1
|
Tripathi S, Sharma Y, Kumar D. Biological Cargo: Exosomes and their Role in Cancer Progression and Metastasis. Curr Top Med Chem 2025; 25:263-285. [PMID: 38984577 DOI: 10.2174/0115680266304636240626055711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/11/2024]
Abstract
Cancer cells are among the many types of cells that release exosomes, which are nanovesicles. Because of their many potential applications, exosomes have recently garnered much attention from cancer researchers. The bioactive substances that exosomes release as cargo have been the subject of several investigations. The substances in question may operate as biomarkers for diagnosis or affect apoptosis, the immune system, the development and spread of cancer, and other processes. Others have begun to look at exosomes in experimental therapeutic trials because they believe they may be useful in the treatment of cancer. This review started with a short description of exosome biogenesis and key features. Next, the potential of tumor-derived exosomes and oncosomes to influence the immune system throughout the development of cancer, as well as alter tumor microenvironments (TMEs) and pre-metastatic niche creation, was investigated. Finally, there was talk of exosomes' possible use in cancer treatment. Furthermore, there is emerging consensus about the potential application of exosomes to be biological reprogrammers of cancer cells, either as carriers of naturally occurring chemicals, including anticancer medications, or as carriers of anticancer vaccines for immunotherapy as well as boron neutron capture therapy (BNCT). We briefly review the key ideas and logic behind this intriguing therapy recommendation.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| |
Collapse
|
2
|
Ghosh S, Rajendran RL, Mahajan AA, Chowdhury A, Bera A, Guha S, Chakraborty K, Chowdhury R, Paul A, Jha S, Dey A, Dubey A, Gorai S, Das P, Hong CM, Krishnan A, Gangadaran P, Ahn BC. Harnessing exosomes as cancer biomarkers in clinical oncology. Cancer Cell Int 2024; 24:278. [PMID: 39113040 PMCID: PMC11308730 DOI: 10.1186/s12935-024-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are extracellular vesicles well known for facilitating cell-to-cell communication by distributing essential macromolecules like proteins, DNA, mRNA, lipids, and miRNA. These vesicles are abundant in fluids distributed throughout the body, including urine, blood, saliva, and even bile. They are important diagnostic tools for breast, lung, gastrointestinal cancers, etc. However, their application as cancer biomarkers has not yet been implemented in most parts of the world. In this review, we discuss how OMICs profiling of exosomes can be practiced by substituting traditional imaging or biopsy methods for cancer detection. Previous methods like extensive imaging and biopsy used for screening were expensive, mostly invasive, and could not easily provide early detection for various types of cancer. Exosomal biomarkers can be utilized for routine screening by simply collecting body fluids from the individual. We anticipate that the use of exosomes will be brought to light by the success of clinical trials investigating their potential to enhance cancer detection and treatment in the upcoming years.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Atharva A Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, 410210, India
| | - Ankita Chowdhury
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Delhi, 110016, India
| | - Aishi Bera
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Sudeepta Guha
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Kashmira Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Rajanyaa Chowdhury
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Aritra Paul
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Shreya Jha
- Department of Biomedical Engineering, National Institute of Technology, Rourkela, Orissa, 769008, India
| | - Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, Office of the Dean, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, Free State, South Africa.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
3
|
Naslavsky N, Caplan S. Receptor-mediated internalization promotes increased endosome size and number in a RAB4- and RAB5-dependent manner. Eur J Cell Biol 2023; 102:151339. [PMID: 37423034 PMCID: PMC10585956 DOI: 10.1016/j.ejcb.2023.151339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023] Open
Abstract
Despite their significance in receptor-mediated internalization and continued signal transduction in cells, early/sorting endosomes (EE/SE) remain incompletely characterized, with many outstanding questions that surround the dynamics of their size and number. While several studies have reported increases in EE/SE size and number resulting from endocytic events, few studies have addressed such dynamics in a methodological and quantitative manner. Herein we apply quantitative fluorescence microscopy to measure the size and number of EE/SE upon internalization of two different ligands: transferrin and epidermal growth factor. Additionally, we used siRNA knock-down to determine the involvement of 5 different endosomal RAB proteins (RAB4, RAB5, RAB8A, RAB10 and RAB11A) in EE/SE dynamics. Our study provides new information on the dynamics of endosomes during endocytosis, an important reference for researchers studying receptor-mediated internalization and endocytic events.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Naslavsky N, Caplan S. Advances and challenges in understanding endosomal sorting and fission. FEBS J 2023; 290:4187-4195. [PMID: 36413090 PMCID: PMC10200825 DOI: 10.1111/febs.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Endosomes play crucial roles in the cell, serving as focal and 'triage' points for internalized lipids and receptors. As such, endosomes are a critical branching point that determines whether receptors are sorted for degradation or recycling. This Viewpoint aims to highlight recent advances in endosome research, including key endosomal functions such as sorting and fission. Moreover, the Viewpoint addresses key technical and conceptual challenges in studying endosomes.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry & Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
5
|
Placidi G, Campa CC. Deliver on Time or Pay the Fine: Scheduling in Membrane Trafficking. Int J Mol Sci 2021; 22:11773. [PMID: 34769203 PMCID: PMC8583995 DOI: 10.3390/ijms222111773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Membrane trafficking is all about time. Automation in such a biological process is crucial to ensure management and delivery of cellular cargoes with spatiotemporal precision. Shared molecular regulators and differential engagement of trafficking components improve robustness of molecular sorting. Sequential recruitment of low affinity protein complexes ensures directionality of the process and, concomitantly, serves as a kinetic proofreading mechanism to discriminate cargoes from the whole endocytosed material. This strategy helps cells to minimize losses and operating errors in membrane trafficking, thereby matching the appealed deadline. Here, we summarize the molecular pathways of molecular sorting, focusing on their timing and efficacy. We also highlight experimental procedures and genetic approaches to robustly probe these pathways, in order to guide mechanistic studies at the interface between biochemistry and quantitative biology.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| |
Collapse
|
6
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Liposomes as biomembrane models: Biophysical techniques for drug-membrane interaction studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Molecular interactions between Vitamin B12 and membrane models: A biophysical study for new insights into the bioavailability of Vitamin. Colloids Surf B Biointerfaces 2020; 194:111187. [DOI: 10.1016/j.colsurfb.2020.111187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022]
|
8
|
Giordano C, La Camera G, Gelsomino L, Barone I, Bonofiglio D, Andò S, Catalano S. The Biology of Exosomes in Breast Cancer Progression: Dissemination, Immune Evasion and Metastatic Colonization. Cancers (Basel) 2020; 12:cancers12082179. [PMID: 32764376 PMCID: PMC7465598 DOI: 10.3390/cancers12082179] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
In recent decades, the study of exosome biology has gained growing interest, representing an active area of cancer research with many potential clinical applications. Exosomes are small lipid bilayer particles released by cells with pleiotropic functions that have been reported to regulate the complex intracellular pathway involved in all steps of breast cancer development—from initiation to progression toward a metastatic dissemination. Particularly, the role of these microvesicles has been explored in metastasis, which represents the leading cause of breast cancer morbidity and mortality worldwide. Reports highlight that the plasticity of breast cancer cells, fundamental for the establishment of distant metastasis, may be in part attributed to exosome-carried signals shared between adjacent cells and long-distance cells in the body. In the present review, we will discuss the functions of exosomes in the metastatic breast cancer process and secondary site outgrowth. The possibility to decode the exosome functions in advanced diseases may offer new opportunities for early detection, molecular targeted therapies and exosome-based therapeutics in breast cancer.
