1
|
Tran NT, Teo AC, McTaggart AR, Campbell PR, Persley DM, Thomas JE, Geering ADW. Origins and Distribution of Panicum Mosaic Virus and Sugarcane Mosaic Virus on Stenotaphrum secundatum in Australia. PHYTOPATHOLOGY 2025; 115:431-440. [PMID: 39853298 DOI: 10.1094/phyto-11-24-0363-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Stenotaphrum secundatum is a premium turf grass in warm temperate and subtropical regions of the world and is the most important turf species in Australia based on the value of its production. A new disease called buffalo grass yellows (BGY) has become a problem on turf farms in Australia. We surveyed turf farms in New South Wales, Queensland, and Western Australia to determine whether panicum mosaic virus (PMV) and sugarcane mosaic virus (SCMV) were associated with BGY. PMV was only found on three farms, two located in the Hawkesbury Valley near Sydney and a third at Echuca, about 800 km to the southwest of the former location. SCMV was more prevalent, present in all major cultivars and states surveyed. We analyzed phylogenetic relationships for SCMV and found that isolates infecting S. secundatum in Australia belonged to three clades. The first included Australian isolates typical of the population of viruses circulating in Digitaria didactyla. The second included a single New South Wales isolate from S. secundatum 'SS100' that grouped with otherwise American isolates of SCMV recorded in S. secundatum and Saccharum officinale from Florida and Zea mays from Ohio. Finally, an isolate of SCMV from S. secundatum originating from a turf farm in South East Queensland grouped with viruses mostly infecting maize; this record is potentially the first maize-adapted strain of SCMV in Australia. Our study sheds light on the etiology of the BGY disease syndrome and invasion history of PMV and SCMV in Australia.
Collapse
Affiliation(s)
- Nga T Tran
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Ai Chin Teo
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Alistair R McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Paul R Campbell
- Department of Primary Industries, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Denis M Persley
- Department of Primary Industries, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - John E Thomas
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Andrew D W Geering
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| |
Collapse
|
2
|
Bermuda grass latent virus in Australia: genome sequence, sequence variation, and new hosts. Arch Virol 2022; 167:1317-1323. [PMID: 35394246 PMCID: PMC9038842 DOI: 10.1007/s00705-022-05434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 11/12/2022]
Abstract
Bermuda grass latent virus (BGLV; genus Panicovirus) is identified for the first time in Australia and in only the second country after the USA. A full-length genome sequence was obtained, which has 97% nucleotide sequence identity to that of the species exemplar isolate. Surveys for BGLV, utilising a newly designed universal panicovirus RT-PCR assay for diagnosis, demonstrated widespread infection by this virus in a broad variety of Bermuda grass cultivars (Cynodon dactylon and C. dactylon × C. transvaalensis) grown in both New South Wales and Queensland. The virus was also detected in Rhodes grass (Chloris gayana) and Kikuyu grass (Cenchrus clandestinus), which are both important pasture grasses in subtropical Australia, and the latter is also grown as turf. Furthermore, the Rhodes grass plant, which had strong mosaic symptoms, was also infected with sugarcane mosaic virus, warranting further investigations as to whether synergistic interactions occur between these two viruses.
Collapse
|
3
|
Muhle AA, Palmer NA, Edme SJ, Sarath G, Yuen G, Mitchell RB, Tatineni S. Effect of cultivar and temperature on the synergistic interaction between panicum mosaic virus and satellite panicum mosaic virus in switchgrass. Arch Virol 2022; 167:1247-1256. [PMID: 35344095 DOI: 10.1007/s00705-022-05412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/02/2022]
Abstract
Panicum mosaic virus (PMV), the type member of the genus Panicovirus in the family Tombusviridae, naturally infects switchgrass (Panicum virgatum L.). PMV and its molecular partner, satellite panicum mosaic virus (SPMV), interact synergistically in coinfected millets to exacerbate the disease phenotype and increase the accumulation of PMV compared to plants infected with PMV alone. In this study, we examined the reaction of switchgrass cvs. Summer and Kanlow to PMV and PMV+SPMV infections at 24°C and 32°C. Switchgrass cv. Summer was susceptible to PMV at both temperatures. In contrast, cv. Kanlow was tolerant to PMV at 24°C, but not at 32°C, suggesting that Kanlow harbors temperature-sensitive resistance to PMV. At 24°C, PMV was readily detected in inoculated leaves, but not in upper uninoculated leaves of Kanlow, suggesting that resistance to PMV was likely mediated by abrogation of long-distance virus transport. Coinfection by PMV and SPMV at 24°C and 32°C in cv. Summer, but not in Kanlow, caused increased symptomatic systemic infection and mild disease synergism with slightly increased PMV accumulation compared to plants infected with PMV alone. These data suggest that the interaction between PMV and SPMV in switchgrass is cultivar-dependent, manifested in Summer but not in Kanlow. However, co-inoculation of cv. Kanlow with PMV+SPMV caused an enhanced asymptomatic infection, suggesting a role of SPMV in enhancement of symptomless infection in a tolerant cultivar. These data suggest that enhanced asymptomatic infections in a virus-tolerant switchgrass cultivar could serve as a source of virus spread and play an important role in panicum mosaic disease epidemiology under field conditions. Our data reveal that the cultivar, coinfection with SPMV, and temperature influence the severity of symptoms elicited by PMV in switchgrass.
Collapse
Affiliation(s)
- Anthony A Muhle
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Nathan A Palmer
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA
| | - Serge J Edme
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA.,Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Gautam Sarath
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA.,Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Gary Yuen
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Robert B Mitchell
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA.,Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, USA. .,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
4
|
Jackson AO. Reflections on a Career in Plant Virology: A Chip Floating on a Stream. Annu Rev Virol 2021; 8:23-50. [PMID: 34255543 DOI: 10.1146/annurev-virology-091919-105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the time I entered college and for a few years afterward, I had very few concrete goals. Hence, my progress was more a matter of luck than planning and was somewhat analogous to a small wood chip floating down a slow stream, bumping into various objects tossed and turned hither and thither, all the while being surrounded by larger and more appealing chips. I have been extremely lucky to have been associated with numerous helpful and knowledgeable mentors, colleagues, postdocs, students, and coworkers whose advice had major impacts on my life. Therefore, throughout this article, I have attempted to acknowledge central individuals who contributed to my progress in academia and to highlight the positive bumps to my chip on the steam that affected the directions of my career.
