1
|
Rahman MJ, Haller SL, Stoian AMM, Li J, Brennan G, Rothenburg S. LINE-1 retrotransposons facilitate horizontal gene transfer into poxviruses. eLife 2022; 11:63327. [PMID: 36069678 PMCID: PMC9578709 DOI: 10.7554/elife.63327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
There is ample phylogenetic evidence that many critical virus functions, like immune evasion, evolved by the acquisition of genes from their hosts through horizontal gene transfer (HGT). However, the lack of an experimental system has prevented a mechanistic understanding of this process. We developed a model to elucidate the mechanisms of HGT into vaccinia virus, the prototypic poxvirus. All identified gene capture events showed signatures of long interspersed nuclear element-1 (LINE-1)-mediated retrotransposition, including spliced-out introns, polyadenylated tails, and target site duplications. In one case, the acquired gene integrated together with a polyadenylated host U2 small nuclear RNA. Integrations occurred across the genome, in some cases knocking out essential viral genes. These essential gene knockouts were rescued through a process of complementation by the parent virus followed by nonhomologous recombination during serial passaging to generate a single, replication-competent virus. This work links multiple evolutionary mechanisms into one adaptive cascade and identifies host retrotransposons as major drivers for virus evolution.
Collapse
Affiliation(s)
- M Julhasur Rahman
- Department of Medial Microbiology and Immunology, University of California, Davis, Davis, United States
| | - Sherry L Haller
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, United States
| | - Ana M M Stoian
- Department of Medial Microbiology and Immunology, University of California, Davis, Davis, United States
| | - Jie Li
- Genome Center, University of California, Davis, Davis, United States
| | - Greg Brennan
- Department of Medial Microbiology and Immunology, University of California, Davis, Davis, United States
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, United States
| |
Collapse
|
2
|
Genetic Confirmation that the H5 Protein Is Required for Vaccinia Virus DNA Replication. J Virol 2015; 89:6312-27. [PMID: 25855734 DOI: 10.1128/jvi.00445-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The duplication of the poxvirus double-stranded DNA genome occurs in cytoplasmic membrane-delimited factories. This physical autonomy from the host nucleus suggests that poxvirus genomes encode the full repertoire of proteins committed for genome replication. Biochemical and genetic analyses have confirmed that six viral proteins are required for efficient DNA synthesis; indirect evidence has suggested that the multifunctional H5 protein may also have a role. Here we show that H5 localizes to replication factories, as visualized by immunofluorescence and immunoelectron microscopy, and can be retrieved upon purification of the viral polymerase holoenzyme complex. The temperature-sensitive (ts) mutant Dts57, which was generated by chemical mutagenesis and has a lesion in H5, exhibits defects in DNA replication and morphogenesis under nonpermissive conditions, depending upon the experimental protocol. The H5 variant encoded by the genome of this mutant is ts for function but not stability. For a more precise investigation of how H5 contributes to DNA synthesis, we placed the ts57 H5 allele in an otherwise wild-type viral background and also performed small interfering RNA-mediated depletion of H5. Finally, we generated a complementing cell line, CV-1-H5, which allowed us to generate a viral recombinant in which the H5 open reading frame was deleted and replaced with mCherry (vΔH5). Analysis of vΔH5 allowed us to demonstrate conclusively that viral DNA replication is abrogated in the absence of H5. The loss of H5 does not compromise the accumulation of other early viral replication proteins or the uncoating of the virion core, suggesting that H5 plays a direct and essential role in facilitating DNA synthesis. IMPORTANCE Variola virus, the causative agent of smallpox, is the most notorious member of the Poxviridae family. Poxviruses are unique among DNA viruses that infect mammalian cells, in that their replication is restricted to the cytoplasm of the cell. This physical autonomy from the nucleus has both cell biological and genetic ramifications. Poxviruses must establish cytoplasmic niches that support replication, and the genomes must encode the repertoire of proteins necessary for genome synthesis. Here we focus on H5, a multifunctional and abundant viral protein. We confirm that H5 associates with the DNA polymerase holoenzyme and localizes to the sites of DNA synthesis. By generating an H5-expressing cell line, we were able to isolate a deletion virus that lacks the H5 gene and show definitively that genome synthesis does not occur in the absence of H5. These data support the hypothesis that H5 is a crucial participant in cytoplasmic poxvirus genome replication.
