with respect to the pharmacokinetics of xenobiotics throughout entire lifetimes. Nevertheless, for an effective application of toxicokinetic modelling to chemical risk assessment, a PBPK model has to be detailed enough to include all the multiple tissues that could be targeted by the various xenobiotics present in the environment. For this reason, we developed a PBPK model based on a detailed compartmentalization of the human body and parameterized with new relationships describing the time evolution of physiological and anatomical parameters. To take into account the impact of human variability on the predicted toxicokinetics, we defined probability distributions for key parameters related to the xenobiotics absorption, distribution, metabolism and excretion. The model predictability was evaluated by a direct comparison between computational predictions and experimental data for the internal concentrations of two chemicals (1,3-butadiene and 2,3,7,8-tetrachlorodibenzo-p-dioxin). A good agreement between predictions and observed data was achieved for different scenarios of exposure (e.g., acute or chronic exposure and different populations). Our results support that the general stochastic PBPK model can be a valuable computational support in the area of chemical risk analysis.
Collapse
Affiliation(s)
- Rémy Beaudouin
- INERIS, Institut National de l'Environnement Industriel et des Risques, Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO), Parc ALATA, BP2, 60550 Verneuil en Halatte, France.
| | | | | |
Collapse
|
24
|
Poet TS, Kirman CR, Bader M, van Thriel C, Gargas ML, Hinderliter PM. Quantitative risk analysis for N-methyl pyrrolidone using physiologically based pharmacokinetic and benchmark dose modeling. Toxicol Sci 2009; 113:468-82. [PMID: 19875680 DOI: 10.1093/toxsci/kfp264] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Establishing an occupational exposure limit (OEL) for N-methyl pyrrolidone (NMP) is important due to its widespread use as a solvent. Based on studies in rodents, the most sensitive toxic end point is a decrease in fetal/pup body weights observed after oral, dermal, and inhalation exposures of dams to NMP. Evidence indicates that the parent compound is the causative agent. To reduce the uncertainty in rat to human extrapolations, physiologically based pharmacokinetic (PBPK) models were developed to describe the pharmacokinetics of NMP in both species. Since in utero exposures are of concern, the models considered major physiological changes occurring in the dam or mother over the course of gestation. The rat PBPK model was used to determine the relationship between NMP concentrations in maternal blood and decrements in fetal/pup body weights following exposures to NMP vapor. Body weight decrements seen after vapor exposures occurred at lower NMP blood levels than those observed after oral and dermal exposures. Benchmark dose modeling was used to better define a point of departure (POD) for fetal/pup body weight changes based on dose-response information from two inhalation studies in rats. The POD and human PBPK model were then used to estimate the human equivalent concentrations (HECs) that could be used to derive an OEL value for NMP. The geometric mean of the PODs derived from the rat studies was estimated to be 350 mg h/l (expressed in terms of internal dose), a value which corresponds to an HEC of 480 ppm (occupational exposure of 8 h/day, 5 days/week). The HEC is much higher than recently developed internationally recognized OELs for NMP of 10-20 ppm, suggesting that these OELs adequately protect workers exposed to NMP vapor.
Collapse
Affiliation(s)
- Torka S Poet
- Battelle Pacific Northwest Division, Center for Biological Monitoring and Modeling, Richland, Washington 99352, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Hursthouse A, Kowalczyk G. Transport and dynamics of toxic pollutants in the natural environment and their effect on human health: research gaps and challenge. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2009; 31:165-187. [PMID: 19002593 DOI: 10.1007/s10653-008-9213-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 08/19/2008] [Accepted: 08/22/2008] [Indexed: 05/27/2023]
Abstract
The source-pathway-receptor (SPR) approach to human exposure and risk assessment contains considerable uncertainty when using the refined modelling approaches to pollutant transport and dispersal, not least in how compounds of concern might be prioritized, proxy or indicator substances identified and the basic environmental and toxicological data collected. The impact of external environmental variables, urban systems and lifestyle is still poorly understood. This determines exposure of individuals and there are a number of methods being developed to provide more reliable spatial assessments. Within the human body, the dynamics of pollutants and effects on target organs from diffuse, transient sources of exposure sets ambitious challenges for traditional risk assessment approaches. Considerable potential exists in the application of, e.g. physiologically based pharmacokinetic (PBPK) models. The reduction in uncertainties associated with the effects of contaminants on humans, transport and dynamics influencing exposure, implications of adult versus child exposure and lifestyle and the development of realistic toxicological and exposure data are all highlighted as urgent research needs. The potential to integrate environmental with toxicological models provides the next phase of research opportunity and should be used to drive empirical and model assessments.
