1
|
Rovó P. Recent advances in solid-state relaxation dispersion techniques. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 108:101665. [PMID: 32574905 DOI: 10.1016/j.ssnmr.2020.101665] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
This review describes two rotating-frame (R1ρ) relaxation dispersion methods, namely the Bloch-McConnell Relaxation Dispersion and the Near-rotary Resonance Relaxation Dispersion, which enable the study of microsecond time-scale conformational fluctuations in the solid state using magic-angle-spinning nuclear magnetic resonance spectroscopy. The goal is to provide the reader with key ideas, experimental descriptions, and practical considerations associated with R1ρ measurements that are needed for analyzing relaxation dispersion and quantifying conformational exchange. While the focus is on protein motion, many presented concepts can be equally well adapted to study the microsecond time-scale dynamics of other bio- (e.g. lipids, polysaccharides, nucleic acids), organic (e.g. pharmaceutical compounds), or inorganic molecules (e.g., metal organic frameworks). This article summarizes the essential contributions made by recent theoretical and experimental solid-state NMR studies to our understanding of protein motion. Here we discuss recent advances in fast MAS applications that enable the observation and atomic level characterization of sparsely populated conformational states which are otherwise inaccessible for other experimental methods. Such high-energy states are often associated with protein functions such as molecular recognition, ligand binding, or enzymatic catalysis, as well as with disease-related properties such as misfolding and amyloid formation.
Collapse
Affiliation(s)
- Petra Rovó
- Department of Chemistry, Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany; Center for NanoScience (CeNS), Schellingstr. 4, 80799, Munich, Germany.
| |
Collapse
|
2
|
Yang X, Williams JK, Yan R, Mouradian MM, Baum J. Increased Dynamics of α-Synuclein Fibrils by β-Synuclein Leads to Reduced Seeding and Cytotoxicity. Sci Rep 2019; 9:17579. [PMID: 31772376 PMCID: PMC6879756 DOI: 10.1038/s41598-019-54063-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Alpha-synuclein (αS) fibrils are toxic to cells and contribute to the pathogenesis and progression of Parkinson's disease and other synucleinopathies. β-Synuclein (βS), which co-localizes with αS, has been shown to provide a neuroprotective effect, but the molecular mechanism by which this occurs remains elusive. Here we show that αS fibrils formed in the presence of βS are less cytotoxic, exhibit reduced cell seeding capacity and are more resistant to fibril shedding compared to αS fibrils alone. Using solid-state NMR, we found that the overall structure of the core of αS fibrils when co-incubated with βS is minimally perturbed, however, the dynamics of Lys and Thr residues, located primarily in the imperfect KTKEGV repeats of the αS N-terminus, are increased. Our results suggest that amyloid fibril dynamics may play a key role in modulating toxicity and seeding. Thus, enhancing the dynamics of amyloid fibrils may be a strategy for future therapeutic targeting of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xue Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Jonathan K Williams
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Run Yan
- RWJMS Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, and Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - M Maral Mouradian
- RWJMS Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, and Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
3
|
Rovó P, Linser R. Microsecond Timescale Protein Dynamics: a Combined Solid-State NMR Approach. Chemphyschem 2017; 19:34-39. [PMID: 29149466 DOI: 10.1002/cphc.201701238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 12/11/2022]
Abstract
Conformational exchange in proteins is a major determinant in protein functionality. In particular, the μs-ms timescale is associated with enzymatic activity and interactions between biological molecules. We show here that a comprehensive data set of R1ρ relaxation dispersion profiles employing multiple effective fields and tilt angles can be easily obtained in perdeuterated, partly back-exchanged proteins at fast magic-angle spinning and further complemented with chemical-exchange saturation transfer NMR experiments. The approach exploits complementary sources of information and enables the extraction of multiple exchange parameters for μs-ms timescale conformational exchange, most notably including the sign of the chemical shift differences between the ground and excited states.
Collapse
Affiliation(s)
- Petra Rovó
- Department Chemie und Pharmazie, Ludwig-Maximailians-Universität München, 81377, München, Germany.,Center for Integrated Protein Science (CiPSM), Butenandtstraße 5, 81377, München, Germany
| | - Rasmus Linser
- Department Chemie und Pharmazie, Ludwig-Maximailians-Universität München, 81377, München, Germany.,Center for Integrated Protein Science (CiPSM), Butenandtstraße 5, 81377, München, Germany
| |
Collapse
|
4
|
Dhital B, Gul-E-Noor F, Downing KT, Hirsch S, Boutis GS. Pregnancy-Induced Dynamical and Structural Changes of Reproductive Tract Collagen. Biophys J 2017; 111:57-68. [PMID: 27410734 DOI: 10.1016/j.bpj.2016.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 11/16/2022] Open
Abstract
The tissues and organs of the female reproductive tract and pelvic floor undergo significant remodeling and alterations to allow for fetal growth and birth. In this work, we report on a study of the alterations of murine reproductive tract collagen resulting from pregnancy and parturition by spectrophotometry, histology, and (13)C, (2)H nuclear magnetic resonance (NMR). Four different cohorts of rats were investigated that included virgin, multiparous, two- and fourteen-day postpartum primiparous rats. (13)C CPMAS NMR revealed small chemical shift differences across the cohorts. The measured H-C internuclear correlation times indicated differences in dynamics of some motifs. However, the dynamics of the major amino acids, e.g., Gly, remained unaltered with respect to parity. (2)H NMR relaxation measurements revealed an additional water reservoir in the postpartum and multiparous cohorts pointing to redistribution of water due to pregnancy and/or parturition. Spectrophotometric measurements indicated that the collagen content in virgin rats was highest. Histological analysis of the upper vaginal wall indicated a signature of collagen fiber dissociation with smooth muscle and a change in the density of collagen fibers in multiparous rats.