Collapse
Affiliation(s)
- Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| | - Giusi La Camera
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.L.C.); (L.G.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| |
Collapse
|
9
|
Zhang J, Cui X, Guo J, Cao C, Zhang Z, Wang B, Zhang L, Shen D, Lim K, Woodfield T, Tang J, Zhang J. Small but significant: Insights and new perspectives of exosomes in cardiovascular disease. J Cell Mol Med 2020; 24:8291-8303. [PMID: 32578938 PMCID: PMC7412413 DOI: 10.1111/jcmm.15492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/17/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major health problem worldwide, and health professionals are still actively seeking new and effective approaches for CVDs treatment. Presently, extracellular vesicles, particularly exosomes, have gained its popularity for CVDs treatment because of their function as messengers for inter- and extra-cellular communications to promote cellular functions in cardiovascular system. However, as a newly developed field, researchers are still trying to fully understand the role of exosomes, and their mechanism in mediating cardiac repair process. Therefore, a comprehensive review of this topic can be timely and favourable. In this review, we summarized the basic biogenesis and characterization of exosomes and then further extended the focus on the circulating exosomes in cellular communication and stem cell-derived exosomes in cardiac disease treatment. In addition, we covered interactions between the heart and other organs through exosomes, leading to the diagnostic characteristics of exosomes in CVDs. Future perspectives and limitations of exosomes in CVDs were also discussed with a special focus on exploring the potential delivery routes, targeting the injured tissue and engineering novel exosomes, as well as its potential as one novel target in the metabolism-related puzzle.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Xiaolin Cui
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,Medical Technologies Center of Research Excellence, Christchurch, New Zealand
| | - Jiacheng Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Chang Cao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Zenglei Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Khoon Lim
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,Medical Technologies Center of Research Excellence, Christchurch, New Zealand
| | - Tim Woodfield
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand.,Medical Technologies Center of Research Excellence, Christchurch, New Zealand
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Schmidtke C, Tiede S, Thelen M, Käkelä R, Jabs S, Makrypidi G, Sylvester M, Schweizer M, Braren I, Brocke-Ahmadinejad N, Cotman SL, Schulz A, Gieselmann V, Braulke T. Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. J Biol Chem 2019; 294:9592-9604. [PMID: 31040178 DOI: 10.1074/jbc.ra119.008852] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/21/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous lysosomal enzymes and membrane proteins are essential for the degradation of proteins, lipids, oligosaccharides, and nucleic acids. The CLN3 gene encodes a lysosomal membrane protein of unknown function, and CLN3 mutations cause the fatal neurodegenerative lysosomal storage disorder CLN3 (Batten disease) by mechanisms that are poorly understood. To define components critical for lysosomal homeostasis that are affected by this disease, here we quantified the lysosomal proteome in cerebellar cell lines derived from a CLN3 knock-in mouse model of human Batten disease and control cells. We purified lysosomes from SILAC-labeled, and magnetite-loaded cerebellar cells by magnetic separation and analyzed them by MS. This analysis identified 70 proteins assigned to the lysosomal compartment and 3 lysosomal cargo receptors, of which most exhibited a significant differential abundance between control and CLN3-defective cells. Among these, 28 soluble lysosomal proteins catalyzing the degradation of various macromolecules had reduced levels in CLN3-defective cells. We confirmed these results by immunoblotting and selected protease and glycosidase activities. The reduction of 11 lipid-degrading lysosomal enzymes correlated with reduced capacity for lipid droplet degradation and several alterations in the distribution and composition of membrane lipids. In particular, levels of lactosylceramides and glycosphingolipids were decreased in CLN3-defective cells, which were also impaired in the recycling pathway of the exocytic transferrin receptor. Our findings suggest that CLN3 has a crucial role in regulating lysosome composition and their function, particularly in degrading of sphingolipids, and, as a consequence, in membrane transport along the recycling endosome pathway.
Collapse
Affiliation(s)
- Carolin Schmidtke
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Stephan Tiede
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland 00014
| | - Sabrina Jabs
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany 13125
| | - Georgia Makrypidi
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Michaela Schweizer
- the Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20251
| | - Ingke Braren
- Vector Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20251
| | | | - Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Angela Schulz
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Thomas Braulke
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246,
| |
Collapse
|
11
|
A Rationale for Mesoscopic Domain Formation in Biomembranes. Biomolecules 2018; 8:biom8040104. [PMID: 30274275 PMCID: PMC6316292 DOI: 10.3390/biom8040104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
Cell plasma membranes display a dramatically rich structural complexity characterized by functional sub-wavelength domains with specific lipid and protein composition. Under favorable experimental conditions, patterned morphologies can also be observed in vitro on model systems such as supported membranes or lipid vesicles. Lipid mixtures separating in liquid-ordered and liquid-disordered phases below a demixing temperature play a pivotal role in this context. Protein-protein and protein-lipid interactions also contribute to membrane shaping by promoting small domains or clusters. Such phase separations displaying characteristic length-scales falling in-between the nanoscopic, molecular scale on the one hand and the macroscopic scale on the other hand, are named mesophases in soft condensed matter physics. In this review, we propose a classification of the diverse mechanisms leading to mesophase separation in biomembranes. We distinguish between mechanisms relying upon equilibrium thermodynamics and those involving out-of-equilibrium mechanisms, notably active membrane recycling. In equilibrium, we especially focus on the many mechanisms that dwell on an up-down symmetry breaking between the upper and lower bilayer leaflets. Symmetry breaking is an ubiquitous mechanism in condensed matter physics at the heart of several important phenomena. In the present case, it can be either spontaneous (domain buckling) or explicit, i.e., due to an external cause (global or local vesicle bending properties). Whenever possible, theoretical predictions and simulation results are confronted to experiments on model systems or living cells, which enables us to identify the most realistic mechanisms from a biological perspective.
Collapse
|
12
|
Naslavsky N, Caplan S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. J Cell Sci 2018; 131:131/13/jcs216499. [PMID: 29980602 DOI: 10.1242/jcs.216499] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early endosome (EE), also known as the sorting endosome (SE) is a crucial station for the sorting of cargoes, such as receptors and lipids, through the endocytic pathways. The term endosome relates to the receptacle-like nature of this organelle, to which endocytosed cargoes are funneled upon internalization from the plasma membrane. Having been delivered by the fusion of internalized vesicles with the EE or SE, cargo molecules are then sorted to a variety of endocytic pathways, including the endo-lysosomal pathway for degradation, direct or rapid recycling to the plasma membrane, and to a slower recycling pathway that involves a specialized form of endosome known as a recycling endosome (RE), often localized to the perinuclear endocytic recycling compartment (ERC). It is striking that 'the endosome', which plays such essential cellular roles, has managed to avoid a precise description, and its characteristics remain ambiguous and heterogeneous. Moreover, despite the rapid advances in scientific methodologies, including breakthroughs in light microscopy, overall, the endosome remains poorly defined. This Review will attempt to collate key characteristics of the different types of endosomes and provide a platform for discussion of this unique and fascinating collection of organelles. Moreover, under-developed, poorly understood and important open questions will be discussed.