Collapse
Affiliation(s)
- Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
5
|
Characterization of a novel Tombusviridae species isolated from Paris polyphylla var. yunnanensis. Arch Virol 2021; 166:3199-3205. [PMID: 34387750 DOI: 10.1007/s00705-021-05191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
A novel virus, Paris virus 2 (ParV2), was isolated from diseased Paris polyphylla var. yunnanensis, and its complete genome sequence was determined and analyzed. ParV2 is a positive-sense single-stranded RNA (+ssRNA) virus with a genome size of 4,118 nucleotides. The ParV2 genome contains six putative open reading frames (ORFs) that encode proteins with predicted molecular weights of 40.14, 100.26, 7.31, 7.85, 26.09, and 8.77 kDa. The first ORF (ORF1) of ParV2 encodes a putative protein of 40.14 kDa (P40, nt: 20-1,096), whiles the second ORF (ORF2, 888 aa) containing the GDD motif encodes the highly conserved RNA-dependent RNA polymerase protein (RdRP, nt:20-2,683, P100, 100.26 kDa) of viruses in the family Tombusviridae. Multiple sequence alignments analysis showed that the complete genome sequence of ParV2 shares 31.7-55.5% nucleotide sequence identities with viruses in the family Tombusviridae. Ginger chlorotic fleck-associated tombusvirus (GCFaV-1, Accession No. QKE30557) had the highest sequence identity (55.5%) with ParV2. GCFaV-1 also shares 59.2% RdRP and 34.9% CP amino acid sequence identities with ParV2. Sequence comparisons and phylogenetic analysis of RdRP suggested that ParV2 is a novel member of the family Tombusviridae, and its closest known relative is GCFaV-1.
Collapse
|
6
|
Brachypodium Phenylalanine Ammonia Lyase (PAL) Promotes Antiviral Defenses against Panicum mosaic virus and Its Satellites. mBio 2021; 12:mBio.03518-20. [PMID: 33593968 PMCID: PMC8545123 DOI: 10.1128/mbio.03518-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brachypodium distachyon has recently emerged as a premier model plant for monocot biology, akin to Arabidopsis thaliana We previously reported genome-wide transcriptomic and alternative splicing changes occurring in Brachypodium during compatible infections with Panicum mosaic virus (PMV) and its satellite virus (SPMV). Here, we dissected the role of Brachypodium phenylalanine ammonia lyase 1 (PAL1), a key enzyme for phenylpropanoid and salicylic acid (SA) biosynthesis and the induction of plant defenses. Targeted metabolomics profiling of PMV-infected and PMV- plus SPMV-infected (PMV/SPMV) Brachypodium plants revealed enhanced levels of multiple defense-related hormones and metabolites such as cinnamic acid, SA, and fatty acids and lignin precursors during disease progression. The virus-induced accumulation of SA and lignin was significantly suppressed upon knockdown of B. distachyon PAL1 (BdPAL1) using RNA interference (RNAi). The compromised SA accumulation in PMV/SPMV-infected BdPAL1 RNAi plants correlated with weaker induction of multiple SA-related defense gene markers (pathogenesis related 1 [PR-1], PR-3, PR-5, and WRKY75) and enhanced susceptibility to PMV/SPMV compared to that of wild-type (WT) plants. Furthermore, exogenous application of SA alleviated the PMV/SPMV necrotic disease phenotypes and delayed plant death caused by single and mixed infections. Together, our results support an antiviral role for BdPAL1 during compatible host-virus interaction, perhaps as a last resort attempt to rescue the infected plant.IMPORTANCE Although the role of plant defense mechanisms against viruses are relatively well studied in dicots and in incompatible plant-microbe interactions, studies of their roles in compatible interactions and in grasses are lagging behind. In this study, we leveraged the emerging grass model Brachypodium and genetic resources to dissect Panicum mosaic virus (PMV)- and its satellite virus (SPMV)-compatible grass-virus interactions. We found a significant role for PAL1 in the production of salicylic acid (SA) in response to PMV/SPMV infections and that SA is an essential component of the defense response preventing the plant from succumbing to viral infection. Our results suggest a convergent role for the SA defense pathway in both compatible and incompatible plant-virus interactions and underscore the utility of Brachypodium for grass-virus biology.
Collapse
|
7
|
Badar U, Venkataraman S, AbouHaidar M, Hefferon K. Molecular interactions of plant viral satellites. Virus Genes 2020; 57:1-22. [PMID: 33226576 DOI: 10.1007/s11262-020-01806-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/24/2020] [Indexed: 12/18/2022]
Abstract
Plant viral satellites fall under the category of subviral agents. Their genomes are composed of small RNA or DNA molecules a few hundred nucleotides in length and contain an assortment of highly complex and overlapping functions. Each lacks the ability to either replicate or undergo encapsidation or both in the absence of a helper virus (HV). As the number of known satellites increases steadily, our knowledge regarding their sequence conservation strategies, means of replication and specific interactions with host and helper viruses is improving. This review demonstrates that the molecular interactions of these satellites are unique and highly complex, largely influenced by the highly specific host plants and helper viruses that they associate with. Circularized forms of single-stranded RNA are of particular interest, as they have recently been found to play a variety of novel cellular functions. Linear forms of satRNA are also of great significance as they may complement the helper virus genome in exacerbating symptoms, or in certain instances, actively compete against it, thus reducing symptom severity. This review serves to describe the current literature with respect to these molecular mechanisms in detail as well as to discuss recent insights into this emerging field in terms of evolution, classification and symptom development. The review concludes with a discussion of future steps in plant viral satellite research and development.
Collapse
Affiliation(s)
- Uzma Badar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Mounir AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Panicum Mosaic Virus and Its Satellites Acquire RNA Modifications Associated with Host-Mediated Antiviral Degradation. mBio 2019; 10:mBio.01900-19. [PMID: 31455653 PMCID: PMC6712398 DOI: 10.1128/mbio.01900-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive-sense RNA viruses in the Tombusviridae family have genomes lacking a 5' cap structure and prototypical 3' polyadenylation sequence. Instead, these viruses utilize an extensive network of intramolecular RNA-RNA interactions to direct viral replication and gene expression. Here we demonstrate that the genomic RNAs of Panicum mosaic virus (PMV) and its satellites undergo sequence modifications at their 3' ends upon infection of host cells. Changes to the viral and subviral genomes arise de novo within Brachypodium distachyon (herein called Brachypodium) and proso millet, two alternative hosts of PMV, and exist in the infections of a native host, St. Augustinegrass. These modifications are defined by polyadenylation [poly(A)] events and significant truncations of the helper virus 3' untranslated region-a region containing satellite RNA recombination motifs and conserved viral translational enhancer elements. The genomes of PMV and its satellite virus (SPMV) were reconstructed from multiple poly(A)-selected Brachypodium transcriptome data sets. Moreover, the polyadenylated forms of PMV and SPMV RNAs copurify with their respective mature icosahedral virions. The changes to viral and subviral genomes upon infection are discussed in the context of a previously understudied poly(A)-mediated antiviral RNA degradation pathway and the potential impact on virus evolution.IMPORTANCE The genomes of positive-sense RNA viruses have an intrinsic capacity to serve directly as mRNAs upon viral entry into a host cell. These RNAs often lack a 5' cap structure and 3' polyadenylation sequence, requiring unconventional strategies for cap-independent translation and subversion of the cellular RNA degradation machinery. For tombusviruses, critical translational regulatory elements are encoded within the 3' untranslated region of the viral genomes. Here we describe RNA modifications occurring within the genomes of Panicum mosaic virus (PMV), a prototypical tombusvirus, and its satellite agents (i.e., satellite virus and noncoding satellite RNAs), all of which depend on the PMV-encoded RNA polymerase for replication. The atypical RNAs are defined by terminal polyadenylation and truncation events within the 3' untranslated region of the PMV genome. These modifications are reminiscent of host-mediated RNA degradation strategies and likely represent a previously underappreciated defense mechanism against invasive nucleic acids.