Collapse
Affiliation(s)
- Basant Dhital
- Department of Physics, The Graduate Center, The City University of New York, New York, New York
| | - Farhana Gul-E-Noor
- Department of Physics, Brooklyn College, The City University of New York, Brooklyn, New York
| | - Keith T Downing
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Shari Hirsch
- Department of Physics, Brooklyn College, The City University of New York, Brooklyn, New York
| | - Gregory S Boutis
- Department of Physics, The Graduate Center, The City University of New York, New York, New York; Department of Physics, Brooklyn College, The City University of New York, Brooklyn, New York.
| |
Collapse
|
5
|
Lamley JM, Öster C, Stevens RA, Lewandowski JR. Intermolecular Interactions and Protein Dynamics by Solid-State NMR Spectroscopy. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 127:15594-15598. [PMID: 27478273 PMCID: PMC4954056 DOI: 10.1002/ange.201509168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 11/21/2022]
Abstract
Understanding the dynamics of interacting proteins is a crucial step toward describing many biophysical processes. Here we investigate the backbone dynamics for protein GB1 in two different assemblies: crystalline GB1 and the precipitated GB1-antibody complex with a molecular weight of more than 300 kDa. We perform these measurements on samples containing as little as eight nanomoles of GB1. From measurements of site-specific 15N relaxation rates including relaxation dispersion we obtain snapshots of dynamics spanning nine orders of magnitude in terms of the time scale. A comparison of measurements for GB1 in either environment reveals that while many of the dynamic features of the protein are conserved between them (in particular for the fast picosecond-nanosecond motions), much greater differences occur for slow motions with motions in the >500 ns range being more prevalent in the complex. The data suggest that GB1 can potentially undergo a small-amplitude overall anisotropic motion sampling the interaction interface in the complex.
Collapse
Affiliation(s)
- Jonathan M. Lamley
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (UK)
| | - Carl Öster
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (UK)
| | - Rebecca A. Stevens
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (UK)
| | - Józef R. Lewandowski
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (UK)
| |
Collapse
|
6
|
Lamley JM, Öster C, Stevens RA, Lewandowski JR. Intermolecular Interactions and Protein Dynamics by Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2015; 54:15374-8. [PMID: 26537742 PMCID: PMC4736466 DOI: 10.1002/anie.201509168] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 11/23/2022]
Abstract
Understanding the dynamics of interacting proteins is a crucial step toward describing many biophysical processes. Here we investigate the backbone dynamics for protein GB1 in two different assemblies: crystalline GB1 and the precipitated GB1-antibody complex with a molecular weight of more than 300 kDa. We perform these measurements on samples containing as little as eight nanomoles of GB1. From measurements of site-specific (15) N relaxation rates including relaxation dispersion we obtain snapshots of dynamics spanning nine orders of magnitude in terms of the time scale. A comparison of measurements for GB1 in either environment reveals that while many of the dynamic features of the protein are conserved between them (in particular for the fast picosecond-nanosecond motions), much greater differences occur for slow motions with motions in the >500 ns range being more prevalent in the complex. The data suggest that GB1 can potentially undergo a small-amplitude overall anisotropic motion sampling the interaction interface in the complex.
Collapse
Affiliation(s)
- Jonathan M Lamley
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (UK)
| | - Carl Öster
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (UK)
| | - Rebecca A Stevens
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (UK)
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (UK).
| |
Collapse
|
7
|
Jurga K, Woźniak-Braszak A, Baranowski M. Methodology for solid state NMR off-resonance study of molecular dynamics in heteronuclear systems. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 71:73-79. [PMID: 26272112 DOI: 10.1016/j.ssnmr.2015.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Methodology for the study of dynamics in heteronuclear systems in the laboratory frame was described in the previous paper [1]. Now the methodology for the study of molecular dynamics in the solid state heteronuclear systems in the rotating frame is presented. The solid state NMR off-resonance experiments were carried out on a homemade pulse spectrometer operating at the frequency of 30.2 MHz for protons. This spectrometer includes a specially designed probe which contains two independently tuned and electrically isolated coils installed in the coaxial position on the dewar. A unique probe design allows working at three slightly differing frequencies off and on resonance for protons and at the frequency of 28.411 MHz for fluorine nuclei with complete absence of their electrical interference. The probe allows simultaneously creating rf magnetic fields at off-resonance frequencies within the range of 30.2-30.6 MHz and at the frequency of 28.411 MHz. Presented heteronuclear cross-relaxation off-resonance experiments in the rotating frame provide information about molecular dynamics.