Collapse
Affiliation(s)
- Andrew Hursthouse
- School of Engineering & Science, University of the West of Scotland, Paisley Campus, Paisley PA12BE, UK.
| | | |
Collapse
|
26
|
Lowe ER, Poet TS, Rick DL, Marty MS, Mattsson JL, Timchalk C, Bartels MJ. The effect of plasma lipids on the pharmacokinetics of chlorpyrifos and the impact on interpretation of blood biomonitoring data. Toxicol Sci 2009; 108:258-72. [PMID: 19223661 DOI: 10.1093/toxsci/kfp034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lipophilic molecules, like chlorpyrifos (CPF), present a special problem for interpretation of biomonitoring data because both the environmental dose of CPF and the physiological (pregnancy, diet, etc.) or pathological levels of blood lipids will affect the concentrations of CPF measured in blood. The objective of this study was to investigate the distribution of CPF between plasma and tissues when lipid levels are altered in late pregnancy. CPF was sequestered more in the low-density lipid fraction of the blood during the late stages of gestation in the rat and returned to nonpregnant patterns in the dam after birth. Plasma partitioning of CPF increased with increases in plasma lipid levels and the increased partitioning of CPF into plasma lipids resulted in less CPF in other tissue compartments. Gavage dosing with corn oil also increased plasma lipids that led to a moderate increase of CPF partitioning into the plasma. To mechanistically investigate the potential pharmacokinetic effects of blood lipid changes, an existing CPF physiologically based pharmacokinetic/pharmacodynamic model for rats and humans was modified to account for altered lipid-tissue partition coefficients and for major physiological and biochemical changes of pregnancy. The model indicated that plasma CPF levels are expected to be proportional to the well-known changes in plasma lipids during gestation. There is a rapidly growing literature on the relationship of lipid profiles with different disease conditions and on birth outcomes. Increased blood concentrations of lipophilic chemicals like CPF may point to altered lipid status, as well as possibly higher levels of exposure. Thus, proper interpretation of blood biomonitoring data of lipophilic chemicals requires a careful consideration of blood lipids.
Collapse
Affiliation(s)
- Ezra R Lowe
- Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Faber WD, Pavkov KL, Gingell R. Review of reproductive and developmental toxicity studies with isopropanol. ACTA ACUST UNITED AC 2008; 83:459-76. [PMID: 18924148 DOI: 10.1002/bdrb.20167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Thompson CM, Sonawane B, Barton HA, DeWoskin RS, Lipscomb JC, Schlosser P, Chiu WA, Krishnan K. Approaches for applications of physiologically based pharmacokinetic models in risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:519-47. [PMID: 18584453 DOI: 10.1080/10937400701724337] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models are particularly useful for simulating exposures to environmental toxicants for which, unlike pharmaceuticals, there is often little or no human data available to estimate the internal dose of a putative toxic moiety in a target tissue or an appropriate surrogate. This article reviews the current state of knowledge and approaches for application of PBPK models in the process of deriving reference dose, reference concentration, and cancer risk estimates. Examples drawn from previous U.S. Environmental Protection Agency (EPA) risk assessments and human health risk assessments in peer-reviewed literature illustrate the ways and means of using PBPK models to quantify the pharmacokinetic component of the interspecies and intraspecies uncertainty factors as well as to conduct route to route, high dose to low dose and duration extrapolations. The choice of the appropriate dose metric is key to the use of the PBPK models for the various applications in risk assessment. Issues related to whether uncertainty factors are most appropriately applied before or after derivation of human equivalent dose (or concentration) continue to be explored. Scientific progress in the understanding of life stage and genetic differences in dosimetry and their impacts on variability in susceptibility, as well as ongoing development of analytical methods to characterize uncertainty in PBPK models, will make their use in risk assessment increasingly likely. As such, it is anticipated that when PBPK models are used to express adverse tissue responses in terms of the internal target tissue dose of the toxic moiety rather than the external concentration, the scientific basis of, and confidence in, risk assessments will be enhanced.