Collapse
|
9
|
Adhab M, Angel C, Rodriguez A, Fereidouni M, Király L, Scheets K, Schoelz JE. Tracing the Lineage of Two Traits Associated with the Coat Protein of the Tombusviridae: Silencing Suppression and HR Elicitation in Nicotiana Species. Viruses 2019; 11:588. [PMID: 31261652 PMCID: PMC6669612 DOI: 10.3390/v11070588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper we have characterized the lineage of two traits associated with the coat proteins (CPs) of the tombusvirids: Silencing suppression and HR elicitation in Nicotiana species. We considered that the tombusvirid CPs might collectively be considered an effector, with the CP of each CP-encoding species comprising a structural variant within the family. Thus, a phylogenetic analysis of the CP could provide insight into the evolution of a pathogen effector. The phylogeny of the CP of tombusvirids indicated that CP representatives of the family could be divided into four clades. In two separate clades the CP triggered a hypersensitive response (HR) in Nicotiana species of section Alatae but did not have silencing suppressor activity. In a third clade the CP had a silencing suppressor activity but did not have the capacity to trigger HR in Nicotiana species. In the fourth clade, the CP did not carry either function. Our analysis illustrates how structural changes that likely occurred in the CP effector of progenitors of the current genera led to either silencing suppressor activity, HR elicitation in select Nicotiana species, or neither trait.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
- Department of Plant Protection, University of Baghdad, 10071 Baghdad, Iraq
| | - Carlos Angel
- National Coffee Research Center-Cenicafe, Planalto, km. 4, Vía antigua Chinchiná-Manizales, Manizales (Caldes), Colombia
| | - Andres Rodriguez
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Lóránt Király
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Kay Scheets
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
10
|
Chowda-Reddy RV, Palmer N, Edme S, Sarath G, Kovacs F, Yuen G, Mitchell R, Tatineni S. A Two-Amino Acid Difference in the Coat Protein of Satellite panicum mosaic virus Isolates Is Responsible for Differential Synergistic Interactions with Panicum mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:479-490. [PMID: 30379112 DOI: 10.1094/mpmi-09-18-0247-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Panicum mosaic virus (PMV) (genus Panicovirus, family Tombusviridae) and its molecular parasite, Satellite panicum mosaic virus (SPMV), synergistically interact in coinfected proso and pearl millet (Panicum miliaceum L.) plants resulting in a severe symptom phenotype. In this study, we examined synergistic interactions between the isolates of PMV and SPMV by using PMV-NE, PMV85, SPMV-KS, and SPMV-Type as interacting partner viruses in different combinations. Coinfection of proso millet plants by PMV-NE and SPMV-KS elicited severe mosaic, chlorosis, stunting, and eventual plant death compared with moderate mosaic, chlorotic streaks, and stunting by PMV85 and SPMV-Type. In reciprocal combinations, coinfection of proso millet by either isolate of PMV with SPMV-KS but not with SPMV-Type elicited severe disease synergism, suggesting that SPMV-KS was the main contributor for efficient synergistic interaction with PMV isolates. Coinfection of proso millet plants by either isolate of PMV and SPMV-KS or SPMV-Type caused increased accumulation of coat protein (CP) and genomic RNA copies of PMV, compared with infections by individual PMV isolates. Additionally, CP and genomic RNA copies of SPMV-KS accumulated at substantially higher levels, compared with SMPV-Type in coinfected proso millet plants with either isolate of PMV. Hybrid viruses between SPMV-KS and SPMV-Type revealed that SPMV isolates harboring a CP fragment with four differing amino acids at positions 18, 35, 59, and 98 were responsible for differential synergistic interactions with PMV in proso millet plants. Mutation of amino acid residues at these positions in different combinations in SPMV-KS, similar to those as in SPMV-Type or vice-versa, revealed that A35 and R98 in SPMV-KS CP play critical roles in enhanced synergistic interactions with PMV isolates. Taken together, these data suggest that the two distinct amino acids at positions 35 and 98 in the CP of SPMV-KS and SPMV-Type are involved in the differential synergistic interactions with the helper viruses.
Collapse
Affiliation(s)
- R V Chowda-Reddy
- 1 United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Nathan Palmer
- 1 United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Serge Edme
- 2 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | - Gautam Sarath
- 2 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | - Frank Kovacs
- 3 Department of Chemistry, University of Nebraska-Kearney, Kearney, NE 68849, U.S.A.; and
| | - Gary Yuen
- 4 Department of Plant Pathology, University of Nebraska-Lincoln
| | - Robert Mitchell
- 2 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | - Satyanarayana Tatineni
- 1 United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
- 4 Department of Plant Pathology, University of Nebraska-Lincoln
| |
Collapse
|
11
|
Biology of viral satellites and their role in pathogenesis. Curr Opin Virol 2018; 33:96-105. [DOI: 10.1016/j.coviro.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
|
12
|
Pyle JD, Scholthof KBG. De novo generation of helper virus-satellite chimera RNAs results in disease attenuation and satellite sequence acquisition in a host-dependent manner. Virology 2018; 514:182-191. [PMID: 29197268 DOI: 10.1016/j.virol.2017.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/27/2022]
Abstract
Panicum mosaic virus (PMV) is a helper RNA virus for satellite RNAs (satRNAs) and a satellite virus (SPMV). Here, we describe modifications that occur at the 3'-end of a satRNA of PMV, satS. Co-infections of PMV+satS result in attenuation of the disease symptoms induced by PMV alone in Brachypodium distachyon and proso millet. The 375 nt satS acquires ~100-200 nts from the 3'-end of PMV during infection and is associated with decreased abundance of the PMV RNA and capsid protein in millet. PMV-satS chimera RNAs were isolated from native infections of St. Augustinegrass and switchgrass. Phylogenetic analyses revealed that the chimeric RNAs clustered according to the host species from which they were isolated. Additionally, the chimera satRNAs acquired non-viral "linker" sequences in a host-specific manner. These results highlight the dynamic regulation of viral pathogenicity by satellites, and the selective host-dependent, sequence-based pressures for driving satRNA generation and genome compositions.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, United States.
| | - Karen-Beth G Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
13
|
Complete nucleotide sequences and virion particle association of two satellite RNAs of panicum mosaic virus. Virus Res 2017; 240:87-93. [PMID: 28673868 DOI: 10.1016/j.virusres.2017.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 11/23/2022]
Abstract
Over six decades ago, panicum mosaic virus (PMV) was identified as the first viral pathogen of cultivated switchgrass (Panicum virgatum). Subsequently, PMV was demonstrated to support the replication of both a satellite RNA virus (SPMV) and satellite RNA (satRNA) agents during natural infections of host grasses. In this study, we report the isolation and full-length sequences of two PMV satRNAs identified in 1988 from St. Augustinegrass (Stenotaphrum secundatum) and centipedegrass (Eremochloa ophiuroides) hosts. Each of these satellites have sequence relatedness at their 5'- and 3'-ends. In addition, satC has a region of ∼100 nt complementary to the 3'-end of the PMV genome. These agents are associated with purified virions of SPMV infections. Additionally, satS and satC RNAs contain conserved in-frame open reading frames in the complementary-sense sequences that could potentially generate 6.6- and 7.9-kDa proteins, respectively. In protoplasts and plants satS is infectious, when co-inoculated with the PMV RNA alone or PMV+SPMV RNAs, and negatively affects their accumulation.