Collapse
Affiliation(s)
- Kazimierz Jurga
- High Pressure Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Aneta Woźniak-Braszak
- High Pressure Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland.
| | - Mikołaj Baranowski
- High Pressure Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| |
Collapse
|
8
|
Frantsuzov I, Ernst M, Brown SP, Hodgkinson P. Simulating spin dynamics in organic solids under heteronuclear decoupling. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 70:28-37. [PMID: 26073419 DOI: 10.1016/j.ssnmr.2015.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 06/04/2023]
Abstract
Although considerable progress has been made in simulating the dynamics of multiple coupled nuclear spins, predicting the evolution of nuclear magnetisation in the presence of radio-frequency decoupling remains challenging. We use exact numerical simulations of the spin dynamics under simultaneous magic-angle spinning and RF decoupling to determine the extent to which numerical simulations can be used to predict the experimental performance of heteronuclear decoupling for the CW, TPPM and XiX sequences, using the methylene group of glycine as a model system. The signal decay times are shown to be strongly dependent on the largest spin order simulated. Unexpectedly large differences are observed between the dynamics with and without spin echoes. Qualitative trends are well reproduced by modestly sized spin system simulations, and the effects of finite spin-system size can, in favourable cases, be mitigated by extrapolation. Quantitative prediction of the behaviour in complex parameter spaces is found, however, to be very challenging, suggesting that there are significant limits to the role of numerical simulations in RF decoupling problems, even when specialist techniques, such as state-space restriction, are used.
Collapse
Affiliation(s)
- Ilya Frantsuzov
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Matthias Ernst
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Paul Hodgkinson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
9
|
Ivanir-Dabora H, Nimerovsky E, Madhu PK, Goldbourt A. Site-Resolved Backbone and Side-Chain Intermediate Dynamics in a Carbohydrate-Binding Module Protein Studied by Magic-Angle Spinning NMR Spectroscopy. Chemistry 2015; 21:10778-85. [DOI: 10.1002/chem.201500856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 12/12/2022]
|
10
|
Ferreira TM, Ollila OHS, Pigliapochi R, Dabkowska AP, Topgaard D. Model-free estimation of the effective correlation time for C-H bond reorientation in amphiphilic bilayers: (1)H-(13)C solid-state NMR and MD simulations. J Chem Phys 2015; 142:044905. [PMID: 25638007 DOI: 10.1063/1.4906274] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular dynamics (MD) simulations give atomically detailed information on structure and dynamics in amphiphilic bilayer systems on timescales up to about 1 μs. The reorientational dynamics of the C-H bonds is conventionally verified by measurements of (13)C or (2)H nuclear magnetic resonance (NMR) longitudinal relaxation rates R1, which are more sensitive to motional processes with correlation times close to the inverse Larmor frequency, typically around 1-10 ns on standard NMR instrumentation, and are thus less sensitive to the 10-1000 ns timescale motion that can be observed in the MD simulations. We propose an experimental procedure for atomically resolved model-free estimation of the C-H bond effective reorientational correlation time τe, which includes contributions from the entire range of all-atom MD timescales and that can be calculated directly from the MD trajectories. The approach is based on measurements of (13)C R1 and R1ρ relaxation rates, as well as (1)H-(13)C dipolar couplings, and is applicable to anisotropic liquid crystalline lipid or surfactant systems using a conventional solid-state NMR spectrometer and samples with natural isotopic composition. The procedure is demonstrated on a fully hydrated lamellar phase of 1-palmitoyl-2-oleoyl-phosphatidylcholine, yielding values of τe from 0.1 ns for the methyl groups in the choline moiety and at the end of the acyl chains to 3 ns for the g1 methylene group of the glycerol backbone. MD simulations performed with a widely used united-atom force-field reproduce the τe-profile of the major part of the acyl chains but underestimate the dynamics of the glycerol backbone and adjacent molecular segments. The measurement of experimental τe-profiles can be used to study subtle effects on C-H bond reorientational motions in anisotropic liquid crystals, as well as to validate the C-H bond reorientation dynamics predicted in MD simulations of amphiphilic bilayers such as lipid membranes.
Collapse
Affiliation(s)
- Tiago Mendes Ferreira
- Department Chemie, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - O H Samuli Ollila
- Physical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | - Daniel Topgaard
- Physical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
11
|
Krushelnitsky A, Zinkevich T, Reif B, Saalwächter K. Slow motions in microcrystalline proteins as observed by MAS-dependent 15N rotating-frame NMR relaxation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 248:8-12. [PMID: 25282442 DOI: 10.1016/j.jmr.2014.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 05/14/2023]
Abstract
(15)N NMR relaxation rate R1ρ measurements reveal that a substantial fraction of residues in the microcrystalline chicken alpha-spectrin SH3 domain protein undergoes dynamics in the μs-ms timescale range. On the basis of a comparison of 2D site-resolved with 1D integrated (15)N spectral intensities, we demonstrate that the significant fraction of broad signals in the 2D spectrum exhibits the most pronounced slow mobility. We show that (15)N R1ρ's in proton-diluted protein samples are practically free from the coherent spin-spin contribution even at low MAS rates, and thus can be analysed quantitatively. Moderate MAS rates (10-30 kHz) can be more advantageous in comparison with the rates >50-60 kHz when slow dynamics are to be identified and quantified by means of R1ρ experiments.