Collapse
Affiliation(s)
- Chad M Thompson
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Verner MA, Charbonneau M, López-Carrillo L, Haddad S. Physiologically based pharmacokinetic modeling of persistent organic pollutants for lifetime exposure assessment: a new tool in breast cancer epidemiologic studies. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:886-92. [PMID: 18629310 PMCID: PMC2453156 DOI: 10.1289/ehp.10917] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 03/19/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Despite experimental evidence, most epidemiologic studies to date have not supported an association between exposure to persistent organic pollutants (POP) and breast cancer incidence in humans. This may be attributable to difficulties in estimating blood/tissue POP concentration at critical time periods of carcinogenesis. OBJECTIVES In this work we aimed to develop a tool to estimate lifetime POP blood/tissue exposure and levels during any hypothesized time window of susceptibility in breast cancer development. METHODS We developed a physiologically based pharmacokinetic (PBPK) model that can account for any given physiologic lifetime history. Using data on pregnancies, height, weight, and age, the model estimates the values of physiologic parameters (e.g., organ volume, composition, and blood flow) throughout a woman's entire life. We assessed the lifetime toxicokinetic profile (LTP) for various exposure scenarios and physiologic factors (i.e., breast-feeding, growth, pregnancy, lactation, and weight changes). RESULTS Simulations for three POPs [hexachlorobenzene, polychlorinated biphenyl (PCB)-153, PCB-180] using different lifetime physiologic profiles showed that the same blood concentration at 55 years of age can be reached despite totally different LTP. Aside from exposure levels, lactation periods and weight profile history were shown to be the factors that had the greatest impact on the LTP. CONCLUSIONS This new lifetime PBPK model, which showed the limitations of using a single sample value obtained around the time of diagnosis for lifetime exposure assessment, will enable researchers conducting environmental epidemiology studies to reduce uncertainty linked to past POP exposure estimation and to consider exposure during time windows that are hypothesized to be mechanistically critical in carcinogenesis.
Collapse
Affiliation(s)
- Marc-André Verner
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
30
|
Liao KH, Tan YM, Conolly RB, Borghoff SJ, Gargas ML, Andersen ME, Clewell HJ. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2007; 27:1535-1551. [PMID: 18093051 DOI: 10.1111/j.1539-6924.2007.00987.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chloroform is a carcinogen in rodents and its carcinogenicity is secondary to events associated with cytotoxicity and regenerative cell proliferation. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that links the processes of chloroform metabolism, reparable cell damage, cell death, and regenerative cellular proliferation was developed to support a new cancer dose-response assessment for chloroform. Model parameters were estimated using Markov Chain Monte Carlo (MCMC) analysis in a two-step approach: (1) metabolism parameters for male and female mice and rats were estimated against available closed chamber gas uptake data; and (2) PD parameters for each of the four rodent groups were estimated from hepatic and renal labeling index data following inhalation exposures. Subsequently, the resulting rodent PD parameters together with literature values for human age-dependent physiological and metabolism parameters were used to scale up the rodent model to a human model. The human model was used to predict exposure conditions under which chloroform-mediated cytolethality is expected to occur in liver and kidney of adults and children. Using the human model, inhalation Reference Concentrations (RfCs) and oral Reference Doses (RfDs) were derived using an uncertainty factor of 10. Based on liver and kidney dose metrics, the respective RfCs were 0.9 and 0.09 ppm; and the respective RfDs were 0.4 and 3 mg/kg/day.