Collapse
Affiliation(s)
- Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA .,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Fernandez-Trillo F, Grover LM, Stephenson-Brown A, Harrison P, Mendes PM. Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles. Angew Chem Int Ed Engl 2017; 56:3142-3160. [DOI: 10.1002/anie.201607825] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/12/2016] [Indexed: 12/19/2022]
Affiliation(s)
| | - Liam M. Grover
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Alex Stephenson-Brown
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Paul Harrison
- Institute of Inflammation and Ageing (IIA); University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Paula M. Mendes
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
14
|
Fernandez-Trillo F, Grover LM, Stephenson-Brown A, Harrison P, Mendes PM. Vesikel in der Natur und im Labor: die Aufklärung der biologischen Eigenschaften und die Synthese zunehmend komplexer synthetischer Vesikel. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607825] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Liam M. Grover
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Alex Stephenson-Brown
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Paul Harrison
- Institute of Inflammation and Ageing (IIA); University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Paula M. Mendes
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| |
Collapse
|
15
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
16
|
Abstract
Stem cell therapy provides immense hope for regenerating the pathological heart, yet has been marred by issues surrounding the effectiveness, unclear mechanisms, and survival of the donated cell population in the ischemic myocardial milieu. Poor survival and engraftment coupled to inadequate cardiac commitment of the adoptively transferred stem cells compromises the improvement in cardiac function. Various alternative approaches to enhance the efficacy of stem cell therapies and to overcome issues with cell therapy have been used with varied success. Cell-free components, such as exosomes enriched in proteins, messenger RNAs, and miRs characteristic of parental stem cells, represent a potential approach for treating cardiovascular diseases. Recently, exosomes from different kinds of stem cells have been effectively used to promote cardiac function in the pathological heart. The aim of this review is to summarize current research efforts on stem cell exosomes, including their potential benefits and limitations to develop a potentially viable therapy for cardiovascular problems.
Collapse
Affiliation(s)
- Raj Kishore
- From the Center for Translational Medicine (R.K., M.K.) and Department of Pharmacology (R.K.), Temple University School of Medicine, Philadelphia, PA
| | - Mohsin Khan
- From the Center for Translational Medicine (R.K., M.K.) and Department of Pharmacology (R.K.), Temple University School of Medicine, Philadelphia, PA.
| |
Collapse
|
17
|
Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 2015; 6:7029. [PMID: 25967391 PMCID: PMC4435621 DOI: 10.1038/ncomms8029] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA. Extracellular vesicles (EVs) act as a conduit for intercellular communication through the exchange of cellular materials without direct cell-to-cell contacts. Here the authors develop a multiplexed reporter system that allows monitoring of EV exchange, cargo delivery and protein translation between different cell populations.
Collapse
|
18
|
Alfsen A, Tatischeff I. The Lipid Bilayer of Biological Vesicles: A Liquid-Crystalline Material as Nanovehicles of Information. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbnb.2014.52013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:108-20. [PMID: 24140720 DOI: 10.1016/j.bbalip.2013.10.004] [Citation(s) in RCA: 602] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
Exosomes are nanovesicles that have emerged as a new intercellular communication system between an intracellular compartment of a donor cell towards the periphery or an internal compartment of a recipient cell. The bioactivity of exosomes resides not only in their protein and RNA contents but also in their lipidic molecules. Exosomes display original lipids organized in a bilayer membrane and along with the lipid carriers such as fatty acid binding proteins that they contain, exosomes transport bioactive lipids. Exosomes can vectorize lipids such as eicosanoids, fatty acids, and cholesterol, and their lipid composition can be modified by in-vitro manipulation. They also contain lipid related enzymes so that they can constitute an autonomous unit of production of various bioactive lipids. Exosomes can circulate between proximal or distal cells and their fate can be regulated in part by lipidic molecules. Compared to their parental cells, exosomes are enriched in cholesterol and sphingomyelin and their accumulation in cells might modulate recipient cell homeostasis. Exosome release from cells appears to be a general biological process. They have been reported in all biological fluids from which they can be recovered and can be monitors of specific pathophysiological situations. Thus, the lipid content of circulating exosomes could be useful biomarkers of lipid related diseases. Since the first lipid analysis of exosomes ten years ago detailed knowledge of exosomal lipids has accumulated. The role of lipids in exosome fate and bioactivity and how they constitute an additional lipid transport system are considered in this review.
Collapse
Affiliation(s)
- Michel Record
- INSERM-UMR 1037, Cancer Research Center of Toulouse (CRCT), Team "Sterol Metabolism and Therapeutic Innovation in Oncology", BP3028, CHU Purpan, Toulouse F-31300, France; Institut Claudius Regaud, 20-24 Rue du Pont Saint-Pierre, 31052 Toulouse Cedex, France; Université Paul Sabatier Toulouse 3, 118 Route de Narbonne, Toulouse, France.
| | | | | | | |
Collapse
|
20
|
Signaling pathways in exosomes biogenesis, secretion and fate. Genes (Basel) 2013; 4:152-70. [PMID: 24705158 PMCID: PMC3899971 DOI: 10.3390/genes4020152] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 12/11/2022] Open
Abstract
Exosomes are small extracellular vesicles (30–100 nm) derived from the endosomal system, which have raised considerable interest in the last decade. Several studies have shown that they mediate cell-to-cell communication in a variety of biological processes. Thus, in addition to cell-to-cell direct interaction or secretion of active molecules, they are now considered another class of signal mediators. Exosomes can be secreted by several cell types and retrieved in many body fluids, such as blood, urine, saliva and cerebrospinal fluid. In addition to proteins and lipids, they also contain nucleic acids, namely mRNA and miRNA. These features have prompted extensive research to exploit them as a source of biomarkers for several pathologies, such as cancer and neurodegenerative disorders. In this context, exosomes also appear attractive as gene delivery vehicles. Furthermore, exosome immunomodulatory and regenerative properties are also encouraging their application for further therapeutic purposes. Nevertheless, several issues remain to be addressed: exosome biogenesis and secretion mechanisms have not been clearly understood, and physiological functions, as well as pathological roles, are far from being satisfactorily elucidated.
Collapse
|
21
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Vanić Z, Barnert S, Süss R, Schubert R. Fusogenic activity of PEGylated pH-sensitive liposomes. J Liposome Res 2011; 22:148-57. [PMID: 22149717 DOI: 10.3109/08982104.2011.633267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to investigate the fusogenic properties of poly(ethylene glycol) (PEG)ylated dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) liposomes. These pH-sensitive liposomes were prepared by incorporating two different PEG lipids: distearoylphosphatidylethanolamine (DSPE)-PEG₂₀₀₀ was mixed with the liposomal lipids using the conventional method, whereas sterol-PEG₁₁₀₀ was inserted into the outer monolayer of preformed vesicles. Both types of PEGylated liposomes were characterized and compared for their entrapment efficiency, zeta potential and size, and were tested in vitro for pH sensitivity by means of proton-induced leakage and membrane fusion activity. To mimic the routes of intracellular delivery, fusion between pH-sensitive liposomes and liposomes designed to simulate the endosomal membrane was studied. Our investigations confirmed that DOPE/CHEMS liposomes were capable of rapidly releasing calcein and of fusing upon acidification. However, after incorporation of DSPE-PEG₂₀₀₀ or sterol-PEG₁₁₀₀ into the membrane, pH sensitivity was significantly reduced; as the mol ratio of PEG-lipid was increased, the ability to fuse was decreased. Comparison between two different PEGylated pH-sensitive liposomes showed that only vesicles containing 0.6 mol% sterol-PEG₁₁₀₀ in the outer monolayer were still capable of fusing with the endosome-like liposomes and showing leakage of calcein at pH 5.5.