Collapse
Affiliation(s)
- Alexey Krushelnitsky
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str.7, D-06120 Halle, Germany.
| | - Tatiana Zinkevich
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str.7, D-06120 Halle, Germany
| | - Bernd Reif
- Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Kay Saalwächter
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str.7, D-06120 Halle, Germany
| |
Collapse
|
12
|
Zinkevich T, Chevelkov V, Reif B, Saalwächter K, Krushelnitsky A. Internal protein dynamics on ps to μs timescales as studied by multi-frequency (15)N solid-state NMR relaxation. JOURNAL OF BIOMOLECULAR NMR 2013; 57:219-35. [PMID: 24048638 DOI: 10.1007/s10858-013-9782-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/06/2013] [Indexed: 05/14/2023]
Abstract
A comprehensive analysis of the dynamics of the SH3 domain of chicken alpha-spectrin is presented, based upon (15)N T1 and on- and off-resonance T1ρ relaxation times obtained on deuterated samples with a partial back-exchange of labile protons under a variety of the experimental conditions, taking explicitly into account the dipolar order parameters calculated from (15)N-(1)H dipole-dipole couplings. It is demonstrated that such a multi-frequency approach enables access to motional correlation times spanning about 6 orders of magnitude. We asses the validity of different motional models based upon orientation autocorrelation functions with a different number of motional components. We find that for many residues a "two components" model is not sufficient for a good description of the data and more complicated fitting models must be considered. We show that slow motions with correlation times on the order of 1-10 μs can be determined reliably in spite of rather low apparent amplitudes (below 1 %), and demonstrate that the distribution of the protein backbone mobility along the time scale axis is pronouncedly non-uniform and non-monotonic: two domains of fast (τ < 10(-10) s) and intermediate (10(-9) s < τ < 10(-7) s) motions are separated by a gap of one order of magnitude in time with almost no motions. For slower motions (τ > 10(-6) s) we observe a sharp ~1 order of magnitude decrease of the apparent motional amplitudes. Such a distribution obviously reflects different nature of backbone motions on different time scales, where the slow end may be attributed to weakly populated "excited states." Surprisingly, our data reveal no clearly evident correlations between secondary structure of the protein and motional parameters. We also could not notice any unambiguous correlations between motions in different time scales along the protein backbone emphasizing the importance of the inter-residue interactions and the cooperative nature of protein dynamics.
Collapse
Affiliation(s)
- Tatiana Zinkevich
- NMRGroup, Faculty of Natural Sciences II, Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, Saale, 06120, Halle, Germany
| | | | | | | | | |
Collapse
|
13
|
Krushelnitsky A, Reichert D, Saalwächter K. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds. Acc Chem Res 2013; 46:2028-36. [PMID: 23875699 DOI: 10.1021/ar300292p] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy has matured to the point that it is possible to determine the structure of proteins in immobilized states, such as within microcrystals or embedded in membranes. Currently, researchers continue to develop and apply NMR techniques that can deliver site-resolved dynamic information toward the goal of understanding protein function at the atomic scale. As a widely-used, natural approach, researchers have mostly measured longitudinal (T1) relaxation times, which, like in solution-state NMR, are sensitive to picosecond and nanosecond motions, and motionally averaged dipolar couplings, which provide an integral amplitude of all motions with a correlation time of up to a few microseconds. While overall Brownian tumbling in solution mostly precludes access to slower internal dynamics, dedicated solid-state NMR approaches are now emerging as powerful new options. In this Account, we give an overview of the classes of solid-state NMR experiments that have expanded the accessible range correlation times from microseconds to many milliseconds. The measurement of relaxation times in the rotating frame, T1ρ, now allows researchers to access the microsecond range. Using our recent theoretical work, researchers can now quantitatively analyze this data to distinguish relaxation due to chemical-shift anisotropy (CSA) from that due to dipole-dipole couplings. Off-resonance irradiation allows researchers to extend the frequency range of such experiments. We have built multidimensional analogues of T2-type or line shape experiments using variants of the dipolar-chemical shift correlation (DIPSHIFT) experiment that are particularly suited to extract intermediate time scale motions in the millisecond range. In addition, we have continuously improved variants of exchange experiments, mostly relying on the recoupling of anisotropic interactions to address ultraslow motions in the ms to s ranges. The NH dipolar coupling offers a useful probe of local dynamics, especially with proton-depleted samples that suppress the adverse effect of strong proton dipolar couplings. We demonstrate how these techniques have provided a concise picture of the internal dynamics in a popular model system, the SH3 domain of α-spectrin. T1-based methods have shown that large-amplitude bond orientation fluctuations in the picosecond range and slower 10 ns low-amplitude motions coexist in these structures. When we include T1ρ data, we observe that many residues undergo low amplitude motions slower than 100 ns. On the millisecond to second scale, mostly localized but potentially cooperative motions occur. Comparing different exchange experiments, we found that terminal NH2 groups in side chains can even undergo a combination of ultraslow large-angle two-site jumps accompanied by small-angle fluctuations that occur 10 times more quickly.