Collapse
|
14
|
Omarov RT, Ciomperlik J, Scholthof HB. An in vitro reprogrammable antiviral RISC with size-preferential ribonuclease activity. Virology 2016; 490:41-8. [PMID: 26812224 DOI: 10.1016/j.virol.2015.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/29/2023]
Abstract
Infection of Nicotiana benthamiana plants with Tomato bushy stunt virus (TBSV) mutants compromised for silencing suppression induces formation of an antiviral RISC (vRISC) that can be isolated using chromatography procedures. The isolated vRISC sequence-specifically degrades TBSV RNA in vitro, its activity can be down-regulated by removing siRNAs, and re-stimulated by exogenous supply of siRNAs. vRISC is most effective at hydrolyzing the ~4.8kb genomic RNA, but less so for a ~2.2kb TBSV subgenomic mRNA (sgRNA1), while the 3' co-terminal sgRNA2 of ~0.9kb appears insensitive to vRISC cleavage. Moreover, experiments with in vitro generated 5' co-terminal viral transcripts show that RNAs of ~2.7kb are efficiently cleaved while those of ~1.1kb or shorter are unaffected. The isolated antiviral ribonuclease complex fails to degrade ~0.4kb defective interfering RNAs (DIs) in vitro, agreeing with findings that in plants DIs are not targeted by silencing.
Collapse
Affiliation(s)
- Rustem T Omarov
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, United States
| | - Jessica Ciomperlik
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, United States
| | - Herman B Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, United States.
| |
Collapse
|
15
|
Krupovic M, Kuhn JH, Fischer MG. A classification system for virophages and satellite viruses. Arch Virol 2015; 161:233-47. [PMID: 26446887 DOI: 10.1007/s00705-015-2622-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
Abstract
Satellite viruses encode structural proteins required for the formation of infectious particles but depend on helper viruses for completing their replication cycles. Because of this unique property, satellite viruses that infect plants, arthropods, or mammals, as well as the more recently discovered satellite-like viruses that infect protists (virophages), have been grouped with other, so-called "sub-viral agents." For the most part, satellite viruses are therefore not classified. We argue that possession of a coat-protein-encoding gene and the ability to form virions are the defining features of a bona fide virus. Accordingly, all satellite viruses and virophages should be consistently classified within appropriate taxa. We propose to create four new genera - Albetovirus, Aumaivirus, Papanivirus, and Virtovirus - for positive-sense single-stranded (+) RNA satellite viruses that infect plants and the family Sarthroviridae, including the genus Macronovirus, for (+)RNA satellite viruses that infect arthopods. For double-stranded DNA virophages, we propose to establish the family Lavidaviridae, including two genera, Sputnikvirus and Mavirus.
Collapse
Affiliation(s)
- Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France.
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | | |
Collapse
|
16
|
Lezzhov AA, Gushchin VA, Lazareva EA, Vishnichenko VK, Morozov SY, Solovyev AG. Translation of the shallot virus X TGB3 gene depends on non-AUG initiation and leaky scanning. J Gen Virol 2015; 96:3159-3164. [PMID: 26296665 DOI: 10.1099/jgv.0.000248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Triple gene block (TGB), a conserved gene module found in the genomes of many filamentous and rod-shaped plant viruses, encodes three proteins, TGB1, TGB2 and TGB3, required for viral cell-to-cell movement through plasmodesmata and systemic transport via the phloem. The genome of Shallot virus X, the type species of the genus Allexivirus, includes TGB1 and TGB2 genes, but contains no canonical ORF for TGB3 protein. However, a TGB3-like protein-encoding sequence lacking an AUG initiator codon has been found in the shallot virus X (ShVX) genome in a position typical for TGB3 genes. This putative TGB3 gene is conserved in all allexiviruses. Here, we carried out sequence analysis to predict possible non-AUG initiator codons in the ShVX TGB3-encoding sequence. We further used an agroinfiltration assay in Nicotiana benthamiana to confirm this prediction. Site-directed mutagenesis was used to demonstrate that the ShVX TGB3 could be translated on a bicistronic mRNA template via a leaky scanning mechanism.
Collapse
Affiliation(s)
- Alexander A Lezzhov
- Department of Genetics, Biotechnology, Plant Breeding and Seed Science, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Vladimir A Gushchin
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
- Genetic Department, Russian Center of Forest Health, Pushkino 141207, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
| | - Valery K Vishnichenko
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow 127550, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Andrey G Solovyev
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow 127550, Russia
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
17
|
Stewart CL, Pyle JD, Jochum CC, Vogel KP, Yuen GY, Scholthof KBG. Multi-Year Pathogen Survey of Biofuel Switchgrass Breeding Plots Reveals High Prevalence of Infections by Panicum mosaic virus and Its Satellite Virus. PHYTOPATHOLOGY 2015; 105:1146-1154. [PMID: 25894317 DOI: 10.1094/phyto-03-15-0062-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Switchgrass (Panicum virgatum) cultivars are currently under development as lignocellulosic feedstock. Here we present a survey of three established switchgrass experimental nurseries in Nebraska in which we identified Panicum mosaic virus (PMV) as the most prevalent virus. In 2012, 72% of 139 symptomatic plants tested positive for PMV. Of the PMV-positive samples, 19% were coinfected with its satellite virus (SPMV). Less than 14% of all sampled plants in 2012 were positive for four additional viruses known to infect switchgrass. In 2013, randomized sampling of switchgrass individuals from the same 2012 breeding plots revealed that infection by PMV or PMV+SPMV was both more prevalent and associated with more severe symptoms in the cultivar Summer, and experimental lines with Summer parentage, than populations derived from the cultivar Kanlow. A 3-year analysis, from 2012 to 2014, showed that previously uninfected switchgrass plants acquire PMV or PMV+SPMV between harvest cycles. In contrast, some plants apparently did not maintain PMV infections at detectable levels from year-to-year. These findings suggest that PMV and SPMV should be considered important pathogens of switchgrass and serious potential threats to biofuel crop production efficiency.