Collapse
|
3
|
Molecular genetic and biochemical characterization of the vaccinia virus I3 protein, the replicative single-stranded DNA binding protein. J Virol 2012; 86:6197-209. [PMID: 22438556 DOI: 10.1128/jvi.00206-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus, the prototypic poxvirus, efficiently and faithfully replicates its ∼200-kb DNA genome within the cytoplasm of infected cells. This intracellular localization dictates that vaccinia virus encodes most, if not all, of its own DNA replication machinery. Included in the repertoire of viral replication proteins is the I3 protein, which binds to single-stranded DNA (ssDNA) with great specificity and stability and has been presumed to be the replicative ssDNA binding protein (SSB). We substantiate here that I3 colocalizes with bromodeoxyuridine (BrdU)-labeled nascent viral genomes and that these genomes accumulate in cytoplasmic factories that are delimited by membranes derived from the endoplasmic reticulum. Moreover, we report on a structure/function analysis of I3 involving the isolation and characterization of 10 clustered charge-to-alanine mutants. These mutants were analyzed for their biochemical properties (self-interaction and DNA binding) and biological competence. Three of the mutant proteins, encoded by the I3 alleles I3-4, -5, and -7, were deficient in self-interaction and unable to support virus viability, strongly suggesting that the multimerization of I3 is biologically significant. Mutant I3-5 was also deficient in DNA binding. Additionally, we demonstrate that small interfering RNA (siRNA)-mediated depletion of I3 causes a significant decrease in the accumulation of progeny genomes and that this reduction diminishes the yield of infectious virus.
Collapse
|
4
|
Boyd O, Strahl AL, Rodeffer C, Condit RC, Moussatche N. Temperature-sensitive mutant in the vaccinia virus E6 protein produce virions that are transcriptionally inactive. Virology 2010; 399:221-30. [PMID: 20116822 PMCID: PMC2830351 DOI: 10.1016/j.virol.2010.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 11/18/2022]
Abstract
The vaccinia virus E6R gene encodes a late protein that is packaged into virion cores. A temperature-sensitive mutant was used to study the role of this protein in viral replicative cycle. Cts52 has a P226L missense mutation in the E6R gene, shows a two-log reduction in plaque formation, but displays normal patterns of gene expression, late protein processing and DNA replication during infection. Mutant virions produced at 40 degrees C were similar in their morphology to wt virions grown at 40 degrees C. The particle to infectivity ratio was 50 times higher in purified Cts52 grown at 40 degrees C when compared to the mutant grown at permissive temperature. In vitro characterization of Cts-52 particles grown at 40 degrees C revealed no differences in protein composition or in DNA content and the mutant virions could bind and enter cells. However, core particles prepared from Cts52 grown at 40 degrees C failed to transcribe in vitro. Our results show that E6 in the virion has either a direct or an indirect role in viral transcription.
Collapse
Affiliation(s)
- Olga Boyd
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Audra L. Strahl
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Carson Rodeffer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Richard C. Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Kato SEM, Moussatche N, D'Costa SM, Bainbridge TW, Prins C, Strahl AL, Shatzer AN, Brinker AJ, Kay NE, Condit RC. Marker rescue mapping of the combined Condit/Dales collection of temperature-sensitive vaccinia virus mutants. Virology 2008; 375:213-22. [PMID: 18314155 DOI: 10.1016/j.virol.2008.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 12/22/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
Complementation analysis of the combined Condit/Dales collection of vaccinia virus temperature-sensitive mutants has been reported (Lackner, C.A., D'Costa, S.M., Buck, C., Condit, R.C., 2003. Complementation analysis of the Dales collection of vaccinia virus temperature-sensitive mutants. Virology 305, 240-259), however not all complementation groups have previously been assigned to single genes on the viral genome. We have used marker rescue to map at least one representative of each complementation group to a unique viral gene. The final combined collection contains 124 temperature-sensitive mutants affecting 38 viral genes, plus five double mutants.
Collapse
Affiliation(s)
- Sayuri E M Kato
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shatzer AN, Kato SEM, Condit RC. Phenotypic analysis of a temperature sensitive mutant in the large subunit of the vaccinia virus mRNA capping enzyme. Virology 2008; 375:236-52. [PMID: 18295814 DOI: 10.1016/j.virol.2008.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 12/17/2007] [Accepted: 01/21/2008] [Indexed: 11/25/2022]
Abstract
The heterodimeric vaccinia virus mRNA capping enzyme is a multifunctional enzyme, encoded by genes D1R and D12L. Published biochemical experiments demonstrate that, in addition to mRNA capping, the enzyme is involved in early viral gene transcription termination and intermediate viral gene transcription initiation. This paper presents the phenotypic characterization of Dts36, a temperature sensitive mutant in the large subunit of the mRNA capping enzyme (G705D), encoded by gene D1R. At the non-permissive temperature, Dts36 displays decreased steady state levels of some early RNAs, suggesting a defect in mRNA capping. Mutant infections also show decreased steady state levels of some early proteins, while DNA replication and post-replicative gene expression are absent. Under non-permissive conditions, the mutant directs synthesis of longer-than-normal early mRNAs from some genes, demonstrating that early gene transcription termination is defective. If mutant infections are initiated at the permissive temperature and shifted to the non-permissive temperature late during infection, steady state levels of intermediate gene transcripts decrease while the levels of late gene transcripts remain constant, consistent with a defect in intermediate gene transcription initiation. In addition to its previously described role in mRNA capping, the results presented in this study provide the first in vivo evidence that the vaccinia virus mRNA capping enzyme plays a role in early gene transcription termination and intermediate gene transcription.