Collapse
Affiliation(s)
- Alexey Krushelnitsky
- Institut für Physik − NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle (Saale), Germany
| | - Detlef Reichert
- Institut für Physik − NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle (Saale), Germany
| | - Kay Saalwächter
- Institut für Physik − NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle (Saale), Germany
| |
Collapse
|
14
|
Quinn CM, McDermott AE. Quantifying conformational dynamics using solid-state R₁ρ experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 222:1-7. [PMID: 22820004 PMCID: PMC3572234 DOI: 10.1016/j.jmr.2012.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/14/2012] [Accepted: 05/20/2012] [Indexed: 05/14/2023]
Abstract
We demonstrate the determination of quantitative rates of molecular reorientation in the solid state with rotating frame (R(1ρ)) relaxation measurements. Reorientation of the carbon chemical shift anisotropy (CSA) tensor was used to probe site-specific conformational exchange in a model system, d(6)-dimethyl sulfone (d(6)-DMS). The CSA as a probe of exchange has the advantage that it can still be utilized when there is no dipolar mechanism (i.e. no protons attached to the site of interest). Other works have presented R(1ρ) measurements as a general indicator of dynamics, but this study extracts quantitative rates of molecular reorientation from the R(1ρ) values. Some challenges of this technique include precise knowledge of sample temperature and determining the R(2)(0) contribution to the observed relaxation rate from interactions other than molecular reorientation, such as residual dipolar couplings or fast timescale dynamics; determination of this term is necessary in order to quantify the exchange rate due to covariance between the 2 terms. Low-temperature experiments measured an R(2)(0) value of 1.8±0.2s(-1) Allowing for an additional relaxation term (R(2)(0)), which was modeled as both temperature-dependent and temperature-independent, rates of molecular reorientation were extracted from field strength-dependent R(1ρ) measurements at four different temperatures and the activation energy was determined from these exchange rates. The activation energies determined were 74.7±4.3kJ/mol and 71.7±2.9kJ/mol for the temperature-independent and temperature-dependent R(2)(0) models respectively, in excellent agreement with literature values. The results of this study suggest important methodological considerations for the application of the method to more complicated systems such as proteins, such as the importance of deuterating samples and the need to make assumptions regarding the R(2)(0) contribution to relaxation.
Collapse
|
15
|
Gorelik TE, van de Streek J, Kilbinger AFM, Brunklaus G, Kolb U. Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data. ACTA CRYSTALLOGRAPHICA SECTION B: STRUCTURAL SCIENCE 2012; 68:171-81. [PMID: 22436916 DOI: 10.1107/s0108768112003138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/25/2012] [Indexed: 11/10/2022]
Abstract
Ab-initio crystal structure analysis of organic materials from electron diffraction data is presented. The data were collected using the automated electron diffraction tomography (ADT) technique. The structure solution and refinement route is first validated on the basis of the known crystal structure of tri-p-benzamide. The same procedure is then applied to solve the previously unknown crystal structure of tetra-p-benzamide. In the crystal structure of tetra-p-benzamide, an unusual hydrogen-bonding scheme is realised; the hydrogen-bonding scheme is, however, in perfect agreement with solid-state NMR data.