Collapse
Affiliation(s)
- Kai H Liao
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Mirfazaelian A, Kim KB, Lee S, Kim HJ, Bruckner JV, Fisher JW. Organ growth functions in maturing male Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:429-38. [PMID: 17454567 DOI: 10.1080/15287390600755265] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Growth equations can be used in physiologically based pharmacokinetic (PBPK) modeling to provide physiological parameters (e.g., body weight, tissue/organ volumes) for maturing rodents. No diligent systematic exercise was found in the literature dealing with growth equations for developing rats' tissues. A generalized Michaelis-Menten (GMM) model, originally developed to fit body weight vs. age data, was chosen to estimate different physiological compartment sizes. The GMM model has the functional form: Wt = (Wt(o).K(gamma) + Wt(max).Age(gamma))/(K(gamma) + Age(gamma)) where Wt is organ/tissue weight at a specified age, Wt(o) and Wt(max) are weight at birth and maximal growth respectively, and K and gamma are constants. Weights of freshly collected organs (liver, spleen, kidneys, heart, lungs, brain, gastrointestinal tract and adipose tissue), measured in male Sprague-Dawley rats of different ages (1-280 d) in our laboratory, were used to evaluate this model's performance. The GMM model was fitted to the organ weights, and the resulting parameters were statistically significant for all organs and tissues. Organ weights were highly correlated with their respective ages. GMM-derived organ growth and percent body weight (%BW) fractions of different tissues were plotted against animal age and compared with experimental values. The GMM-based organ growth and %BW fraction profiles were in general agreement with our empirical data as well as previous studies. The GMM model gave adequately precise weight predictions at all ages for all the tissues/organs examined.
Collapse
Affiliation(s)
- Ahmad Mirfazaelian
- Department of Pharmaceutics, School of Pharmacy, University of Tehran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
32
|
Clewell RA, Merrill EA, Gearhart JM, Robinson PJ, Sterner TR, Mattie DR, Clewell HJ. Perchlorate and radioiodide kinetics across life stages in the human: using PBPK models to predict dosimetry and thyroid inhibition and sensitive subpopulations based on developmental stage. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:408-28. [PMID: 17454566 DOI: 10.1080/15287390600755216] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Perchlorate (ClO4(-)) is a drinking-water contaminant, known to disrupt thyroid hormone homeostasis in rats. This effect has only been seen in humans at high doses, yet the potential for long term effects from developmental endocrine disruption emphasizes the need for improved understanding of perchlorate's effect during the perinatal period. Physiologically based pharmacokinetic/dynamic (PBPK/PD) models for ClO4(-) and its effect on thyroid iodide uptake were constructed for human gestation and lactation data. Chemical specific parameters were estimated from life-stage and species-specific relationships established in previously published models for various life-stages in the rat and nonpregnant adult human. With the appropriate physiological descriptions, these kinetic models successfully simulate radioiodide data culled from the literature for gestation and lactation, as well as ClO4(-) data from populations exposed to contaminated drinking water. These models provide a framework for extrapolating from chemical exposure in laboratory animals to human response, and support a more quantitative understanding of life-stage-specific susceptibility to ClO4(-). The pregnant and lactating woman, fetus, and nursing infant were predicted to have higher blood ClO4(-) concentrations and greater thyroid iodide uptake inhibition at a given drinking-water concentration than either the nonpregnant adult or the older child. The fetus is predicted to receive the greatest dose (per kilogram body weight) due to several factors, including placental sodium-iodide symporter (NIS) activity and reduced maternal urinary clearance of ClO4(-). The predicted extent of iodide inhibition in the most sensitive population (fetus) is not significant (approximately 1%) at the U.S. Environmental Protection Agency reference dose (0.0007 mg/kg-d).
Collapse
Affiliation(s)
- Rebecca A Clewell
- CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709-2137, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Gad SC, Cassidy CD, Aubert N, Spainhour B, Robbe H. Nonclinical vehicle use in studies by multiple routes in multiple species. Int J Toxicol 2007; 25:499-521. [PMID: 17132609 DOI: 10.1080/10915810600961531] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The laboratory toxicologist is frequently faced with the challenge of selecting appropriate vehicles or developing utilitarian formulations for use in in vivo nonclinical safety assessment studies. Although there are many vehicles available that may meet physical and chemical requirements for chemical or pharmaceutical formulation, there are wide differences in species and route of administration specific to tolerances to these vehicles. In current practice, these differences are largely approached on a basis of individual experience as there is only scattered literature on individual vehicles and no comprehensive treatment or information source. This approach leads to excessive animal use and unplanned delays in testing and development. To address this need, a consulting firm and three contract research organizations conducted a rigorous data mining operation of control (vehicle) data from studies dating from 1991 to present. The results identified 65 single component vehicles used in 368 studies across multiple species (dog, primate, rat, mouse, rabbit, guinea pig, minipig, chick embryo, and cat) by multiple routes. Reported here are the results of this effort, including maximum tolerated use levels by species, route, and duration of study, with accompanying dose limiting toxicity. Also included are basic chemical information and a review of available literature on each vehicle, as well as guidance on volume limits and pH by route and some basic guidance on nonclinical formulation development.