Collapse
Affiliation(s)
- Amber N Shatzer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
7
|
Abstract
Poxviruses comprise a large family of viruses characterized by a large, linear dsDNA genome, a cytoplasmic site of replication and a complex virion morphology. The most notorious member of the poxvirus family is variola, the causative agent of smallpox. The laboratory prototype virus used for the study of poxviruses is vaccinia, the virus that was used as a live, naturally attenuated vaccine for the eradication of smallpox. Both the morphogenesis and structure of poxvirus virions are unique among viruses. Poxvirus virions apparently lack any of the symmetry features common to other viruses such as helical or icosahedral capsids or nucleocapsids. Instead poxvirus virions appear as "brick shaped" or "ovoid" membrane-bound particles with a complex internal structure featuring a walled, biconcave core flanked by "lateral bodies." The virion assembly pathway involves a remarkable fabrication of membrane-containing crescents and immature virions, which evolve into mature virions in a process that is unparalleled in virology. As a result of significant advances in poxvirus genetics and molecular biology during the past 15 years, we can now positively identify over 70 specific gene products contained in poxvirus virions, and we can describe the effects of mutations in over 50 specific genes on poxvirus assembly. This review summarizes these advances and attempts to assemble them into a comprehensible and thoughtful picture of poxvirus structure and assembly.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, 32610, USA
| | | | | |
Collapse
|
8
|
Schwer B, Shuman S. Genetic analysis of poxvirus mRNA cap methyltransferase: suppression of conditional mutations in the stimulatory D12 subunit by second-site mutations in the catalytic D1 subunit. Virology 2006; 352:145-56. [PMID: 16716374 DOI: 10.1016/j.virol.2006.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 03/01/2006] [Accepted: 03/16/2006] [Indexed: 11/19/2022]
Abstract
The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme, composed of catalytic vD1(498-844) and stimulatory vD12 subunits, can function in vivo in Saccharomyces cerevisiae in lieu of the essential cellular cap methyltransferase Abd1. Coexpression of both poxvirus subunits is required to complement the growth of abd1Delta cells. A double-alanine scan of the vD12 protein identified lethal and temperature-sensitive vD12 alleles. We used this mutant collection to perform a forward genetic screen for compensatory changes in the catalytic subunit that suppressed the growth phenotypes of the vD12 mutants. The screen reiteratively defined a small ensemble of amino acids in vD1(498-844) at which mutations restored methyltransferase function in conjunction with defective vD12 proteins. Reference to the crystal structure of the microsporidian cap methyltransferase suggests that distinct functional classes of suppressors were selected, including: (i) those that map to surface-exposed loops, which likely comprise the physical subunit interface; (ii) those in or near the substrate binding sites, which presumably affect or mimic inter-subunit allostery.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
9
|
Castelló A, Sanz MA, Molina S, Carrasco L. Translation of Sindbis virus 26S mRNA does not require intact eukariotic initiation factor 4G. J Mol Biol 2005; 355:942-56. [PMID: 16343528 DOI: 10.1016/j.jmb.2005.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/28/2005] [Accepted: 11/09/2005] [Indexed: 11/15/2022]
Abstract
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
10
|
Benning N, Hassett DE. Vaccinia virus infection during murine pregnancy: a new pathogenesis model for vaccinia fetalis. J Virol 2004; 78:3133-9. [PMID: 14990732 PMCID: PMC353726 DOI: 10.1128/jvi.78.6.3133-3139.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 11/10/2003] [Indexed: 11/20/2022] Open
Abstract
Vaccinia fetalis, the vertical transfer of vaccinia virus from mother to fetus, is a relatively rare but often fatal complication of primary vaccinia virus vaccination during pregnancy. To date there has been no attempt to develop an animal model to study the pathogenesis of this acute viral infection in vivo. Here we report that infection of gestating BALB/c mice by either intravenous or intraperitoneal routes with the Western Reserve strain of vaccinia virus results in the rapid colonization of the placenta and vertical transfer of virus to the developing fetus. Systemic maternal infections during gestation lead to the death of all offspring prior to or very shortly after birth. Using in situ hybridization for vaccinia virus mRNA to identify infected cells, we show that the virus initially colonizes cells lining maternal lacunae within the trophospongium layer of the placenta. The study of this model will significantly enhance our understanding of the pathogenesis of fetal vaccinia virus infections and aid in the development of effective treatments designed to reduce the risk of vaccinia virus-associated complications during pregnancy.