Collapse
Affiliation(s)
- Catherine L Stewart
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| | - Jesse D Pyle
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| | - Charlene C Jochum
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| | - Kenneth P Vogel
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| | - Gary Y Yuen
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| | - Karen-Beth G Scholthof
- First, third, and fifth authors: Plant Pathology Department, University of Nebraska-Lincoln, 406 Plant Sciences Hall, Lincoln 68583-0722; second and sixth authors: Department of Plant Pathology & Microbiology, Texas A&M University, College Station 77843; and fourth author: Agricultural Research Service, USDA & Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 137 Keim Hall, Lincoln 68583-0937
| |
Collapse
|
18
|
Smirnova E, Firth AE, Miller WA, Scheidecker D, Brault V, Reinbold C, Rakotondrafara AM, Chung BYW, Ziegler-Graff V. Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement. PLoS Pathog 2015; 11:e1004868. [PMID: 25946037 PMCID: PMC4422679 DOI: 10.1371/journal.ppat.1004868] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/08/2015] [Indexed: 02/03/2023] Open
Abstract
Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5’ end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement. In order to maximize coding capacity, RNA viruses often encode overlapping genes and use unusual translational control mechanisms. Plant viruses express proteins required for movement of the virus through the plant, often from non-canonically translated open reading frames (ORFs). Viruses in the economically important Luteoviridae family are confined to the phloem (vascular) tissue, probably due to their specialized phloem-specific movement proteins. These proteins are translated from one viral mRNA, sgRNA1, via initiation at more than one AUG codon to express overlapping genes, and by ribosomal read-through of a stop codon. Here, we describe yet another gene translated from sgRNA1, ORF3a. Translation of ORF3a initiates at a non-standard (not AUG) start codon. We found that ORF3a is not required for viral genome replication, but is required for long-distance movement of the virus in the plant. The movement function could be restored in trans by providing the ORF3a product, P3a, from another viral or plasmid vector. P3a localizes in the Golgi apparatus and adjacent to the plasmodesmata, supporting a role in intercellular movement. In summary, we used a powerful bioinformatic tool to discover a cryptic gene whose product is required for movement of a phloem-specific plant virus, revealing multiple levels of translational control that regulate expression of four proteins from a single mRNA.
Collapse
Affiliation(s)
- Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (AEF); (WAM); (VZG)
| | - W. Allen Miller
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (AEF); (WAM); (VZG)
| | - Danièle Scheidecker
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | | | | | - Aurélie M. Rakotondrafara
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Betty Y.-W. Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
- * E-mail: (AEF); (WAM); (VZG)
| |
Collapse
|
19
|
Mandadi KK, Pyle JD, Scholthof KBG. Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveals conserved and unique outcomes among C3 and C4 plant defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1277-1290. [PMID: 25296115 DOI: 10.1094/mpmi-05-14-0152-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Viral diseases cause significant losses in global agricultural production, yet little is known about grass antiviral defense mechanisms. We previously reported on host immune responses triggered by Panicum mosaic virus (PMV) and its satellite virus (SPMV) in the model C3 grass Brachypodium distachyon. To aid comparative analyses of C3 and C4 grass antiviral defenses, here, we establish B. distachyon and Setaria viridis (a C4 grass) as compatible hosts for seven grass-infecting viruses, including PMV and SPMV, Brome mosaic virus, Barley stripe mosaic virus, Maize mild mottle virus, Sorghum yellow banding virus, Wheat streak mosaic virus (WSMV), and Foxtail mosaic virus (FoMV). Etiological and molecular characterization of the fourteen grass-virus pathosystems showed evidence for conserved crosstalk among salicylic acid (SA), jasmonic acid, and ethylene pathways in B. distachyon and S. viridis. Strikingly, expression of PHYTOALEXIN DEFICIENT4, an upstream modulator of SA signaling, was consistently suppressed during most virus infections in B. distachyon and S. viridis. Hierarchical clustering analyses further identified unique antiviral responses triggered by two morphologically similar viruses, FoMV and WSMV, and uncovered other host-dependent effects. Together, the results of this study establish B. distachyon and S. viridis as models for the analysis of plant-virus interactions and provide the first framework for conserved and unique features of C3 and C4 grass antiviral defenses.
Collapse
|
20
|
Scheets K. Infectious transcripts of an asymptomatic panicovirus identified from a metagenomic survey. Virus Res 2013; 176:161-8. [DOI: 10.1016/j.virusres.2013.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022]
|
21
|
Makino DL, Larson SB, McPherson A. The crystallographic structure of Panicum Mosaic Virus (PMV). J Struct Biol 2013; 181:37-52. [PMID: 23123270 PMCID: PMC3525795 DOI: 10.1016/j.jsb.2012.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/25/2012] [Accepted: 10/01/2012] [Indexed: 11/21/2022]
Abstract
The structure of Panicum Mosaic Virus (PMV) was determined by X-ray diffraction analysis to 2.9Å resolution. The crystals were of pseudo symmetry F23; the true crystallographic unit cell was of space group P2(1) with a=411.7Å, b=403.9Å and c=412.5Å, with β=89.7°. The asymmetric unit was two entire T=3 virus particles, or 360 protein subunits. The structure was solved by conventional molecular replacement from two distant homologues, Cocksfoot Mottle Virus (CfMV) and Tobacco Necrosis Virus (TNV), of ∼20% sequence identity followed by phase extension. The model was initially refined with exact icosahedral constraints and then with icosahedral restraints. The virus has Ca(++) ions octahedrally coordinated by six aspartic acid residues on quasi threefold axes, which is completely different than for either CfMV or TNV. Amino terminal residues 1-53, 1-49 and 1-21 of the A, B and C subunits, respectively, and the four C-terminal residues (239-242) are not visible in electron density maps. The additional ordered residues of the C chain form a prominent "arm" that intertwines with symmetry equivalent "arms" at icosahedral threefold axes, as was seen in both CfMV and TNV. A 17 nucleotide hairpin segment of genomic RNA is icosahedrally ordered and bound at 60 equivalent sites at quasi twofold A-B subunit interfaces at the interior surface of the capsid. This segment of RNA may serve as a conformational switch for coat protein subunits, as has been proposed for similar RNA segments in other viruses.