Collapse
Affiliation(s)
- Tatiana E Gorelik
- Institute for Physical Chemistry, Johannes Gutenberg University Mainz, Jakob Welder Weg 11, 55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
16
|
Hackel C, Zinkevich T, Belton P, Achilles A, Reichert D, Krushelnitsky A. The trehalose coating effect on the internal protein dynamics. Phys Chem Chem Phys 2012; 14:2727-34. [DOI: 10.1039/c2cp23098d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Kurbanov R, Zinkevich T, Krushelnitsky A. The nuclear magnetic resonance relaxation data analysis in solids: General R1/R1ρ equations and the model-free approach. J Chem Phys 2011; 135:184104. [DOI: 10.1063/1.3658383] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Krushelnitsky A, Zinkevich T, Reichert D, Chevelkov V, Reif B. Microsecond Time Scale Mobility in a Solid Protein As Studied by the 15N R1ρ Site-Specific NMR Relaxation Rates. J Am Chem Soc 2010; 132:11850-3. [DOI: 10.1021/ja103582n] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexey Krushelnitsky
- Kazan Institute of Biochemistry and Biophysics, Kazan, Russia, Kazan Physical Technical Institute, Kazan, Russia, Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Tatiana Zinkevich
- Kazan Institute of Biochemistry and Biophysics, Kazan, Russia, Kazan Physical Technical Institute, Kazan, Russia, Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Detlef Reichert
- Kazan Institute of Biochemistry and Biophysics, Kazan, Russia, Kazan Physical Technical Institute, Kazan, Russia, Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Veniamin Chevelkov
- Kazan Institute of Biochemistry and Biophysics, Kazan, Russia, Kazan Physical Technical Institute, Kazan, Russia, Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Bernd Reif
- Kazan Institute of Biochemistry and Biophysics, Kazan, Russia, Kazan Physical Technical Institute, Kazan, Russia, Institut für Physik - NMR, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
19
|
Gorelik T, Matveeva G, Kolb U, Schleuß T, Kilbinger AFM, van de Streek J, Bohle A, Brunklaus G. H-bonding schemes of di- and tri-p-benzamides assessed by a combination of electron diffraction, X-ray powder diffraction and solid-state NMR. CrystEngComm 2010. [DOI: 10.1039/b920569a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Krushelnitsky A, Zinkevich T, Mukhametshina N, Tarasova N, Gogolev Y, Gnezdilov O, Fedotov V, Belton P, Reichert D. 13C and 15N NMR study of the hydration response of T4 lysozyme and alphaB-crystallin internal dynamics. J Phys Chem B 2009; 113:10022-34. [PMID: 19603846 DOI: 10.1021/jp900337x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The response to hydration of the internal protein dynamics was studied by the means of solid state NMR relaxation and magic angle spinning exchange techniques. Two proteins, lysozyme from bacteriophage T4 and human alphaB-crystallin were used as exemplars. The relaxation rates R1 and R1rho of 13C and 15N nuclei were measured as a function of a hydration level of the proteins in the range 0-0.6 g of water/g of protein. Both proteins were totally 15N-enriched with natural 13C abundance. The relaxation rates were measured for different spectral bands (peaks) that enabled the characterization of the dynamics separately for the backbone, side chains, and CH3 and NH3+ groups. The data obtained allowed a comparative analysis of the hydration response of the protein dynamics in different frequency ranges and different sites in the protein for two different proteins and two magnetic nuclei. The most important result is a demonstration of a qualitatively different response to hydration of the internal dynamics in different frequency ranges. The amplitude of the fast (nanosecond time scale) motion gradually increases with increasing hydration, whereas that of the slow (microsecond time scale) motion increases only until the hydration level 0.2-0.3 g of water/g of protein and then shows almost no hydration dependence. The reason for such a difference is discussed in terms of the different physical natures of these two dynamic processes. Backbone and side chain nuclei show the same features of the response of dynamics with hydration despite the fact that the backbone motional amplitudes are much smaller than those of side chains. Although T4 lysozyme and alphaB-crystallin possess rather different structural and biochemical properties, both proteins show qualitatively very similar hydration responses. In addition to the internal motions, exchange NMR data enabled the identification of one more type of motion in the millisecond to second time scale that appears only at high hydration levels. This motion was attributed to the restricted librations of the protein as a whole.
Collapse
Affiliation(s)
- A Krushelnitsky
- Kazan Institute of Biochemistry and Biophysics, Kazan, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Quinn CM, McDermott AE. Monitoring conformational dynamics with solid-state R 1rho experiments. JOURNAL OF BIOMOLECULAR NMR 2009; 45:5-8. [PMID: 19636799 DOI: 10.1007/s10858-009-9346-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 06/30/2009] [Indexed: 05/14/2023]
Abstract
A new application of solid-state rotating frame (R(1rho)) relaxation experiments to observe conformational dynamics is presented. Studies on a model compound, dimethyl sulfone (DMS), show that R(1rho) relaxation due to reorientation of a chemical shift anisotropy (CSA) tensor undergoing chemical exchange can be used to monitor slow-to-intermediate timescale conformational exchange processes. Control experiments used d ( 6 ) -DMS and alanine to confirm that the technique is monitoring reorientation of the CSA tensor rather than dipolar interactions or methyl group rotation. The application of this method to proteins could represent a new site-specific probe of conformational dynamics.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | | |
Collapse
|
22
|
Fernando Cobo M, Maliňáková K, Reichert D, Saalwächter K, Ribeiro deAzevedo E. Intermediate motions and dipolar couplings as studied by Lee–Goldburg cross-polarization NMR: Hartmann–Hahn matching profiles. Phys Chem Chem Phys 2009; 11:7036-47. [DOI: 10.1039/b907674c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Agarwal V, Xue Y, Reif B, Skrynnikov NR. Protein Side-Chain Dynamics As Observed by Solution- and Solid-State NMR Spectroscopy: A Similarity Revealed. J Am Chem Soc 2008; 130:16611-21. [PMID: 19049457 DOI: 10.1021/ja804275p] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vipin Agarwal