Collapse
Affiliation(s)
- Zeljka Vanić
- Department of Pharmaceutics, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| | | | | | | |
Collapse
|
23
|
Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 2011; 40:D1241-4. [PMID: 21989406 PMCID: PMC3245025 DOI: 10.1093/nar/gkr828] [Citation(s) in RCA: 821] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membraneous nanovesicles of endocytic origin released by most cell types from diverse organisms; they play a critical role in cell-cell communication. ExoCarta (http://www.exocarta.org) is a manually curated database of exosomal proteins, RNA and lipids. The database catalogs information from both published and unpublished exosomal studies. The mode of exosomal purification and characterization, the biophysical and molecular properties are listed in the database aiding biomedical scientists in assessing the quality of the exosomal preparation and the corresponding data obtained. Currently, ExoCarta (Version 3.1) contains information on 11,261 protein entries, 2375 mRNA entries and 764 miRNA entries that were obtained from 134 exosomal studies. In addition to the data update, as a new feature, lipids identified in exosomes are added to ExoCarta. We believe that this free web-based community resource will aid researchers in identifying molecular signatures (proteins/RNA/lipids) that are specific to certain tissue/cell type derived exosomes and trigger new exosomal studies.
Collapse
Affiliation(s)
- Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | | | | |
Collapse
|
24
|
de Juan-Sanz J, Zafra F, López-Corcuera B, Aragón C. Endocytosis of the neuronal glycine transporter GLYT2: role of membrane rafts and protein kinase C-dependent ubiquitination. Traffic 2011; 12:1850-67. [PMID: 21910806 DOI: 10.1111/j.1600-0854.2011.01278.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycinergic neurotransmission is terminated by sodium- and chloride-dependent plasma membrane transporters. The neuronal glycine transporter 2 (GLYT2) supplies the terminal with substrate to refill synaptic vesicles containing glycine. This crucial process is defective in human hyperekplexia, a condition that can be caused by mutations in GLYT2. Inhibitory glycinergic neurotransmission is modulated by the GLYT2 exocytosis/endocytosis equilibrium, although the mechanisms underlying the turnover of this transporter remain elusive. We studied GLYT2 internalization pathways and the role of ubiquitination and membrane raft association of the transporter in its endocytosis. Using pharmacological tools, dominant-negative mutants and small-interfering RNAs, we show that the clathrin-mediated pathway is the primary mechanism for constitutive and regulated GLYT2 endocytosis in heterologous cells and neurons. We show that GLYT2 is constitutively internalized from cell surface lipid rafts, remaining associated with rafts in subcellular recycling structures. Protein kinase C (PKC) negatively modulates GLYT2 via rapid and dynamic redistribution of GLYT2 from raft to non-raft membrane subdomains and increasing ubiquitinated GLYT2 endocytosis. This biphasic mechanism is a versatile means to modulate GLYT2 behavior and hence, inhibitory glycinergic neurotransmission. These findings may reveal new therapeutic targets to address glycinergic pathologies associated with alterations in GLYT2 trafficking.
Collapse
Affiliation(s)
- Jaime de Juan-Sanz
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Glauser DL, Kratz AS, Gillet L, Stevenson PG. A mechanistic basis for potent, glycoprotein B-directed gammaherpesvirus neutralization. J Gen Virol 2011; 92:2020-2033. [PMID: 21593277 PMCID: PMC3353389 DOI: 10.1099/vir.0.032177-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycoprotein B (gB) is a conserved, essential component of gammaherpes virions and so potentially vulnerable to neutralization. However, few good gB-specific neutralizing antibodies have been identified. Here, we show that murid herpesvirus 4 is strongly neutralized by mAbs that recognize an epitope close to one of the gB fusion loops. Antibody binding did not stop gB interacting with its cellular ligands or initiating its fusion-associated conformation change, but did stop gB resolving stably to its post-fusion form, and so blocked membrane fusion to leave virions stranded in late endosomes. The conservation of gB makes this mechanism a possible general route to gammaherpesvirus neutralization.
Collapse
Affiliation(s)
- Daniel L Glauser
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anne-Sophie Kratz
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Laurent Gillet
- Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010; 73:1907-20. [PMID: 20601276 DOI: 10.1016/j.jprot.2010.06.006] [Citation(s) in RCA: 1927] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/26/2010] [Accepted: 06/18/2010] [Indexed: 12/12/2022]
Abstract
In addition to intracellular organelles, eukaryotic cells also contain extracellular organelles that are released, or shed, into the microenvironment. These membranous extracellular organelles include exosomes, shedding microvesicles (SMVs) and apoptotic blebs (ABs), many of which exhibit pleiotropic biological functions. Because extracellular organelle terminology is often confounding, with many preparations reported in the literature being mixtures of extracellular vesicles, there is a growing need to clarify nomenclature and to improve purification strategies in order to discriminate the biochemical and functional activities of these moieties. Exosomes are formed by the inward budding of multivesicular bodies (MVBs) and are released from the cell into the microenvironment following the fusion of MVBs with the plasma membrane (PM). In this review we focus on various strategies for purifying exosomes and discuss their biophysical and biochemical properties. An update on proteomic analysis of exosomes from various cell types and body fluids is provided and host-cell specific proteomic signatures are also discussed. Because the ectodomain of ~42% of exosomal integral membrane proteins are also found in the secretome, these vesicles provide a potential source of serum-based membrane protein biomarkers that are reflective of the host cell. ExoCarta, an exosomal protein and RNA database (http://exocarta.ludwig.edu.au), is described.
Collapse
Affiliation(s)
- Suresh Mathivanan
- Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | |
Collapse
|
27
|
Urbina P, Flores-Díaz M, Alape-Girón A, Alonso A, Goñi FM. Effects of bilayer composition and physical properties on the phospholipase C and sphingomyelinase activities of Clostridium perfringens α-toxin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:279-86. [PMID: 20727345 DOI: 10.1016/j.bbamem.2010.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/30/2010] [Accepted: 08/11/2010] [Indexed: 01/15/2023]
Abstract
α-Toxin, a major determinant of Clostridium perfringens toxicity, exhibits both phospholipase C and sphingomyelinase activities. Our studies with large unilamellar vesicles containing a variety of lipid mixtures reveal that both lipase activities are enhanced by cholesterol and by lipids with an intrinsic negative curvature, e.g. phosphatidylethanolamine. Conversely lysophospholipids, that possess a positive intrinsic curvature, inhibit the α-toxin lipase activities. Phospholipids with a net negative charge do not exert any major effect on the lipase activities, and the same lack of effect is seen with the lysosomal lipid bis (monoacylglycero) phosphate. Ganglioside GT1b has a clear inhibitory effect, while the monosialic ganglioside GM3 is virtually ineffectual even when incorporated at 6mol % in the vesicles. The length of the lag periods appears to be inversely related to the maximum (post-lag) enzyme activities. Moreover, and particularly in the presence of cholesterol, lag times increase with pH. Both lipase activities are sensitive to vesicle size, but in opposite ways: while phospholipase C is higher with larger vesicles, sphingomyelinase activity is lower. The combination of our results with previous structural studies suggests that α-toxin lipase activities have distinct, but partially overlapping and interacting active sites.
Collapse
Affiliation(s)
- Patricia Urbina
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
28
|
Frederick TE, Chebukati JN, Mair CE, Goff PC, Fanucci GE. Bis(monoacylglycero)phosphate forms stable small lamellar vesicle structures: insights into vesicular body formation in endosomes. Biophys J 2009; 96:1847-55. [PMID: 19254543 DOI: 10.1016/j.bpj.2008.12.3892] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 12/01/2008] [Indexed: 11/28/2022] Open
Abstract
Bis(monoacylglycero)phosphate (BMP) is an unusually shaped lipid found in relatively high percentage in the late endosome. Here, we report the characterization of the morphology and molecular organization of dioleoyl-BMP (DOBMP) with dynamic light scattering, transmission electron microscopy, nuclear magnetic resonance (NMR) spectroscopy, and electron paramagnetic resonance spectroscopy. The morphology of hydrated DOBMP dispersions varies with pH and ionic strength, and DOBMP vesicles are significantly smaller in diameter than phosphatidylcholine dispersions. At neutral pH, DOBMP forms highly structured, clustered dispersions 500 nm in size. On the other hand, at acidic pH, spherically shaped vesicles are formed. NMR and spin-labeled electron paramagnetic resonance demonstrate that DOBMP forms a lamellar mesophase with acyl-chain packing similar to that of other unsaturated phospholipids. (31)P NMR reveals an orientation of the phosphate group in DOBMP that differs significantly from that of other phospholipids. These macroscopic and microscopic structural characterizations suggest that the biosynthesis of BMP on the inner luminal membrane of maturing endosomes may possibly produce budded vesicles high in BMP content, which form small vesicular structures stabilized by the physical properties of the BMP lipid.