Collapse
Affiliation(s)
- Debora L. Makino
- Department of Molecular Biology and Biochemistry, The University of California, Irvine, California 92697-3900
| | - Steven B. Larson
- Department of Molecular Biology and Biochemistry, The University of California, Irvine, California 92697-3900
| | - Alexander McPherson
- Department of Molecular Biology and Biochemistry, The University of California, Irvine, California 92697-3900
| |
Collapse
|
22
|
Mandadi KK, Scholthof KBG. Characterization of a viral synergism in the monocot Brachypodium distachyon reveals distinctly altered host molecular processes associated with disease. PLANT PHYSIOLOGY 2012; 160:1432-52. [PMID: 22961132 PMCID: PMC3490591 DOI: 10.1104/pp.112.204362] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/30/2012] [Indexed: 05/05/2023]
Abstract
Panicum mosaic virus (PMV) and its satellite virus (SPMV) together infect several small grain crops, biofuel, and forage and turf grasses. Here, we establish the emerging monocot model Brachypodium (Brachypodium distachyon) as an alternate host to study PMV- and SPMV-host interactions and viral synergism. Infection of Brachypodium with PMV+SPMV induced chlorosis and necrosis of leaves, reduced seed set, caused stunting, and lowered biomass, more than PMV alone. Toward gaining a molecular understanding of PMV- and SPMV-affected host processes, we used a custom-designed microarray and analyzed global changes in gene expression of PMV- and PMV+SPMV-infected plants. PMV infection by itself modulated expression of putative genes functioning in carbon metabolism, photosynthesis, metabolite transport, protein modification, cell wall remodeling, and cell death. Many of these genes were additively altered in a coinfection with PMV+SPMV and correlated to the exacerbated symptoms of PMV+SPMV coinfected plants. PMV+SPMV coinfection also uniquely altered expression of certain genes, including transcription and splicing factors. Among the host defenses commonly affected in PMV and PMV+SPMV coinfections, expression of an antiviral RNA silencing component, SILENCING DEFECTIVE3, was suppressed. Several salicylic acid signaling components, such as pathogenesis-related genes and WRKY transcription factors, were up-regulated. By contrast, several genes in jasmonic acid and ethylene responses were down-regulated. Strikingly, numerous protein kinases, including several classes of receptor-like kinases, were misexpressed. Taken together, our results identified distinctly altered immune responses in monocot antiviral defenses and provide insights into monocot viral synergism.
Collapse
Affiliation(s)
- Kranthi K. Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, Texas 77843
| | - Karen-Beth G. Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, Texas 77843
| |
Collapse
|
23
|
Crivelli G, Ciuffo M, Genre A, Masenga V, Turina M. Reverse genetic analysis of Ourmiaviruses reveals the nucleolar localization of the coat protein in Nicotiana benthamiana and unusual requirements for virion formation. J Virol 2011; 85:5091-104. [PMID: 21411534 PMCID: PMC3126195 DOI: 10.1128/jvi.02565-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 03/07/2011] [Indexed: 01/27/2023] Open
Abstract
Ourmia melon virus (OuMV) is the type member of the genus Ourmiavirus. These viruses have a trisegmented genome, each part of which encodes a single protein. Ourmiaviruses share a distant similarity with other plant viruses only in their movement proteins (MP), whereas their RNA-dependent RNA polymerase (RdRP) shares features only with fungal viruses of the family Narnaviridae. Thus, ourmiaviruses are in a unique phylogenetic position among existing plant viruses. Here, we developed an agroinoculation system to launch infection in Nicotiana benthamiana plants. Using different combinations of the three segments, we demonstrated that RNA1 is necessary and sufficient for cis-acting replication in the agroinfiltrated area. RNA2 and RNA3, encoding the putative movement protein and the coat protein (CP), respectively, are both necessary for successful systemic infection of N. benthamiana. The CP is dispensable for long-distance transport of the virus through vascular tissues, but its absence prevents efficient systemic infection at the exit sites. Virion formation occurred only when the CP was translated from replication-derived RNA3. Transient expression of a green fluorescent protein-MP (GFP-MP) fusion via agroinfiltration showed that the MP is present in cytoplasmic connections across plant cell walls; in protoplasts the GFP-MP fusion stimulates the formation of tubular protrusions. Expression through agroinfiltration of a GFP-CP fusion displays most of the fluorescence inside the nucleus and within the nucleolus in particular. Nuclear localization of the CP was also confirmed through Western blot analysis of purified nuclei. The significance of several unusual properties of OuMV for replication, virion assembly, and movement is discussed in relation to other positive-strand RNA viruses.
Collapse
Affiliation(s)
| | | | - Andrea Genre
- Dipartimento di Biologia Vegetale, Universitá di Torino, Torino, Italy
| | - Vera Masenga
- Istituto di Virologia Vegetale, CNR, Torino, Italy
| | | |
Collapse
|
24
|
Everett AL, Scholthof HB, Scholthof KBG. Satellite panicum mosaic virus coat protein enhances the performance of plant virus gene vectors. Virology 2009; 396:37-46. [PMID: 19903565 DOI: 10.1016/j.virol.2009.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/09/2009] [Accepted: 10/03/2009] [Indexed: 01/16/2023]
Abstract
The coat protein of satellite panicum mosaic virus (SPCP) is known to effectively protect its cognate RNA from deleterious events, and here, we tested its stabilizing potential for heterologous virus-based gene vectors in planta. In support of this, a Potato virus X (PVX) vector carrying the SPMV capsid protein (PVX-SPCP) gene was stable for at least three serial systemic passages through Nicotiana benthamiana. To test the effect of SPCP in trans, PVX-SPCP was co-inoculated onto N. benthamiana together with a Tomato bushy stunt virus (TBSV) vector carrying a green fluorescent protein (GFP) gene that normally does not support systemic GFP expression. In contrast, co-inoculation of TBSV-GFP plus PVX-SPCP resulted in GFP accumulation and concomitant green fluorescent spots in upper, non-inoculated leaves in a temperature-responsive manner. These results suggest that the multifaceted SPMV CP has intriguing effects on virus-host interactions that surface in heterologous systems.
Collapse
Affiliation(s)
- Anthany L Everett
- Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
25
|
Nam M, Kim SM, Domier LL, Koh S, Moon JK, Choi HS, Kim HG, Moon JS, Lee SH. Nucleotide sequence and genomic organization of a newly identified member of the genus Carmovirus, soybean yellow mottle mosaic virus, from soybean. Arch Virol 2009; 154:1679-84. [PMID: 19701603 DOI: 10.1007/s00705-009-0480-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 06/26/2009] [Indexed: 11/30/2022]
Abstract
The viral genome of soybean yellow mottle mosaic virus (SYMMV) from infected soybean (Glycine max) in Korea was cloned and sequenced. The complete monopartite single-stranded RNA genome of SYMMV consists of 4009 base pairs with six putative open reading frames and includes 5'- and 3'-untranslated regions of 39 and 229 nucleotides, respectively. The nucleotide and coat protein sequences of SYMMV share the highest sequence identity with those of cowpea mottle virus. Based on its genomic organization, its predicted amino acid sequence, and its phylogenetic relatedness to known carmoviruses, we report that SYMMV is a new member of the genus Carmovirus in the family Tombusviridae.
Collapse
Affiliation(s)
- Moon Nam
- Agricultural Microbiology Division, National Academy of Agricultural Science, RDA, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Comparative sequence analysis and serological and infectivity studies indicate that cocksfoot mild mosaic virus is a member of the genus Panicovirus. Arch Virol 2009; 154:1545-9. [PMID: 19693646 DOI: 10.1007/s00705-009-0468-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
Abstract
The complete nucleotide sequence of the Phleum isolate of cocksfoot mild mosaic virus (CMMV-P) and the coat protein sequence of the cocksfoot isolate (CMMV-1) were determined. Comparative sequence analysis revealed a close relationship with Panicum mosaic virus (PMV; genus Panicovirus), and together with serological studies, the work supports the classification of CMMV in the family Tombusviridae, genus Panicovirus rather than, as is currently proposed, the genus Sobemovirus. A full-length cDNA clone was prepared, and RNA transcripts synthesised from cDNA were shown to be infectious when inoculated to Hordeum vulgare.