Collapse
Affiliation(s)
- Nicola Benning
- The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
11
|
Grubisha O, Traktman P. Genetic analysis of the vaccinia virus I6 telomere-binding protein uncovers a key role in genome encapsidation. J Virol 2003; 77:10929-42. [PMID: 14512543 PMCID: PMC225002 DOI: 10.1128/jvi.77.20.10929-10942.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The linear, double-stranded DNA genome of vaccinia virus contains covalently closed hairpin termini. These hairpin termini comprise a terminal loop and an A+T-rich duplex stem that has 12 extrahelical bases. DeMasi et al. have shown previously that proteins present in infected cells and in virions form distinct complexes with the telomeric hairpins and that these interactions require the extrahelical bases. The vaccinia virus I6 protein was identified as the protein showing the greatest specificity and affinity for interaction with the viral hairpins (J. DeMasi, S. Du, D. Lennon, and P. Traktman, J. Virol. 75:10090-10105, 2001). To gain insight into the role of I6 in vivo, we generated eight recombinant viruses bearing altered alleles of I6 in which clusters of charged amino acids were changed to alanine residues. One allele (temperature-sensitive I6-12 [tsI6-12]) conferred a tight ts phenotype and was used to examine the stage(s) of the viral life cycle that was affected at the nonpermissive temperature. Gene expression, DNA replication, and genome resolution proceeded normally in this mutant. However, proteolytic processing of structural proteins, which accompanies virus maturation, was incomplete. Electron microscopic studies confirmed a severe block in morphogenesis in which immature, but no mature, virions were observed. Instead, aberrant spherical virions and large crystalloids were seen. When purified, these aberrant virions were found to have normal protein content but to be devoid of viral DNA. We propose that the binding of I6 to viral telomeres directs genome encapsidation into the virus particle.
Collapse
Affiliation(s)
- Olivera Grubisha
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
12
|
Saha N, Shuman S, Schwer B. Yeast-based genetic system for functional analysis of poxvirus mRNA cap methyltransferase. J Virol 2003; 77:7300-7. [PMID: 12805428 PMCID: PMC164803 DOI: 10.1128/jvi.77.13.7300-7307.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural differences between poxvirus and human mRNA capping enzymes recommend cap formation as a target for antipoxviral drug discovery. Genetic and pharmacologic analysis of the poxvirus capping enzymes requires in vivo assays in which the readout depends on the capacity of the viral enzyme to catalyze cap synthesis. Here we have used the budding yeast Saccharomyces cerevisiae as a genetic model for the study of poxvirus cap guanine-N7 methyltransferase. The S. cerevisiae capping system consists of separate triphosphatase (Cet1), guanylyltransferase (Ceg1), and methyltransferase (Abd1) components. All three activities are essential for cell growth. We report that the methyltransferase domain of vaccinia virus capping enzyme (composed of catalytic vD1-C and stimulatory vD12 subunits) can function in lieu of yeast Abd1. Coexpression of both vaccinia virus subunits is required for complementation of the growth of abd1Delta cells. Previously described mutations of vD1-C and vD12 that eliminate or reduce methyltransferase activity in vitro either abolish abd1Delta complementation or elicit conditional growth defects. We have used the yeast complementation assay as the primary screen in a new round of alanine scanning of the catalytic subunit. We thereby identified several new amino acids that are critical for cap methylation activity in vivo. Studies of recombinant proteins show that the lethal vD1-C mutations do not preclude heterodimerization with vD12 but either eliminate or reduce cap methyltransferase activity in vitro.