Collapse
Affiliation(s)
- Shayne C Gad
- Gad Consulting Services, Cary, North Carolina 27518, USA.
| | | | | | | | | |
Collapse
|
34
|
Chiu WA, Barton HA, DeWoskin RS, Schlosser P, Thompson CM, Sonawane B, Lipscomb JC, Krishnan K. Evaluation of physiologically based pharmacokinetic models for use in risk assessment. J Appl Toxicol 2007; 27:218-37. [PMID: 17299829 DOI: 10.1002/jat.1225] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are sophisticated dosimetry models that offer great flexibility in modeling exposure scenarios for which there are limited data. This is particularly of relevance to assessing human exposure to environmental toxicants, which often requires a number of extrapolations across species, route, or dose levels. The continued development of PBPK models ensures that regulatory agencies will increasingly experience the need to evaluate available models for their application in risk assessment. To date, there are few published criteria or well-defined standards for evaluating these models. Herein, important considerations for evaluating such models are described. The evaluation of PBPK models intended for risk assessment applications should include a consideration of: model purpose, model structure, mathematical representation, parameter estimation, computer implementation, predictive capacity and statistical analyses. Model purpose and structure require qualitative checks on the biological plausibility of a model. Mathematical representation, parameter estimation, computer implementation involve an assessment of the coding of the model, as well as the selection and justification of the physical, physicochemical and biochemical parameters chosen to represent a biological organism. Finally, the predictive capacity and sensitivity, variability and uncertainty of the model are analysed so that the applicability of a model for risk assessment can be determined. Published in 2007 by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Weihsueh A Chiu
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Andersen ME, Thomas RS, Gaido KW, Conolly RB. Dose-response modeling in reproductive toxicology in the systems biology era. Reprod Toxicol 2005; 19:327-37. [PMID: 15686868 DOI: 10.1016/j.reprotox.2004.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/01/2004] [Accepted: 12/03/2004] [Indexed: 11/18/2022]
Abstract
Systems biology approaches for modeling cellular signaling networks affected by chemical exposures should soon produce integrated methodologies capable of predicting dose-response relationships for developmental toxicants and for other toxic responses. This paper outlines an emerging strategy for systems biology approaches in dose-response modeling. Genome-wide functional screens, bioinformatic tools, and network mapping technologies together can provide directed graph representations of the cellular signaling networks. The graphical representations can be converted into mathematical models that permit predicting the shapes of dose-response curves for altered cell signaling by test compounds during development. Systems biology approaches require interdisciplinary teams with expertise in reproduction, cell biology, signal transduction, mathematical/biomedical modeling, and risk assessment. In addition to outlining a systems approach for dose-response research, this paper discusses initial stages of application of this strategy to examine inhibition of steroidogenesis in testes by phthalate esters.
Collapse
Affiliation(s)
- Melvin E Andersen
- CIIT Centers for Health Research, Research Triangle Park, NC 27709-2137, USA.
| | | | | | | |
Collapse
|
36
|
Kirman CR, Sweeney LM, Corley R, Gargas ML. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2005; 25:271-84. [PMID: 15876203 DOI: 10.1111/j.1539-6924.2005.00588.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based on transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically-based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during Weeks 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues (i.e., brain) was selected as the most appropriate internal dose measure based on a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based on the presence or the absence of sedation at each time point, species, and sex in the two-year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of 10. Nonlinear kinetics, which was predicted by the model in all species at PGME concentrations exceeding 100 ppm, complicate interspecies, and low-dose extrapolations. To address this complication, reference values were derived using two approaches that differ with respect to the order in which these extrapolations were performed: (1) default approach of interspecies extrapolation to determine the human equivalent concentration (PBPK modeling) followed by uncertainty factor application, and (2) uncertainty factor application followed by interspecies extrapolation (PBPK modeling). The resulting reference values for these two approaches are substantially different, with values from the latter approach being seven-fold higher than those from the former approach. Such a striking difference between the two approaches reveals an underlying issue that has received little attention in the literature regarding the application of uncertainty factors and interspecies extrapolations to compounds where saturable kinetics occur in the range of the NOAEL. Until such discussions have taken place, reference values based on the former approach are recommended for risk assessments involving human exposures to PGME and PGMEA.