Collapse
|
27
|
Castaño A, Ruiz L, Hernández C. Insights into the translational regulation of biologically active open reading frames of Pelargonium line pattern virus. Virology 2009; 386:417-26. [PMID: 19217134 DOI: 10.1016/j.virol.2009.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/13/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Pelargonium line pattern virus (PLPV), a proposed member of a prospective genus (Pelarspovirus) within family Tombusviridae, has a positive-sense, single-stranded genomic RNA. According to previous predictions, it contains six open reading frames (ORFs) potentially encoding proteins of 27 (p27), 13 (p13), 87 (p87), 7 (p7), 6 (p6), and 37 kDa (p37). Using a variety of techniques we demonstrate that all predicted ORFs are functional, with the exception of (p13) and (p6). We also characterize a previously unidentified ORF which encodes a 9.7 kDa protein (p9.7) that is essential for viral movement. Furthermore, we present evidence that the single subgenomic RNA (sgRNA) produced by the virus directs synthesis of p7, p9.7 and p37. Remarkably, the translation of these totally unrelated proteins is coordinated via leaky-scanning. This mechanism seems to be favoured by the poor translation context of the start codon of ORF(p7), the non-AUG weak initiation codon of ORF(p9.7) and the lack of additional AUG codons in any reading frame preceding ORF(p37). The results also suggest that precise regulation of protein production from the sgRNA is critical for virus viability. Altogether, the data supports the notion that PLPV belongs to a new genus of plant viruses.
Collapse
Affiliation(s)
- Aurora Castaño
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-UPV), Campus Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022 Valencia, Spain
| | | | | |
Collapse
|
28
|
Scofield SR, Nelson RS. Resources for virus-induced gene silencing in the grasses. PLANT PHYSIOLOGY 2009; 149:152-7. [PMID: 19126708 PMCID: PMC2613721 DOI: 10.1104/pp.108.128702] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/06/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Steven R Scofield
- U.S. Department of Agriculture-Agricultural Research Service, Crop Production and Pest Control Unit, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
29
|
Ciuffo M, Tavella L, Pacifico D, Masenga V, Turina M. A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum convolvulus). Arch Virol 2008; 153:2059-68. [DOI: 10.1007/s00705-008-0228-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/24/2008] [Indexed: 11/30/2022]
|
30
|
Qi D, Scholthof KBG. Multiple activities associated with the capsid protein of satellite panicum mosaic virus are controlled separately by the N- and C-terminal regions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:613-621. [PMID: 18393621 DOI: 10.1094/mpmi-21-5-0613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The 17-kDa capsid protein (CP) of satellite panicum mosaic virus (SPMV) contains a distinct N-terminal arginine-rich motif (N-ARM) which is required for SPMV virion assembly and the activity of SPMV CP to promote systemic accumulation of its cognate RNA. The present study indicates that SPMV CP also is involved in SPMV RNA accumulation in inoculated leaves and that this activity is also dependent on a functional N-ARM. In addition, deletions of a C-terminal region abolish virion assembly and impair SPMV RNA accumulation in both inoculated and systemic leaves. Unlike the N-ARM mutations, substantial deletions of the SPMV CP C-terminus do not affect SPMV RNA binding activity. Interestingly, SPMV CP also binds Panicum mosaic virus genomic RNA via N-ARM-mediated CP:RNA interactions. Mutations of the N-ARM and the C-terminal regions significantly reduce SPMV CP titers and result in symptom attenuation. In contrast, virions were not associated per se with symptom exacerbation or successful SPMV RNA accumulation. The results show the existence of a correlation between N- and C-termini-mediated contributions for CP accumulation, symptom induction, defective-interfering RNA accumulation, and temperature sensitivity of SPMV RNA maintenance. The data provide further evidence that SPMV CP has multiple roles during infection, which might involve the formation of nonvirion CP:RNA complexes whose stability is controlled in a biologically relevant manner by the N- and C-termini of the CP.
Collapse
Affiliation(s)
- Dong Qi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA
| | | |
Collapse
|
31
|
The complex subcellular distribution of satellite panicum mosaic virus capsid protein reflects its multifunctional role during infection. Virology 2008; 376:154-64. [PMID: 18440039 DOI: 10.1016/j.virol.2008.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/02/2008] [Accepted: 03/16/2008] [Indexed: 11/20/2022]
Abstract
Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus for replication and movement in host plants. The positive-sense single-stranded genomic RNA of SPMV encodes a 17-kDa capsid protein (CP) to form 16-nm virions. We determined that SPMV CP accumulates in both cytosolic and non-cytosolic fractions, but cytosolic accumulation of SPMV CP is exclusively associated with virions. An N-terminal arginine-rich motif (N-ARM) on SPMV CP is used to bind its cognate RNA and to form virus particles. Intriguingly, virion formation is dispensable for successful systemic SPMV RNA accumulation, yet this process still depends on an intact N-ARM. In addition, a C-terminal domain on the SPMV CP is necessary for self-interaction. Biochemical fractionation and fluorescent microscopy of green fluorescent protein-tagged SPMV CP demonstrated that the non-cytosolic SPMV CP is associated with the cell wall, the nucleus and other membranous organelles. To our knowledge, this is the first report that a satellite virus CP not only accumulates exclusively as virions in the cytosol but also is directed to the nucleolus and membranes. That SPMV CP is found both in the nucleus and the cell wall suggests its involvement in viral nuclear import and cell-to-cell transport.
Collapse
|
32
|
Turina M, Ricker MD, Lenzi R, Masenga V. A Severe Disease of Tomato in the Culiacan Area (Sinaloa, Mexico) Is Caused by a New Picorna-Like Viral Species. PLANT DISEASE 2007; 91:932-941. [PMID: 30780425 DOI: 10.1094/pdis-91-8-0932] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We were able to mechanically transmit a small isometric virus from field tomato samples showing severe necrotic symptoms, collected in the Culiacan area of Sinaloa state (Mexico). After gradient purification and three rounds of single-lesion passage on Chenopodium quinoa, the virus was back-inoculated to tomato plants and reproduced the original apical necrosis symptoms. The virus could be transmitted to a wide range of experimental hosts, including a number of solanaceous plants. Purified virus was used to produce specific polyclonal rabbit antibodies and serological tests such as enzyme-linked immunosorbent assay, Western blot analysis, and an immunochromatographic lateral flow assay. Such assays confirmed the wide distribution of this virus in symptomatic field plants in the area of the epidemic. Purified particles contained two genomic RNA molecules of ca. 7 kb (RNA1) and 5 kb (RNA2) estimated length. Analysis of clones from a cDNA library provided 6.5 and 3.0 kb of sequence for RNA1 and RNA2, respectively. Sequence analysis of the encoded replicase showed greatest similarity with members of the Sequiviridae family, and indicated that the virus we isolated is a new virus species, provisionally named Tomato apex necrosis virus.