Collapse
Affiliation(s)
- Nayanendu Saha
- Department of Microbiology and Immunology, Weill Medical College of Cornell University. Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
13
|
Abstract
The RNA triphosphatase component of vaccinia virus mRNA capping enzyme (the product of the viral D1 gene) belongs to a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, Chlorella virus, and baculoviruses. The family is defined by two glutamate-containing motifs (A and C) that form the metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight-stranded beta barrel (the so-called "triphosphate tunnel"). Here we queried whether vaccinia virus capping enzyme is a member of the tunnel subfamily, via mutational mapping of amino acids required for vaccinia triphosphatase activity. We identified four new essential side chains in vaccinia D1 via alanine scanning and illuminated structure-activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight a constellation of six acidic and three basic amino acids that likely compose the vaccinia triphosphatase active site (Glu37, Glu39, Arg77, Lys107, Glu126, Asp159, Lys161, Glu192, and Glu194). These nine essential residues are conserved in all vertebrate and invertebrate poxvirus RNA capping enzymes. We discerned no pattern of clustering of the catalytic residues of the poxvirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). We infer that the poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Their unique active site, which is completely different from that of the host cell's capping enzyme, recommends the poxvirus RNA triphosphatase as a molecular target for antipoxviral drug discovery.
Collapse
Affiliation(s)
- Chunling Gong
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
14
|
Latner DR, Thompson JM, Gershon PD, Storrs C, Condit RC. The positive transcription elongation factor activity of the vaccinia virus J3 protein is independent from its (nucleoside-2'-O-) methyltransferase and poly(A) polymerase stimulatory functions. Virology 2002; 301:64-80. [PMID: 12359447 DOI: 10.1006/viro.2002.1538] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous genetic and biochemical experiments have shown that the vaccinia virus J3 protein has three different roles in mRNA synthesis and modification. First, J3 is a (nucleoside-2'-O-)methyltransferase which methylates the 2' position of the first transcribed nucleotide, thus converting a cap-0 to a cap-1 structure at the 5' ends of mRNAs. Second, J3 is a processivity factor for the virus coded poly(A) polymerase. Third, J3 has recently been shown to have intermediate and late gene positive transcription elongation factor activity in vivo. Previous experiments have shown that the poly(A) polymerase stimulatory activity and the (nucleoside-2'-O-)methyltransferase activity are two independent functions of the protein that can be genetically separated through site-directed mutagenesis. In this article, the relationship between the J3-mediated transcription elongation activity and the two other functions of the protein was investigated by constructing several site-directed mutant viruses that contain specific defects in either methyltransferase or poly(A) polymerase processivity functions. The results demonstrate that the J3 positive transcription elongation factor activity is a third independent function of the protein that is genetically separable from its two other functions in mRNA modification. The results also show that neither the poly(A) polymerase stimulatory nor the methyltransferase activities of the J3 protein is essential for virus growth in cell culture.
Collapse
Affiliation(s)
- Donald R Latner
- Department of molecular Genetics and microbiology and Center for Mammalian Genetics, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
15
|
Damaso CRA, Oliveira MF, Massarani SM, Moussatché N. Azathioprine inhibits vaccinia virus replication in both BSC-40 and RAG cell lines acting on different stages of virus cycle. Virology 2002; 300:79-91. [PMID: 12202208 DOI: 10.1006/viro.2002.1534] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study we demonstrate that azathioprine (AZA) inhibits vaccinia virus (VV) replication in both BSC-40 and RAG cell lines, acting on different stages of virus cycle. In BSC-40 cells, early protein synthesis was not significantly affected, but late gene expression was severely impaired. In RAG cells all stages of gene expression were completed during synchronous infection in the presence of the drug. The onset of DNA replication was not affected in RAG cells, but a severe inhibition was observed in BSC-40 cells. Electron microscopic analysis of VV-infected RAG cells treated with AZA revealed brick-shaped particles presenting abnormal definition of the internal structure. Purified virions from AZA-treated RAG cells presented several modifications of the protein content, a lesser amount of DNA, and a lower PFU:particle ratio. Our results suggest that in VV-infected RAG cells AZA interfered with virus morphogenesis, whereas in BSC-40 cells the replicative cycle was inhibited at the DNA replication stage.