Collapse
Affiliation(s)
- Thomas E Frederick
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | | | |
Collapse
|
29
|
Thomas S, Ritter B, Verbich D, Sanson C, Bourbonnière L, McKinney RA, McPherson PS. Intersectin regulates dendritic spine development and somatodendritic endocytosis but not synaptic vesicle recycling in hippocampal neurons. J Biol Chem 2009; 284:12410-9. [PMID: 19258322 DOI: 10.1074/jbc.m809746200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intersectin-short (intersectin-s) is a multimodule scaffolding protein functioning in constitutive and regulated forms of endocytosis in non-neuronal cells and in synaptic vesicle (SV) recycling at the neuromuscular junction of Drosophila and Caenorhabditis elegans. In vertebrates, alternative splicing generates a second isoform, intersectin-long (intersectin-l), that contains additional modular domains providing a guanine nucleotide exchange factor activity for Cdc42. In mammals, intersectin-s is expressed in multiple tissues and cells, including glia, but excluded from neurons, whereas intersectin-l is a neuron-specific isoform. Thus, intersectin-I may regulate multiple forms of endocytosis in mammalian neurons, including SV endocytosis. We now report, however, that intersectin-l is localized to somatodendritic regions of cultured hippocampal neurons, with some juxtanuclear accumulation, but is excluded from synaptophysin-labeled axon terminals. Consistently, intersectin-l knockdown (KD) does not affect SV recycling. Instead intersectin-l co-localizes with clathrin heavy chain and adaptor protein 2 in the somatodendritic region of neurons, and its KD reduces the rate of transferrin endocytosis. The protein also co-localizes with F-actin at dendritic spines, and intersectin-l KD disrupts spine maturation during development. Our data indicate that intersectin-l is indeed an important regulator of constitutive endocytosis and neuronal development but that it is not a prominent player in the regulated endocytosis of SVs.
Collapse
Affiliation(s)
- Sébastien Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Zabrocki P, Bastiaens I, Delay C, Bammens T, Ghillebert R, Pellens K, De Virgilio C, Van Leuven F, Winderickx J. Phosphorylation, lipid raft interaction and traffic of alpha-synuclein in a yeast model for Parkinson. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1767-80. [PMID: 18634833 DOI: 10.1016/j.bbamcr.2008.06.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 05/08/2008] [Accepted: 06/02/2008] [Indexed: 01/04/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the formation of Lewy bodies containing aggregated alpha-synuclein. We used a yeast model to screen for deletion mutants with mislocalization and enhanced inclusion formation of alpha-synuclein. Many of the mutants were affected in functions related to vesicular traffic but especially mutants in endocytosis and vacuolar degradation combined inclusion formation with enhanced alpha-synuclein-mediated toxicity. The screening also allowed for identification of casein kinases responsible for alpha-synuclein phosphorylation at the plasma membrane as well as transacetylases that modulate the alpha-synuclein membrane interaction. In addition, alpha-synuclein was found to associate with lipid rafts, a phenomenon dependent on the ergosterol content. Together, our data suggest that toxicity of alpha-synuclein in yeast is at least in part associated with endocytosis of the protein, vesicular recycling back to the plasma membrane and vacuolar fusion defects, each contributing to the obstruction of different vesicular trafficking routes.
Collapse
Affiliation(s)
- Piotr Zabrocki
- Laboratory of Functional Biology, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mulari MT, Nars M, Laitala-Leinonen T, Kaisto T, Metsikkö K, Sun Y, Väänänen HK. Recombinant VSV G proteins reveal a novel raft-dependent endocytic pathway in resorbing osteoclasts. Exp Cell Res 2008; 314:1641-51. [DOI: 10.1016/j.yexcr.2008.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 02/10/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
|
33
|
Abstract
The exit of intracellular pathogens from host cells is an important step in the infectious cycle, but is poorly understood. It has recently emerged that microbial exit is a process that can be directed by organisms from within the cell, and is not simply a consequence of the physical or metabolic burden that is imposed on the host cell. This Review summarizes our current knowledge on the diverse mechanisms that are used by intracellular pathogens to exit cells. An integrated understanding of the diversity that exists for microbial exit pathways represents a new horizon in the study of host-pathogen interactions.
Collapse
|
34
|
Blistering of supported lipid membranes induced by Phospholipase D, as observed by real-time atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:276-82. [DOI: 10.1016/j.bbamem.2007.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 09/11/2007] [Accepted: 09/28/2007] [Indexed: 11/21/2022]
|
35
|
Abstract
The classic concept of self-non-self discrimination by the immune system focused on the recognition of fragments from proteins presented by classical MHC molecules. However, the discovery of MHC-class-I-like CD1 antigen-presentation molecules now explains how the immune system also recognizes the abundant and diverse universe of lipid-containing antigens. The CD1 molecules bind and present amphipathic lipid antigens for recognition by T-cell receptors. Here, we outline the recent advances in our understanding of how the processes of CD1 assembly, trafficking, lipid-antigen binding and T-cell activation are achieved and the new insights into how lipid antigens differentially elicit CD1-restricted innate and adaptive T-cell responses.
Collapse
Affiliation(s)
- Duarte C Barral
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
36
|
Hendler RW. An apparent general solution for the kinetic models of the bacteriorhodopsin photocycles. J Phys Chem B 2007; 109:16515-28. [PMID: 16853100 DOI: 10.1021/jp052733h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the past decade, the field of Bacteriorhodopsin (BR) research has been influenced by a kinetic view of the photocycle as a reversible, homogeneous, model (RHM) with a linear sequence of intermediates. More recently, we proposed a much different model which consists of essentially unidirectional, parallel (i.e., heterogeneous) cycles (UPM) (Hendler, R. W.; Shrager, R. I.; Bose, S. J. Phys. Chem. B 2001, 105, 3319-3328). It is important to try to resolve which of the two models is more likely to be correct, because models influence and provide a basis for further experimentation. Therefore, in this communication, we reexamine the basis for the RHM with a focus on the most recent and complete description of this model (van Stokkum, I., H., M.; Lozier, R. J. Phys. Chem. B 2002, 106, 3477-3485) vis a vis the UPM in an in-depth study. We show that (i) the tested RHM does not really work for the data of van Stokkum and Lozier nor ours; (ii) no previously published RHM model has been shown to work for data under any conditions; (iii) there are many published observations that are difficult if not impossible to explain by RHM, but are readily explained by parallel cycles. It is also shown that either a UPM or a parallel cycle model with limited reversibility correctly describes photocycle data collected at pH 5, 7, and 9 and at 10, 20, and 30 degrees and is consistent with all known experimental observations.