Collapse
Affiliation(s)
- C R Kirman
- The Sapphire Group, Inc., Beachwood, OH 44122, USA.
| | | | | | | |
Collapse
|
37
|
Clewell H. Use of mode of action in risk assessment: past, present, and future. Regul Toxicol Pharmacol 2005; 42:3-14. [PMID: 15896438 DOI: 10.1016/j.yrtph.2005.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 01/14/2005] [Accepted: 01/23/2005] [Indexed: 11/30/2022]
Abstract
The evolution of chemical risk assessment has been marked by a steadily increasing expectation for the use of chemical-specific dosimetric and mechanistic information to tailor the risk assessment approach. The information to be used can range from the broad physical properties of the chemical to detailed information on the mechanism by which it causes a particular toxic outcome, and the risk assessment decisions effected can in turn range from how to define equivalent exposures across species to whether a particular animal outcome is relevant to a human health assessment. A concept that has proven useful in support of these considerations is the "mode of action," a term coined by the USEPA in their new guidelines for carcinogen risk assessment. This paper describes the increasing use of mode-of-action considerations in risk assessment, beginning with early examples involving quantitative dosimetry on the one hand, and qualitative relevance on the other, which foreshadowed the current interest in mode of action. It then describes more recent developments regarding the use of the mode-of-action concept for the selection of a low-dose extrapolation approach, for harmonization of cancer and noncancer risk assessment approaches, and for cross-chemical evaluations. Finally, examples of recent controversies associated with the use of mode-of-action information in risk assessment are provided to demonstrate the challenges that must be overcome to assure the continued viability of the mode-of-action approach.
Collapse
Affiliation(s)
- Harvey Clewell
- ENVIRON Health Sciences Institute, 602 East Georgia Avenue, Ruston, LA 71270, USA.
| |
Collapse
|
38
|
Clark LH, Setzer RW, Barton HA. Framework for evaluation of physiologically-based pharmacokinetic models for use in safety or risk assessment. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2004; 24:1697-1717. [PMID: 15660623 DOI: 10.1111/j.0272-4332.2004.00561.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Proposed applications of increasingly sophisticated biologically-based computational models, such as physiologically-based pharmacokinetic models, raise the issue of how to evaluate whether the models are adequate for proposed uses, including safety or risk assessment. A six-step process for model evaluation is described. It relies on multidisciplinary expertise to address the biological, toxicological, mathematical, statistical, and risk assessment aspects of the modeling and its application. The first step is to have a clear definition of the purpose(s) of the model in the particular assessment; this provides critical perspectives on all subsequent steps. The second step is to evaluate the biological characterization described by the model structure based on the intended uses of the model and available information on the compound being modeled or related compounds. The next two steps review the mathematical equations used to describe the biology and their implementation in an appropriate computer program. At this point, the values selected for the model parameters (i.e., model calibration) must be evaluated. Thus, the fifth step is a combination of evaluating the model parameterization and calibration against data and evaluating the uncertainty in the model outputs. The final step is to evaluate specialized analyses that were done using the model, such as modeling of population distributions of parameters leading to population estimates for model outcomes or inclusion of early pharmacodynamic events. The process also helps to define the kinds of documentation that would be needed for a model to facilitate its evaluation and implementation.
Collapse
Affiliation(s)
- Leona H Clark
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Experimental Toxicology Division, Research Triangle Park, NC 27711, USA
| | | | | |
Collapse
|
39
|
Clewell HJ, Gentry PR, Covington TR, Sarangapani R, Teeguarden JG. Evaluation of the Potential Impact of Age- and Gender-Specific Pharmacokinetic Differences on Tissue Dosimetry 2Current address: Novartis Pharmaceuticals, East Hanover, NJ 07936. Toxicol Sci 2004; 79:381-93. [PMID: 15056818 DOI: 10.1093/toxsci/kfh109] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The physiological and biochemical processes that determine the tissue concentration time courses (pharmacokinetics) of xenobiotics vary, in some cases significantly, with age and gender. While it is known that age- and gender-specific differences have the potential to affect tissue concentrations and, hence, individual risk, the relative importance of the contributing processes and the quantitative impact of these differences for various life stages are not well characterized. The objective of this study was to identify age- and gender-specific differences in physiological and biochemical processes that affect tissue dosimetry and integrate them into a predictive physiologically based pharmacokinetic (PBPK) life-stage model. The life-stage model was exercised for several environmental chemicals with a variety of physicochemical, biochemical, and mode-of-action properties. In general, predictions of average pharmacokinetic dose metrics for a chemical across life stages were within a factor of two, although larger transient variations were predicted, particularly during the neonatal period. The most important age-dependent pharmacokinetic factor appears to be the potential for decreased clearance of a toxic chemical in the perinatal period due to the immaturity of many metabolic enzyme systems, although this same factor may also reduce the production of a reactive metabolite. Given the potential for age-dependent pharmacodynamic factors during early life, there may be chemicals and health outcomes for which decreased clearance over a relatively brief period could have a substantial impact on risk.