Collapse
Affiliation(s)
- Clarissa R A Damaso
- Laboratório de Biologia Molecular de Vi;rus, Instituto de Biofi;sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
16
|
Punjabi A, Boyle K, DeMasi J, Grubisha O, Unger B, Khanna M, Traktman P. Clustered charge-to-alanine mutagenesis of the vaccinia virus A20 gene: temperature-sensitive mutants have a DNA-minus phenotype and are defective in the production of processive DNA polymerase activity. J Virol 2001; 75:12308-18. [PMID: 11711621 PMCID: PMC116127 DOI: 10.1128/jvi.75.24.12308-12318.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the vaccinia virus DNA polymerase is inherently distributive, a highly processive form of the enzyme exists within the cytoplasm of infected cells (W. F. McDonald, N. Klemperer, and P. Traktman, Virology 234:168-175, 1997). In the accompanying report we outline the purification of the 49-kDa A20 protein as a stoichiometric component of the processive polymerase complex (N. Klemperer, W. McDonald, K. Boyle, B. Unger, and P. Traktman, J. Virol. 75:12298-12307, 2001). To complement this biochemical analysis, we undertook a genetic approach to the analysis of the structure and function of the A20 protein. Here we report the application of clustered charge-to-alanine mutagenesis of the A20 gene. Eight mutant viruses containing altered A20 alleles were isolated using this approach; two of these, tsA20-6 and tsA20-ER5, have tight temperature-sensitive phenotypes. At the nonpermissive temperature, neither virus forms macroscopic plaques and the yield of infectious virus is <1% of that obtained at the permissive temperature. Both viruses show a profound defect in the accumulation of viral DNA at the nonpermissive temperature, although both the A20 protein and DNA polymerase accumulate to wild-type levels. Cytoplasmic extracts prepared from cells infected with the tsA20 viruses show a defect in processive polymerase activity; they are unable to direct the formation of RFII product using a singly primed M13 template. In sum, these data indicate that the A20 protein plays an essential role in the viral life cycle and that viruses with A20 lesions exhibit a DNA(-) phenotype that is correlated with a loss in processive polymerase activity as assayed in vitro. The vaccinia virus A20 protein can, therefore, be considered a new member of the family of proteins (E9, B1, D4, and D5) with essential roles in vaccinia virus DNA replication.
Collapse
Affiliation(s)
- A Punjabi
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Garcia AD, Moss B. Repression of vaccinia virus Holliday junction resolvase inhibits processing of viral DNA into unit-length genomes. J Virol 2001; 75:6460-71. [PMID: 11413313 PMCID: PMC114369 DOI: 10.1128/jvi.75.14.6460-6471.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus A22R gene encodes a protein that is homologous to the bacterial enzyme RuvC and specifically cleaves and resolves four-way DNA Holliday junctions into linear duplex products. To investigate the role of the vaccinia virus Holliday junction resolvase during an infection, we constructed two recombinant viruses: vA22-HA, which has a short C-terminal epitope tag appended to the A22R open reading frame, and vA22i, in which the original A22R gene is deleted and replaced by an inducible copy. Polyacrylamide gel electrophoresis and Western blot analysis of extracts and purified virions from cells infected with vA22-HA revealed that the resolvase was expressed after the onset of DNA replication and incorporated into virion cores. vA22i exhibited a conditional replication defect. In the absence of an inducer, (i) viral protein synthesis was unaffected, (ii) late-stage viral DNA replication was reduced, (iii) most of the newly synthesized viral DNA remained in a branched or concatemeric form that caused it to be trapped at the application site during pulsed-field gel electrophoresis, (iv) cleavage of concatemer junctions was inhibited, and (v) virion morphogenesis was arrested at an immature stage. These data indicated multiple roles for the vaccinia virus Holliday junction resolvase in the replication and processing of viral DNA into unit-length genomes.
Collapse
Affiliation(s)
- A D Garcia
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Dr., MSC 0445, Bethesda, MD 20892-0445, USA
| | | |
Collapse
|
18
|
Ishii K, Moss B. Role of vaccinia virus A20R protein in DNA replication: construction and characterization of temperature-sensitive mutants. J Virol 2001; 75:1656-63. [PMID: 11160663 PMCID: PMC114074 DOI: 10.1128/jvi.75.4.1656-1663.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous analyses of randomly generated, temperature-sensitive vaccinia virus mutants led to the mapping of DNA synthesis negative complementation groups to the B1R, D4R, D5R, and E9L genes. Evidence from the yeast two-hybrid system that the D4R and D5R proteins can interact with the A20R protein suggested that A20R was also involved in DNA replication. We found that the A20R gene was transcribed early after infection, consistent with such a role. To investigate the function of the A20R protein, targeted mutations were made by substituting alanines for charged amino acids occurring in 11 different clusters. Four mutants were not isolated, suggesting that they were lethal, two mutants exhibited no temperature sensitivity, two mutants exhibited partial temperature sensitivity, and two mutants formed no plaques or infectious virus at 39 degrees C. The two mutants with stringent phenotypes were further characterized. Temperature shift-up experiments indicated that the crucial period was between 6 and 12 h after infection, making it unlikely that the defect was in virus entry, early gene expression, or a late stage of virus assembly. Similar patterns of metabolically labeled viral early proteins were detected at permissive and nonpermissive temperatures, but one mutant showed an absence of late proteins under the latter conditions. Moreover, no viral DNA synthesis was detected when cells were infected with either stringent mutant at 39 degrees C. The previous yeast two-hybrid analysis together with the present characterization of A20R temperature-sensitive mutants suggested that the A20R, D4R, and D5R proteins are components of a multiprotein DNA replication complex.