Collapse
Affiliation(s)
- Richard W Hendler
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
37
|
Sugita M, Barral DC, Brenner MB. Pathways of CD1 and lipid antigen delivery, trafficking, processing, loading, and presentation. Curr Top Microbiol Immunol 2007; 314:143-64. [PMID: 17593660 DOI: 10.1007/978-3-540-69511-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Specific T cell responses to a variety of self and microbial lipids depend on proper assembly and intracellular trafficking of CD 1 molecules that intersect with and load processed lipid antigens. These pathways involve unique membrane trafficking and chaperones that are distinct from those utilized for major histocompatibility complex (MHC)-mediated presentation of peptide antigens, and thus define unique lipid antigen presentation pathways. Furthermore, recent studies have identified components of lipid metabolism that participate in lipid delivery, uptake, processing and loading onto CD1 molecules. Defects in these pathways result in impaired T cell development and function, underscoring their critical role in the lipid-specific T cell immune responses.
Collapse
Affiliation(s)
- M Sugita
- Division of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
38
|
Souza CM, Pichler H. Lipid requirements for endocytosis in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:442-54. [PMID: 16997624 DOI: 10.1016/j.bbalip.2006.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 01/19/2023]
Abstract
Endocytosis is, besides secretion, the most prominent membrane transport pathway in eukaryotic cells. In membrane transport, defined areas of the donor membranes engulf solutes of the compartment they are bordering and bud off with the aid of coat proteins to form vesicles. These transport vehicles are guided along cytoskeletal paths, often matured and, finally, fuse to the acceptor membrane they are targeted to. Lipids and proteins are equally important components in membrane transport pathways. Not only are they the structural units of membranes and vesicles, but both classes of molecules also participate actively in membrane transport processes. Whereas proteins form the cytoskeleton and vesicle coats, confer signals and constitute attachment points for membrane-membrane interaction, lipids modulate the flexibility of bilayers, carry protein recognition sites and confer signals themselves. Over the last decade it has been realized that all classes of bilayer lipids, glycerophospholipids, sphingolipids and sterols, actively contribute to functional membrane transport, in particular to endocytosis. Thus, abnormal bilayer lipid metabolism leads to endocytic defects of different severity. Interestingly, there seems to be a great deal of interdependence and interaction among lipid classes. It will be a challenge to characterize this plenitude of interactions and find out about their impact on cellular processes.
Collapse
|
39
|
Pipalia NH, Hao M, Mukherjee S, Maxfield FR. Sterol, protein and lipid trafficking in Chinese hamster ovary cells with Niemann-Pick type C1 defect. Traffic 2006; 8:130-41. [PMID: 17156101 DOI: 10.1111/j.1600-0854.2006.00513.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We studied the trafficking of sterols, lipids and proteins in Niemann-Pick type C (NPC) cells. The NPC is an inherited disorder involving the accumulation of sterol and lipids in modified late-endosome/lysosome-like storage organelles. Most sterol accumulation studies in NPC cells have been carried out using low-density lipoprotein (LDL) as the sterol source, and it has been shown that sterol efflux from late endosomes is impaired in NPC cells. In this study, we used a fluorescent sterol analog, dehydroergosterol, which can be quickly and efficiently delivered to the plasma membrane. Thus, we were able to study the trafficking kinetics of the non-LDL-derived sterol pool, and we found that dehydroergosterol accumulates in the storage organelles over the course of several hours in NPC cells. We also found that dialkylindocarbocyanine lipid-mimetic analogs that recycle efficiently from early endosomes in wild-type cells are targeted to late endosomal organelles in NPC cells, and transferrin receptors recycle slowly and inefficiently in NPC cells. These data are consistent with multiple trafficking defects in both early and late endosomes in NPC cells.
Collapse
Affiliation(s)
- Nina H Pipalia
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
40
|
Hayakawa T, Makino A, Murate M, Sugimoto I, Hashimoto Y, Takahashi H, Ito K, Fujisawa T, Matsuo H, Kobayashi T. pH-dependent formation of membranous cytoplasmic body-like structure of ganglioside G(M1)/bis(monoacylglycero)phosphate mixed membranes. Biophys J 2006; 92:L13-6. [PMID: 17056735 PMCID: PMC1697849 DOI: 10.1529/biophysj.106.098657] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane structures of the mixtures of ganglioside G(M1) and endosome specific lipid, bis (monoacylglycero) phosphate (BMP, also known as lysobisphosphatidic acid) were examined at various pH conditions by freeze-fracture electron microscopy and small-angle x-ray scattering. At pH 8.5-6.5, a G(M1)/BMP (1:1 mol/mol) mixture formed small vesicular aggregates, whereas the mixture formed closely packed lamellar structures under acidic conditions (pH 5.5, 4.6) with the lamellar repeat distance of 8.06 nm. Since BMP alone exhibits a diffuse lamellar structure at a broad range of pH values and G(M1) forms a micelle, the results indicate that both G(M1) and BMP are required to produce closely stacked multilamellar vesicles. These vesicles resemble membranous cytoplasmic bodies in cells derived from patients suffering from G(M1) gangliosidosis. Similar to G(M1) gangliosidosis, cholesterol was trapped in BMP vesicles in G(M1)- and in a low pH-dependent manner. Studies employing different gangliosides and a G(M1) analog suggest the importance of sugar chains and a sialic acid of G(M1) in the pH-dependent structural change of G(M1)/BMP membranes.
Collapse
|
41
|
Kobayashi T, Takahashi M, Nagatsuka Y, Hirabayashi Y. Lipid rafts: new tools and a new component. Biol Pharm Bull 2006; 29:1526-31. [PMID: 16880598 DOI: 10.1248/bpb.29.1526] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipid rafts are liquid ordered membrane domains enriched with sphingolipids and cholesterol. After 20 years since the proposal of the original concept, the structure and function of lipid rafts are still obscure. Recently new tools to study lipid rafts have been developed. Lysenin is a sphingomyelin binding protein that specifically recognizes the lipid clusters. Poly(ethyleneglycol)-derivatized cholesterol ether (PEG-Chol) is a non-toxic cholesterol probe. These probes have revealed the heterogeneity of lipid rafts. The heterogeneity of lipid rafts is further supported by the discovery of a new lipid component, phosphatidylglucoside. Metabolic inhibitors are another useful tool. Sulfamisterin is a new addition to the serine palmitoyltransferase inhibitors. Recent findings have uncovered a previously unrecognized activity of a glycosphingolipid synthesis inhibitor, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP).
Collapse
Affiliation(s)
- Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN (Institute of Physical and Chemical Research), Japan.
| | | | | | | |
Collapse
|
42
|
Jiang G, Xu Y, Falguières T, Gruenberg J, Prestwich GD. Concise synthesis of ether analogues of lysobisphosphatidic acid. Org Lett 2006; 7:3837-40. [PMID: 16119911 PMCID: PMC2535798 DOI: 10.1021/ol051194w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a versatile, efficient method for the preparation of ether analogues of (S,S)-lysobisphosphatidic acid (LBPA) and its enantiomer from (S)-solketal. Phosphorylation of a protected sn-2-O-octadecenyl glyceryl ether with 2-cyanoethyl bis-N,N-diisopropylamino phosphine and subsequent deprotection generated the bisether LBPA analogues. By simply changing the sequence of deprotection steps, we obtained the (R,R)- and (S,S)-enantiomers of 2,2'-bisether LBPA. An ELISA assay with anti-LBPA monoclonal antibodies showed that the bisether LBPAs were recognized with the same affinity as the natural 2,2'-bisoleolyl LBPA. [reaction: see text]
Collapse
Affiliation(s)
- Guowei Jiang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257
| | - Yong Xu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257
| | - Thomas Falguières
- Department of Biochemistry, Sciences II, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, Sciences II, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257
| |
Collapse
|
43
|
Lauwers E, André B. Association of Yeast Transporters with Detergent-Resistant Membranes Correlates with Their Cell-Surface Location. Traffic 2006; 7:1045-59. [PMID: 16734661 DOI: 10.1111/j.1600-0854.2006.00445.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Detergent-resistant membrane (DRM) fractions enriched in ergosterol and sphingolipids can be isolated from yeast cells and have been proposed to represent the biochemical equivalents of lipid rafts. Most yeast plasma membrane proteins studied for their detergent solubility have been found in DRMs, except for the Hxt1 and Gap1 permeases. We here compared Gap1 detergent solubility in wild-type and various mutant cells under conditions promoting cell surface accumulation or ubiquitin-dependent down-regulation of the permease. We show that Gap1 present at the plasma membrane is associated with DRMs. This association occurs at the Golgi level. In the absence of sphingolipid neosynthesis, Gap1 fails to accumulate at the plasma membrane and is missorted to the vacuolar lumen. Furthermore, the presence of Gap1 at the plasma membrane correlates perfectly with its association with DRMs, whatever the activity or ubiquitination state of the permease and regardless of whether it has reached the cell surface via normal secretion, after recycling, or upon missorting to the vacuole before rerouting to the plasma membrane. Finally, we show that Hxt1 present at the cell surface is also associated with DRMs. We discuss a model where yeast plasma membrane proteins are systematically associated with sphingolipid/ergosterol-enriched microdomains when located at the cell surface.