Collapse
|
40
|
Daston G, Faustman E, Ginsberg G, Fenner-Crisp P, Olin S, Sonawane B, Bruckner J, Breslin W, McLaughlin TJ. A framework for assessing risks to children from exposure to environmental agents. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:238-56. [PMID: 14754580 PMCID: PMC1241835 DOI: 10.1289/ehp.6182] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In recent years there has been an increasing focus in environmental risk assessment on children as a potentially susceptible population. There also has been growing recognition of the need for a systematic approach for organizing, evaluating, and incorporating the available data on children's susceptibilities in risk assessments. In this article we present a conceptual framework for assessing risks to children from environmental exposures. The proposed framework builds on the problem formulation-->analysis-->risk characterization paradigm, identifying at each phase the questions and issues of particular importance for characterizing risks to the developing organism (from conception through organ maturation). The framework is presented and discussed from the complementary perspectives of toxicokinetics and toxicodynamics.
Collapse
|
41
|
Gentry PR, Covington TR, Clewell HJ, Anderson ME. Application of a physiologically based pharmacokinetic model for reference dose and reference concentration estimation for acetone. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2003; 66:2209-2225. [PMID: 14612334 DOI: 10.1080/713853996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent health risk assessments to propose a Reference Dose (RfD) for acetone (Forsyth, 2001; U.S. EPA, 2001) have been based on the results of an oral subchronic study conducted in rats and mice (Dietz et al., 1991; NTP, 1991). These assessments have utilized the traditional concept of establishing the RfD by determining the lowest experimentally determined No-Observed-Adverse-Effect Level (NOAEL) and applying various Uncertainty Factors (UFs) (U.S. EPA, 1988). This article describes a risk assessment for acetone based on the systemic toxicity observed in subchronic and developmental toxicity studies to estimate an RfD and an inhalation reference concentration (RfC) for acetone. Specifically, this approach examined the subchronic study by Dietz et al. (1991), as well as an inhalation developmental toxicity study on acetone (Mast et al., 1988) and several toxicology studies of isopropanol (IPA). This was accomplished by applying a physiologically based pharmacokinetic (PBPK) model developed previously for IPA and its metabolite acetone (Clewell et al., 2001). The incorporation of the PBPK model into the derivation of an RfD and RfC for acetone allowed for a tissue-based approach rather than an external exposure-based approach, making it possible to derive an oral RfD from an inhalation study. In addition, the use of the PBPK model to analyze data from chronic and reproductive/developmental studies conducted with IPA enabled an assessment of the potential for acetone to produce any of the effects observed in the IPA studies. This analysis provided sufficient information to reduce the need for UFs in the adjustment of the NOAEL from the oral subchronic study for the determination of an RfD. Using the PBPK model in the acetone risk assessment supports a composite UF of 60 for the subchronic study, compared to composite factors of 300 to 3000 in the other recent risk assessments. This difference resulted in an RfD of 16 mg/kg/d, compared to the values of 0.3 to 3 that have previously been estimated (Forsyth, 2001; U.S. EPA, 2001). Considering the results from the inhalation developmental study (Mast et al., 1988) resulted in an RfD of 8.7 mg/kg/d. Using this study also fills a data gap for acetone that exists if only the oral database for acetone is considered for RfD derivation. An RfC of 29 ppm was also estimated for acetone using the Mast et al. (1988) study results in combination with the PBPK model. The potential impact of endogenous acetone on a risk assessment for acetone is also discussed.