Collapse
Affiliation(s)
- K Ishii
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
19
|
Droll DA, Krishna Murthy HM, Chambers TJ. Yellow fever virus NS2B-NS3 protease: charged-to-alanine mutagenesis and deletion analysis define regions important for protease complex formation and function. Virology 2000; 275:335-47. [PMID: 10998334 DOI: 10.1006/viro.2000.0488] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Charged-to-alanine substitutions and deletions within the yellow fever virus NS2B-NS3(181) protease were analyzed for effects on protease function. During cell-free translation of NS2B-3(181) polyproteins, mutations at three charge clusters markedly impaired cis cleavage activity: a single N-terminal cluster in the conserved domain of NS2B (residues ELKK(52-55)) and two in NS3 (ED(21-22), and residue H(47)). These mutations inhibited other protease-dependent cleavages of a transiently expressed nonstructural polyprotein, although differential effects occurred. NS2B and NS3(181) proteins harboring these mutations were impaired in their ability to associate for trans cleavage activity. N-terminal deletions in NS3 also implicated residues ED(21-22) in the association with NS2B. Deletions within NS2B revealed that the conserved domain alone provided minimal cofactor activity, with optimal function requiring both flanking hydrophobic regions. NS2B-3(181)- and NS3(181)-green fluorescent protein fusion proteins were used to determine the intracellular distribution of the protease complex. The former localized in membrane-based vesicular structures, whereas the latter localized poorly. The data suggest that NS2B-NS3 complex formation requires charge interactions involving the N-terminus of the conserved domain of NS2B and 22 N-terminal residues of NS3. A role for the putative transmembrane regions of NS2B in targeting of NS3 to intracellular membranes is also suggested.
Collapse
Affiliation(s)
- D A Droll
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, 1402 South Grand Avenue, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
20
|
Ho CK, Martins A, Shuman S. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes. J Virol 2000; 74:5486-94. [PMID: 10823853 PMCID: PMC112033 DOI: 10.1128/jvi.74.12.5486-5494.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-encoded mRNA capping enzymes are attractive targets for antiviral therapy, but functional studies have been limited by the lack of genetically tractable in vivo systems that focus exclusively on the RNA-processing activities of the viral proteins. Here we have developed such a system by engineering a viral capping enzyme-vaccinia virus D1(1-545)p, an RNA triphosphatase and RNA guanylyltransferase-to function in the budding yeast Saccharomyces cerevisiae in lieu of the endogenous fungal triphosphatase (Cet1p) and guanylyltransferase (Ceg1p). This was accomplished by fusion of D1(1-545)p to the C-terminal guanylyltransferase domain of mammalian capping enzyme, Mce1(211-597)p, which serves as a vehicle to target the viral capping enzyme to the RNA polymerase II elongation complex. An inactivating mutation (K294A) of the mammalian guanylyltransferase active site in the fusion protein had no impact on genetic complementation of cet1Deltaceg1Delta cells, thus proving that (i) the viral guanylyltransferase was active in vivo and (ii) the mammalian domain can serve purely as a chaperone to direct other proteins to the transcription complex. Alanine scanning had identified five amino acids of vaccinia virus capping enzyme-Glu37, Glu39, Arg77, Glu192, and Glu194-that are essential for gamma phosphate cleavage in vitro. Here we show that the introduction of mutation E37A, R77A, or E192A into the fusion protein abrogates RNA triphosphatase function in vivo. The essential residues are located within three motifs that define a family of viral and fungal metal-dependent phosphohydrolases with a distinctive capacity to hydrolyze nucleoside triphosphates to nucleoside diphosphates in the presence of manganese or cobalt. The acidic residues Glu37, Glu39, and Glu192 likely comprise the metal-binding site of vaccinia virus triphosphatase, insofar as their replacement by glutamine abolishes the RNA triphosphatase and ATPase activities.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
21
|
DeMasi J, Traktman P. Clustered charge-to-alanine mutagenesis of the vaccinia virus H5 gene: isolation of a dominant, temperature-sensitive mutant with a profound defect in morphogenesis. J Virol 2000; 74:2393-405. [PMID: 10666270 PMCID: PMC111721 DOI: 10.1128/jvi.74.5.2393-2405.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus H5 gene encodes a 22.3-kDa phosphoprotein that is expressed during both the early and late phases of viral gene expression. It is a major component of virosomes and has been implicated in viral transcription and, as a substrate of the B1 kinase, may participate in genome replication. To enable a genetic analysis of the role of H5 during the viral life cycle, we used clustered charge-to-alanine mutagenesis in an attempt to create a temperature-sensitive (ts) virus with a lesion in the H5 gene. Five mutant viruses were isolated, with one of them, tsH5-4, having a strong ts phenotype as assayed by plaque formation and measurements of 24-h viral yield. Surprisingly, no defects in genome replication or viral gene expression were detected at the nonpermissive temperature. By electron microscopy, we observed a profound defect in the early stages of virion morphogenesis, with arrest occurring prior to the formation of crescent membranes or immature particles. Nonfunctional, "curdled" virosomes were detected in tsH5-4 infections at the nonpermissive temperature. These structures appeared to revert to functional virosomes after a temperature shift to permissive conditions. We suggest an essential role for H5 in normal virosome formation and the initiation of virion morphogenesis. By constructing recombinant genomes containing two H5 alleles, wild type and H5-4, we determined that H5-4 exerted a dominant phenotype. tsH5-4 is the first example of a dominant ts mutant isolated and characterized in vaccinia virus.