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany, and Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| | - Yi Xue
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany, and Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| | - Bernd Reif
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany, and Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| | - Nikolai R. Skrynnikov
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany, and Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084
| |
Collapse
|
24
|
Kaflak A, Kolodziejski W. Phosphorus-31 spin-lattice NMR relaxation in bone apatite and its mineral standards. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2007; 31:174-83. [PMID: 17621456 DOI: 10.1016/j.ssnmr.2007.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 05/13/2023]
Abstract
Phosphorus-31 spin-lattice relaxation, both in the laboratory (B(0)=4.7 T) and rotating frame (B(1)=2.2 mT), was studied in the following samples: mineral of whole human bone (samples B1-B6), apatite prepared from bone (BHA), natural brushite (BRU), synthetic hydroxyapatite hydrated (HAh) and calcined (HAc), and synthetic carbonatoapatite of type B (CHA-B) with 9 wt% of CO(3)(2-). The T(1)(P) relaxation time was determined directly using the saturation recovery technique, while the T(1 rho)(P) relaxation time was measured via (1)H-->(31)P CP by incrementing the (31)P spin-lock. In order to avoid an effect of magic-angle spinning (MAS) on CP and relaxation, the experiments were carried out on static samples. The (31)P spin-lattice relaxation was discussed for trabecular and cortical bone tissue from adult subjects in comparison to the synthetic mineral standards. None of the reference materials has matched accurately the relaxation behaviour of the bone mineral. The most striking differences between the examined substances were observed for T(1)(P), which for human bone was sample dependent and appeared in the range 55-100 s, while for HAh, HAc, and CHA-B was 7.2, 10.0, and 25.8 s, respectively. Possible reasons of so large relaxation diversity were discussed. It has been suggested that T(1)(P) of apatites is to some extent dependent on the concentration of the structural hydroxyl groups, and this in turn is controlled by the material crystallinity. It was also found that T(1)(P) decreased on hydration by ca. 30%. For T(1rho)(P), both its magnitude and dependence on the CP contact time gave useful structural information. The dehydrated samples (HAc and BHA) had long T(1 rho)(P) over 250 ms. Those, which contained water, either structural (BRU) or adsorbed on the crystal surface (HAh, CHA-B, and B1-B6), had shorter T(1 rho)(P) below 120 ms. It was concluded that the effect of water on T(1 rho)(P) is much more pronounced than on T(1)(P). The interpretation has involved P-OH groups and adsorbed water, which cover the apatite crystal surface.
Collapse
Affiliation(s)
- Agnieszka Kaflak
- Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul Banacha 1, Warszawa, Poland
| | | |
Collapse
|
25
|
Krushelnitsky A, Gogolev Y, Golbik R, Dahlquist F, Reichert D. Comparison of the internal dynamics of globular proteins in the microcrystalline and rehydrated lyophilized states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1639-45. [PMID: 17027351 DOI: 10.1016/j.bbapap.2006.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 08/28/2006] [Accepted: 08/31/2006] [Indexed: 11/26/2022]
Abstract
Natural abundance solid-state 13C-NMR spin-lattice relaxation experiments in the laboratory (T1) and off-resonance rotating (T(1rho)) frames were applied for qualitative comparison of the internal molecular dynamics of barstar, hen egg white lysozyme and bacteriophage T4 lysozyme in both the microcrystalline and the rehydrated (water content is 50% of the protein mass) lyophilized states. The microcrystalline state of proteins provides a better spectral resolution; however, less is known about the local structure and dynamics in the different states. We found by visual comparison of both T1 and T(1rho) relaxation decays of various resonance bands of the CPMAS spectra that within the ns-mus range of correlation times there is no appreciable difference in the internal dynamics between rehydrated lyophilized and crystalline states for all three proteins tested. This suggests that the internal conformational dynamics depends weakly if at all on inter-protein interactions in the solid state. Hence, physical properties of globular proteins in a fully hydrated solid state seem to be similar to those in solution. This result at least partly removes concerns about biological relevance of studies of globular proteins in the solid state.
Collapse
|
26
|
Potrzebowski MJ, Bujacz GD, Bujacz A, Olejniczak S, Napora P, Heliński J, Ciesielski W, Gajda J. Study of molecular dynamics and the solid state phase transition mechanism for unsymmetrical thiopyrophosphate using X-ray diffraction, DFT calculations and NMR spectroscopy. J Phys Chem B 2006; 110:761-71. [PMID: 16471600 DOI: 10.1021/jp0547459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differential scanning calorimetry (DSC) and low-temperature X-ray diffraction studies showed that 2-thio-(5,5-dimethyl-1,3,2-dioxaphosphorinanyl)2'-oxo-dineopentyl-thiophosphate (compound 1) undergoes reversible phase transition at 203 K related to the change of symmetry of the crystallographic unit. Solid state NMR spectroscopy was used to establish the dynamic processes of aliphatic groups and the phosphorus skeleton. 13C and 31P variable temperature NMR studies as well as T1 and T1rho measurements of relaxation times revealed the different mode of molecular motion for each neopentyl residue directly bonded to phosphorus. It is concluded that molecular dynamics of aliphatic groups causes different van der Waals interactions in the crystal lattice and is the driving force of phase transition for compound 1. Finally, we showed that very sharp phase transition temperature makes compound 1 an excellent candidate as a low-temperature NMR thermometer in the solid phase.