Collapse
Affiliation(s)
- Elsa Lauwers
- Laboratoire de Physiologie Moléculaire de la Cellule, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | | |
Collapse
|
44
|
Zhao H, Väänänen HK. Pharmacological sequestration of intracellular cholesterol in late endosomes disrupts ruffled border formation in osteoclasts. J Bone Miner Res 2006; 21:456-65. [PMID: 16491294 DOI: 10.1359/jbmr.051204] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/28/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED We showed that the ruffled border lacks a late endosomal lipid, LBPA, but is enriched incholesterol. A hydrophobic amine, U18666A, causes cholesterol accumulation in LBPA+ late endosomes in osteoclasts. Specific targeting of cathepsin K and the vacuolar H+-ATPase at the ruffled border is blocked by U18666A. A membrane trafficking pathway from baso-lateral membrane toward the resorptive organelle is also arrested by the inhibitor. These results indicate cholesterol homeostasis regulates late endosomal/lysosomal trafficking and polarized secretion in resorbing osteoclasts. INTRODUCTION Protons and acidic proteases are secreted into the resorption lacuna through the ruffled border to solubilize bone mineral and digest the organic bone matrix, respectively. Whereas evidence suggests this event occurs through a vesicular trafficking mechanism, this issue remains unresolved. MATERIALS AND METHODS The distribution of lysobisphosphatidic acid (LBPA) and cholesterol in resorbing osteoclasts was examined by laser scanning confocal microscopy. The effects of U18666A on ruffled border formation were observed by electron microscopy. RESULTS AND CONCLUSIONS The ruffled border does not contain LBPA but is enriched in cholesterol. We found a hydrophobic amine, U18666A, which blocks the efflux of cholesterol from late endosomes in other cells, causes cholesterol accumulation in LBPA-containing late endosomes in osteoclasts, leading to diminished cholesterol at the ruffled border. Reflecting the U18666A-mediated inhibition of late endosome/lysosome transport, the resorptive membrane is disrupted and contains a paucity of cathepsin K and the vacuolar H+-ATPase. These results indicate that the ruffled border is formed by the fusion of lysosomes with the plasma membrane in osteoclasts through a process that is cholesterol regulated.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland.
| | | |
Collapse
|
45
|
Salvioli R, Tatti M, Scarpa S, Moavero S, Ciaffoni F, Felicetti F, Kaneski C, Brady R, Vaccaro A. The N370S (Asn370-->Ser) mutation affects the capacity of glucosylceramidase to interact with anionic phospholipid-containing membranes and saposin C. Biochem J 2005; 390:95-103. [PMID: 15826241 PMCID: PMC1184565 DOI: 10.1042/bj20050325] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The properties of the endolysosomal enzyme GCase (glucosylceramidase), carrying the most prevalent mutation observed in Gaucher patients, namely substitution of an asparagine residue with a serine at amino acid position 370 [N370S (Asn370-->Ser) GCase], were investigated in the present study. We previously demonstrated that Sap (saposin) C, the physiological GCase activator, promotes the association of GCase with anionic phospholipid-containing membranes, reconstituting in this way the enzyme activity. In the present study, we show that, in the presence of Sap C and membranes containing high levels of anionic phospholipids, both normal and N370S GCases are able to associate with the lipid surface and to express their activity. Conversely, when the amount of anionic phospholipids in the membrane is reduced (approximately 20% of total lipids), Sap C is still able to promote binding and activation of the normal enzyme, but not of N370S GCase. The altered interaction of the mutated enzyme with anionic phospholipid-containing membranes and Sap C was further demonstrated in Gaucher fibroblasts by confocal microscopy, which revealed poor co-localization of N370S GCase with Sap C and lysobisphosphatidic acid, the most abundant anionic phospholipid in endolysosomes. Moreover, we found that N370S Gaucher fibroblasts accumulate endolysosomal free cholesterol, a lipid that might further interfere with the interaction of the enzyme with Sap C and lysobisphosphatidic acid-containing membranes. In summary, our results show that the N370S mutation primarily affects the interaction of GCase with its physiological activators, namely Sap C and anionic phospholipid-containing membranes. We thus propose that the poor contact between N370S GCase and its activators may be responsible for the low activity of the mutant enzyme in vivo.
Collapse
Affiliation(s)
- Rosa Salvioli
- *Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanita', Viale Regina Elena 299, 00161 Roma, Italy
| | - Massimo Tatti
- *Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanita', Viale Regina Elena 299, 00161 Roma, Italy
| | - Susanna Scarpa
- †Department of Experimental Medicine and Pathology, University of Rome ‘La Sapienza’, Viale Regina Elena 234, 00161 Roma, Italy
| | - Sabrina Maria Moavero
- *Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanita', Viale Regina Elena 299, 00161 Roma, Italy
| | - Fiorella Ciaffoni
- *Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanita', Viale Regina Elena 299, 00161 Roma, Italy
| | - Federica Felicetti
- *Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanita', Viale Regina Elena 299, 00161 Roma, Italy
| | - Christine R. Kaneski
- ‡Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, U.S.A
| | - Roscoe O. Brady
- ‡Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, U.S.A
| | - Anna Maria Vaccaro
- *Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanita', Viale Regina Elena 299, 00161 Roma, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Le Blanc I, Luyet PP, Pons V, Ferguson C, Emans N, Petiot A, Mayran N, Demaurex N, Fauré J, Sadoul R, Parton RG, Gruenberg J. Endosome-to-cytosol transport of viral nucleocapsids. Nat Cell Biol 2005; 7:653-64. [PMID: 15951806 PMCID: PMC3360589 DOI: 10.1038/ncb1269] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 05/10/2005] [Indexed: 12/22/2022]
Abstract
During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra-endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. This last step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid (LBPA) and its putative effector Alix/AIP1, and is regulated by phosphatidylinositol-3-phosphate (PtdIns3P) signalling via the PtdIns3P-binding protein Snx16. We conclude that the nucleocapsid is exported into the cytoplasm after the back-fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PtdIns3P and their effectors.