Collapse
Affiliation(s)
- J DeMasi
- Program in Molecular Biology, Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
22
|
Lackner CA, Condit RC. Vaccinia virus gene A18R DNA helicase is a transcript release factor. J Biol Chem 2000; 275:1485-94. [PMID: 10625702 DOI: 10.1074/jbc.275.2.1485] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prior phenotypic analysis of a vaccinia virus gene A18R mutant, Cts23, showed the synthesis of longer than wild type (Wt) length viral transcripts during the intermediate stage of infection, indicating that the A18R protein may act as a negative transcription elongation factor. The purpose of the work described here was to determine a biochemical activity for the A18R protein. Pulse-labeled transcription complexes established from intermediate virus promoters on bead-bound DNA templates were assayed for transcript release during an elongation step that contained nucleotides and various proteins. Pulse-labeled transcription complexes elongated in the presence of only nucleotides were unable to release nascent RNA. The addition of Wt extract during the elongation phase resulted in release of the nascent transcript, indicating that additional factors present in the Wt extract are capable of inducing transcript release. Extract from Cts23 or mock-infected cells was unable to induce release. The lack of release upon addition of Cts23 extract suggests that A18R is involved in release of nascent RNA. By itself, purified polyhistidine-tagged A18R protein (His-A18R) was unable to induce release; however, release did occur in the presence of purified His-A18R protein plus extract from either Cts23 or mock-infected cells. These data taken together indicate that A18R is necessary but not sufficient for release of nascent transcripts. We have also demonstrated that the combination of A18R protein and mock extract induces transcript release in an ATP-dependent manner, consistent with the fact that the A18R protein is an ATP-dependent helicase. Further analysis revealed that the release activity is not restricted to a vaccinia intermediate promoter but is observed using pulse-labeled transcription complexes initiated from all three viral gene class promoters. Therefore, we conclude that A18R and an as yet unidentified cellular factor(s) are required for the in vitro release of nascent RNA from a vaccinia virus transcription elongation complex.
Collapse
Affiliation(s)
- C A Lackner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | |
Collapse
|
23
|
Mulder J, Robertson ME, Seamons RA, Belsham GJ. Vaccinia virus protein synthesis has a low requirement for the intact translation initiation factor eIF4F, the cap-binding complex, within infected cells. J Virol 1998; 72:8813-9. [PMID: 9765426 PMCID: PMC110298 DOI: 10.1128/jvi.72.11.8813-8819.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the cap-binding complex, eIF4F, in the translation of vaccinia virus mRNAs has been analyzed within infected cells. Plasmid DNAs, which express dicistronic mRNAs containing a picornavirus internal ribosome entry site, produced within vaccinia virus-infected cells both beta-glucuronidase and a cell surface-targeted single-chain antibody (sFv). Cells expressing sFv were selected from nonexpressing cells, enabling analysis of protein synthesis specifically within the transfected cells. Coexpression of poliovirus 2A or foot-and-mouth disease virus Lb proteases, which cleaved translation initiation factor eIF4G, greatly inhibited cap-dependent protein (beta-glucuronidase) synthesis. Under these conditions, internal ribosome entry site-directed expression of sFv continued and cell selection was maintained. Furthermore, vaccinia virus protein synthesis persisted in the selected cells containing cleaved eIF4G. Thus, late vaccinia virus protein synthesis has a low requirement for the intact cap-binding complex eIF4F. This may be attributed to the short unstructured 5' noncoding regions of the vaccinia virus mRNAs, possibly aided by the presence of poly(A) at both 5' and 3' termini.
Collapse
Affiliation(s)
- J Mulder
- BBSRC Institute for Animal Health, Pirbright, Woking, Surrey GU24 ONF, United Kingdom
| | | | | | | |
Collapse
|