Collapse
Affiliation(s)
- P Robinan Gentry
- ENVIRON International Corporation, Ruston, Louisiana 71270, USA.
| | | | | | | |
Collapse
|
42
|
Gentry PR, Covington TR, Clewell HJ. Evaluation of the potential impact of pharmacokinetic differences on tissue dosimetry in offspring during pregnancy and lactation. Regul Toxicol Pharmacol 2003; 38:1-16. [PMID: 12878049 DOI: 10.1016/s0273-2300(03)00047-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years efforts have increased to develop a framework for assessing differences, both pharmacokinetic and pharmacodynamic, between children and adults for purposes of assessing risk of adverse effects following chemical exposure. The specific goal of this study was to demonstrate an approach for using PBPK modeling to compare maternal and fetal/neonatal blood and tissue dose metrics during pregnancy and lactation. Six chemical classes were targeted to provide a variety of physicochemical properties (volatility, lipophilicity, water solubility), and surrogate chemicals were selected to represent each class (isopropanol, vinyl chloride, methylene chloride, perchloroethylene, nicotine, and TCDD), based on the availability of pharmacokinetic information. These chemicals were also selected to provide different pharmacokinetic characteristics, including metabolic production of stable or reactive intermediates in the liver and competing pathways for metabolism. Changes in dosimetry during pregnancy predicted by the modeling were mainly attributable to the development of enzymatic pathways in the fetus or to changes in tissue composition in the mother and fetus during pregnancy. In general, blood concentrations were lower in the neonate during the lactation period than in the fetus during gestation. This postnatal decrease varied from only a slight change (for TCDD) to approximately four orders of magnitude (for vinyl chloride). As compared to maternal exposure, fetal/neonatal exposures ranged from approximately twice as great (for TCDD) to several orders of magnitude lower (for isopropanol). The results of this study are in general agreement with the analyses of data on pharmaceutical chemicals, which have suggested that the largest difference in pharmacokinetics observed between children and adults is for the perinatal period. The most important factor appears to be the potential for decreased clearance of toxic chemicals in the perinatal period due to immature metabolic enzyme systems, although this same factor can also reduce the risk from reactive metabolites during the same period.
Collapse
Affiliation(s)
- P Robinan Gentry
- ENVIRON International Corp., 602 East Georgia Avenue, Ruston, LA 71270, USA.
| | | | | |
Collapse
|
43
|
Clewell RA, Merrill EA, Robinson PJ. The use of physiologically based models to integrate diverse data sets and reduce uncertainty in the prediction of perchlorate and iodide kinetics across life stages and species. Toxicol Ind Health 2001; 17:210-22. [PMID: 12539865 DOI: 10.1191/0748233701th108oa] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of perchlorate on the incorporation of iodide into thyroid hormones have been studied for more than 40 years in many species and under varying exposure conditions. Nevertheless, the database for this drinking water contaminant is still incomplete, particularly with regard to human developmental risk. A method for integrating the available data and forming meaningful conclusions for risk assessment is needed. To this end, an initial suite of physiologically based pharmacokinetic (PBPK) models has been developed, which incorporates physiological data for the relevant species and life stages and kinetic data for perchlorate and iodide, as well as the interaction between the two anions. The validated models successfully describe perchlorate-induced inhibition of thyroid iodide uptake and perchlorate and iodide kinetics in the male, pregnant, lactating, fetal, and neonatal rats and the adult humans. The relationships of model-predicted internal dose metrics and kinetic parameters allow a direct comparison of internal dose metrics across life stages in rats and humans. By incorporating all the available data, these models provide a framework for species and life stage extrapolation where the lack of specific data sets would otherwise limit predictive capability. This paper demonstrates two approaches for calculating life stage-specific equivalent doses in a risk assessment for perchlorate: the direct combination of validated model predictions, and the development of preliminary PBPK models for the human-sensitive populations based on the relationship of the parameters in the validated rat and human models. Either approach can be used to perform the needed dosimetry. However, the second approach provides the advantage of a preliminary human life stage-specific PBPK model that can be used for identification of key data gaps and estimation of uncertainty.
Collapse
Affiliation(s)
- R A Clewell
- Geo-Centers Inc., Wright-Patterson AFB, Ohio 45433, USA.
| | | | | |
Collapse
|