Collapse
Affiliation(s)
- Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Farès C, Qian J, Davis JH. Magic angle spinning and static oriented sample NMR studies of the relaxation in the rotating frame of membrane peptides. J Chem Phys 2005. [DOI: 10.1063/1.1899645] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Krushelnitsky A, Reichert D. Complex1H,13C-NMR relaxation and computer simulation study of side-chain dynamics in solid polylysine. Biopolymers 2005; 78:129-39. [PMID: 15770665 DOI: 10.1002/bip.20272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The side-chain dynamics of solid polylysine at various hydration levels was studied by means of proton spin-lattice relaxation times measurements in the laboratory and tilted (off-resonance) rotating frames at several temperatures as well as Monte Carlo computer simulations. These data were analyzed together with recently measured carbon relaxation data (A. Krushelnitsky, D. Faizullin, and D. Reichert, Biopolymers, 2004, Vol. 73, pp. 1-15). The analysis of the whole set of data performed within the frame of the model-free approach led us to a conclusion about three types of the side-chain motion. The first motion consists of low amplitude rotations of dihedral angles of polylysine side chains on the nanosecond timescale. The second motion is cis-trans conformational transitions of the side chains with correlation times in the microsecond range for dry polylysine. The third motion is a diffusion of dilating defects described in (W. Nusser, R. Kimmich, and F. Winter, Journal of Physical Chemistry, 1988, Vol. 92, pp. 6808-6814). This diffusion causes almost no reorientation of chemical bonds but leads to a sliding motion of side chains with respect to each other in the nanosecond timescale. This work evidently demonstrates the advantages of the simultaneous quantitative analysis of data obtained from different experiments within the frame of the same mathematical formalism, providing for the detailed description of the nature and geometry of the internal molecular dynamics.
Collapse
|
29
|
Krushelnitsky AG, Hempel G, Reichert D. Simultaneous processing of solid-state NMR relaxation and 1D-MAS exchange data: the backbone dynamics of free vs. binase-bound barstar. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1650:117-27. [PMID: 12922175 DOI: 10.1016/s1570-9639(03)00207-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two types of dynamic solid-state NMR experiments-relaxation and 1D-MAS exchange-were combined for the investigation of the backbone dynamics of a 15% randomly 15N-enriched protein barstar in both free and binase-bound states. The main novelty of this work is a simultaneous quantitative processing of the results of these two types of experiments that we call Simultaneous Relaxation and Exchange Data Analysis (SREDA) approach. It extends the well-known model-free approach such that it permits to discriminate between various motional models (jumps between different sites, wobbling in a cone, etc.). This objective cannot be achieved by analyzing the relaxation or exchange data separately. The SREDA approach was applied to probe a modification of the average backbone dynamics of barstar upon forming a complex with another protein binase. T(1) and off-resonance T(1rho) relaxation times of 15N backbone nuclei were measured at three temperatures between 0 and 45 degrees C, 1D-MAS exchange (CODEX) data were obtained at room temperature within the mixing time range from 0.3 to 200 ms. It has been found that the barstar backbone participates in two molecular processes with correlation times in the 10(-9)-10(-7) and 10(-3)-10(-2) s ranges. Forming the complex with binase results in a significant decrease of the amplitudes of both motions, suggesting that the complex is a more rigid and stable structure than free barstar.
Collapse
Affiliation(s)
- Alexey G Krushelnitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, P.O. Box 30, 420111, Russian Federation.
| | | | | |
Collapse
|
30
|
Krushelnitsky A, Faizullin D, Reichert D. Hydration dependence of backbone and side chain polylysine dynamics: A13C solid-state NMR and IR spectroscopy study. Biopolymers 2003; 73:1-15. [PMID: 14691935 DOI: 10.1002/bip.10540] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The molecular dynamics of solid poly-L-lysine has been studied by the following natural abundance (13)C-NMR relaxation methods: measurements of the relaxation times T(1) at two resonance frequencies, off-resonance T(1rho) at two spin-lock frequencies, and proton-decoupled T(1rho). Experiments were performed at different temperatures and hydration levels (up to 17% H(2)O by weight). The natural abundance (13)C-CPMAS spectrum of polylysine provides spectral resolution of all types of backbone and side chain carbons and thus, dynamic parameters could be determined separately for each of them. At the same time, the conformational properties of polylysine were investigated by Fourier transform infrared spectroscopy. The data obtained from the different NMR experiments were simultaneously analyzed using the correlation function formalism and model-free approach. The results indicate that in dry polylysine both backbone and side chains take part in two low amplitude motions with correlation times of the order of 10(-4) s and 10(-9) s. Upon hydration, the dynamic parameters of the backbone remain almost constant except for the amplitude of the slower process that increases moderately. The side chain dynamics reveals a much stronger hydration response: the amplitudes of both slow and fast motions increase significantly and the correlation time of the slow motion shortens by about five orders of magnitude, and at hydration levels of more than 10% H(2)O fast and slow side chain motions are experimentally indistinguishable. These changes in the molecular dynamics cannot be ascribed to any hydration-dependent conformational transitions of polylysine because IR spectra reveal almost no hydration dependence in either backbone or side chain absorption domains. The physical nature of the fast and slow motions, their correlation time distributions, and hydration dependence of microdynamic parameters are discussed.
Collapse
|