Collapse
Affiliation(s)
- Isabelle Le Blanc
- Biochemistry Department
University of Geneva30 quai E. Ansermet, 1211 Geneva 4,CH
- Department of Molecular and Cell Biology
University of California16 Barker Hall, Berkeley, CA 94720-3202,US
| | | | - Véronique Pons
- Biochemistry Department
University of Geneva30 quai E. Ansermet, 1211 Geneva 4,CH
| | - Charles Ferguson
- Institute for Molecular Bioscience
University of QueenslandCenter for Microscopy and Microanalysis, and School of Biomedical Sciences, Queensland 4072,AU
| | - Neil Emans
- Institut Pasteur de Corée
Institut Pasteur de CoréeRéseau International des Instituts Pasteur39-1, Hawolgok-dong, Sungbuk-gu, Seoul 136-791,KR
| | - Anne Petiot
- Biochemistry Department
University of Geneva30 quai E. Ansermet, 1211 Geneva 4,CH
- Glycobiologie et signalisation cellulaire
INSERM : U504Université Paris Sud - Paris XICentre de recherche Inserm 16, avenue Paul Vaillant Couturier 94807 Villejuif,FR
| | - Nathalie Mayran
- Biochemistry Department
University of Geneva30 quai E. Ansermet, 1211 Geneva 4,CH
- Institute of Experimental Pathology
Institute of Experimental Pathology25 Rue du Bugnon, 1011 Lausanne,CH
| | - Nicolas Demaurex
- Department of Physiology
Centre médical universitairerue Michel-Servet 1, 1211 Geneva 4,CH
| | - Julien Fauré
- Neurodegenerescence et Plasticite
INSERM : E108Université Joseph Fourier - Grenoble ICentre Hospitalier Universitaire 38043 GRENOBLE CEDEX 9,FR
| | - Rémy Sadoul
- Neurodegenerescence et Plasticite
INSERM : E108Université Joseph Fourier - Grenoble ICentre Hospitalier Universitaire 38043 GRENOBLE CEDEX 9,FR
| | - Robert G. Parton
- Institute for Molecular Bioscience
University of QueenslandCenter for Microscopy and Microanalysis, and School of Biomedical Sciences, Queensland 4072,AU
| | - Jean Gruenberg
- Biochemistry Department
University of Geneva30 quai E. Ansermet, 1211 Geneva 4,CH
- Correspondence should be adressed to: Jean Gruenberg
| |
Collapse
|
47
|
Abstract
It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.
Collapse
Affiliation(s)
- R Marhaba
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | |
Collapse
|
48
|
Pichler H, Riezman H. Where sterols are required for endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:51-61. [PMID: 15519308 DOI: 10.1016/j.bbamem.2004.05.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 05/28/2004] [Indexed: 12/15/2022]
Abstract
Sterols are essential membrane components of eukaryotic cells. Interacting closely with sphingolipids, they provide the membrane surrounding required for membrane sorting and trafficking processes. Altering the amount and/or structure of free sterols leads to defects in endocytic pathways in mammalian cells and yeast. Plasma membrane structures functioning in the internalization step in mammalian cells, caveolae and clathrin-coated pits, are affected by cholesterol depletion. Accumulation of improper plasma membrane sterols prevents hyperphosphorylation of a plasma membrane receptor in yeast. Once internalized, sterols still interact with sphingolipids and are recycled to the plasma membrane to keep an intracellular sterol gradient with the highest amount of free sterols at the cell periphery. Interestingly, cells from patients suffering from sphingolipid storage diseases show high intracellular amounts of free cholesterol. We propose that the balanced interaction of sterols and sphingolipids is responsible for protein recruitment to specialized membrane domains and their functionality in the endocytic pathway.
Collapse
Affiliation(s)
- Harald Pichler
- Institute of Molecular Biotechnology, Sciences II, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
49
|
Holopainen JM, Söderlund T, Alakoskela JM, Säily M, Eriksson O, Kinnunen PKJ. Intermolecular interactions of lysobisphosphatidic acid with phosphatidylcholine in mixed bilayers. Chem Phys Lipids 2005; 133:51-67. [PMID: 15589226 DOI: 10.1016/j.chemphyslip.2004.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 08/31/2004] [Accepted: 08/31/2004] [Indexed: 11/28/2022]
Abstract
Lysobisphosphatidic acid (LBPA) can be regarded to represent a unique derivative of phosphatidylglycerol. This lipid is highly enriched in late endosomes where it can comprise up to 10-15 mol% of all lipids and in these membranes, LBPA appears to be segregated into microdomains. We studied the thermotropic behavior of pure dioleoyl-LBPA mono- and bilayers using Langmuir-lipid monolayers, electron microscopy, differential scanning calorimetry (DSC), and fluorescence spectroscopy. LBPA formed metastable, liquid-expanded monolayers at an air/buffer interface, and its compression isotherms lacked any indication for structural phase transitions. Neat LBPA formed multilamellar vesicles with no structural transitions or phase transitions between 10 and 80 degrees C at a pH range of 3.0-7.4. We then proceeded to study mixed LBPA/dipalmitoylphosphatidylcholine (DPPC) bilayers by DSC and fluorescence spectroscopy. Incorporating increasing amounts of LBPA (up to X(LBPA) (molar fraction)=0.10) decreased the co-operativity of the main transition for DPPC, and a decrease in the main phase transition as well as pretransition temperature of DPPC was observed yet with no effect on the enthalpy of this transition. In keeping with the DSC data for DPPC, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/LBPA mixed bilayers were more fluid, and no evidence for lateral phase segregation was observed. These results were confirmed using fluorescence microscopy of Langmuir-lipid films composed of POPC and LBPA up to X(LBPA)=0.50 with no evidence for lateral phase separation. As late endosomes are eminently acidic, we examined the effect of lowering pH on lateral organization of mixed PC/LBPA bilayers by DSC and fluorescence spectroscopy. Even at pH 3.0, we find no evidence of LBPA-induced microdomain formation at LBPA contents found in cellular organelles.
Collapse
Affiliation(s)
- Juha M Holopainen
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
50
|
Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, Kobayashi T, Salles JP, Perret B, Bonnerot C, Record M. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 2004; 380:161-71. [PMID: 14965343 PMCID: PMC1224152 DOI: 10.1042/bj20031594] [Citation(s) in RCA: 483] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 02/12/2004] [Accepted: 02/13/2004] [Indexed: 11/17/2022]
Abstract
Exosomes are small vesicles secreted from multivesicular bodies, which are able to stimulate the immune system leading to tumour cell eradication. We have analysed lipids of exosomes secreted either upon stimulation from rat mast cells (RBL-2H3 cells), or constitutively from human dendritic cells. As compared with parent cells, exosomes displayed an enrichment in sphingomyelin, but not in cholesterol. Phosphatidylcholine content was decreased, but an enrichment was noted in disaturated molecular species as in phosphatidylethanolamines. Lyso(bis)phosphatidic acid was not enriched in exosomes as compared with cells. Fluorescence anisotropy demonstrated an increase in exosome-membrane rigidity from pH 5 to 7, suggesting their membrane reorganization between the acidic multivesicular body compartment and the neutral outer cell medium. NMR analysis established a bilayer organization of exosome membrane, and ESR studies using 16-doxyl stearic acid demonstrated a higher flip-flop of lipids between the two leaflets as compared with plasma membrane. In addition, the exosome membrane exhibited no asymmetrical distribution of phosphatidylethanolamines. Therefore exosome membrane displays a similar content of the major phospholipids and cholesterol, and is organized as a lipid bilayer with a random distribution of phosphatidylethanolamines. In addition, we observed tight lipid packing at neutral pH and a rapid flip-flop between the two leaflets of exosome membranes. These parameters could be used as a hallmark of exosomes.
Collapse
Affiliation(s)
- Karine Laulagnier
- INSERM U563, Département Lipoprotéines et Médiateurs Lipidiques, CPTP, Place du Dr Baylac, Hôpital Purpan, 31059 Toulouse Cedex 03, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|