Collapse
Affiliation(s)
- M Turina
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | | | - R Lenzi
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - V Masenga
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
33
|
Margaria P, Ciuffo M, Pacifico D, Turina M. Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:547-58. [PMID: 17506332 DOI: 10.1094/mpmi-20-5-0547] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
All known pepper cultivars resistant to Tomato spotted wilt virus (TSWV) possess a single dominant resistance gene, Tsw. Recently, naturally occurring resistance-breaking (RB) TSWV strains have been identified, causing major concerns. We used a collection of such strains to identify the specific genetic determinant that allows the virus to overcome the Tsw gene in Capsicum spp. A reverse genetic approach is still not feasible for TSWV; therefore, we analyzed reassortants between wild-type (WT) and RB strains. Our results confirmed that the S RNA, which encodes both the nucleocapsid protein (N) and a nonstructural protein (NSs), carries the genetic determinant responsible for Tsw resistance breakdown. We then used full-length S RNA segments or the proteins they encode to compare the sequences of WT and related RB strains, and obtained indirect evidence that the NSs protein is the avirulence factor in question. Transient expression of NSs protein from WT and RB strains showed that they both can equally suppress post-transcriptional gene silencing (PTGS). Moreover, biological characterization of two RB strains carrying deletions in the NSs protein showed that NSs is important in maintaining TSWV infection in newly emerging leaves over time, preventing recovery. Analysis of another RB strain phenotype allowed us to conclude that local necrotic response is not sufficient for resistance in Capsicum spp. carrying the Tsw gene.
Collapse
Affiliation(s)
- P Margaria
- Istituto di Virologia Vegetale, Sez. di Torino, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | | | | | | |
Collapse
|
34
|
Turina M, Ciuffo M, Lenzi R, Rostagno L, Mela L, Derin E, Palmano S. Characterization of Four Viral Species Belonging to the Family Potyviridae Isolated from Ranunculus asiaticus. PHYTOPATHOLOGY 2006; 96:560-566. [PMID: 18943173 DOI: 10.1094/phyto-96-0560] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Four different viral species were isolated from diseased Ranunculus asiaticus plants growing in Imperia Province (Italian Riviera-Liguria Region). Infected plants exhibited mosaic symptoms and growth abnormalities. The viruses were mechanically inoculated to a range of herbaceous hosts and differentiated biologically. Long flexuous particles were present in leaf dip extracts observed by electron microscopy. A general protocol for the amplification of potyvirus genome fragments through reverse transcription-polymerase chain reaction generated products that were cloned and sequenced. Sequence and phylogenetic analysis suggested that three of these isolates could be considered new viral species belonging to the genus Potyvirus. The fourth isolate is a new member of the genus Macluravirus. Purified virus was used as antigen to produce a specific polyclonal antiserum in rabbit; serological features were established through double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), antigen coated plate (ACP)-ELISA, and western blot analysis. DAS-ELISA was highly specific for each virus isolate, whereas some cross-reactivity was shown in ACP-ELISA and western blot analysis. Aphid transmission by Myzus persicae was demonstrated in a controlled environment for each of the four viral isolates, whereas no transmission through seed was observed.
Collapse
|
35
|
Batten JS, Desvoyes B, Yamamura Y, Scholthof KBG. A translational enhancer element on the 3'-proximal end of the Panicum mosaic virus genome. FEBS Lett 2006; 580:2591-7. [PMID: 16647707 DOI: 10.1016/j.febslet.2006.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/22/2006] [Accepted: 04/03/2006] [Indexed: 11/27/2022]
Abstract
Panicum mosaic virus (PMV) is a single-stranded positive-sense RNA virus in the family Tombusviridae. PMV genomic RNA (gRNA) and subgenomic RNA (sgRNA) are not capped or polyadenylated. We have determined that PMV uses a cap-independent mechanism of translation. A 116-nucleotide translational enhancer (TE) region on the 3'-untranslated region of both the gRNA and sgRNA has been identified. The TE is required for efficient translation of viral proteins in vitro. For mutants with a compromised TE, addition of cap analog, or transposition of the cis-active TE to another location, both restored translational competence of the 5'-proximal sgRNA genes in vitro.
Collapse
Affiliation(s)
- Jeffrey S Batten
- Department of Plant Pathology and Microbiology, Texas A&M University College Station, 77843-2132, USA
| | | | | | | |
Collapse
|
36
|
Batten JS, Turina M, Scholthof KBG. Panicovirus accumulation is governed by two membrane-associated proteins with a newly identified conserved motif that contributes to pathogenicity. Virol J 2006; 3:12. [PMID: 16524473 PMCID: PMC1421387 DOI: 10.1186/1743-422x-3-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 03/08/2006] [Indexed: 01/08/2023] Open
Abstract
Panicum mosaic virus (PMV) has a positive-sense, single-stranded RNA genome that serves as the mRNA for two 5'-proximal genes, p48 and p112. The p112 open reading frame (ORF) has a GDD-motif, a feature of virus RNA-dependent RNA polymerases. Replication assays in protoplasts showed that p48 and p112 are sufficient for replication of PMV and its satellite virus (SPMV). Differential centrifugation of extracts from PMV-infected plants showed that the p48 and p112 proteins are membrane-associated. The same fractions exhibited RNA polymerase activity in vitro on viral RNA templates, suggesting that p48 and p112 represent the viral replication proteins. Moreover, we identified a domain spanning amino acids 306 to 405 on the p48 and p112 PMV ORFs that is common to the Tombusviridae. Alanine scanning mutagenesis of the conserved domain (CD) revealed that several substitutions were lethal or severely debilitated PMV accumulation. Other substitutions did not affect RNA accumulation, yet they caused variable phenotypes suggestive of plant-dependent effects on systemic invasion and symptom induction. The mutants that were most debilitating to PMV replication were hydrophobic amino acids that we hypothesize are important for membrane localization and functional replicase activity.
Collapse
Affiliation(s)
- Jeffrey S Batten
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
- G.C. Hawley Middle School, Creedmoor, NC, USA
| | - Massimo Turina
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
- Istituto di Virologia Vegetale, Torino, Italy
| | - Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
37
|
Skare JM, Wijkamp I, Denham I, Rezende JAM, Kitajima EW, Park JW, Desvoyes B, Rush CM, Michels G, Scholthof KBG, Scholthof HB. A new eriophyid mite-borne membrane-enveloped virus-like complex isolated from plants. Virology 2006; 347:343-53. [PMID: 16412487 DOI: 10.1016/j.virol.2005.11.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 09/14/2005] [Accepted: 11/21/2005] [Indexed: 11/26/2022]
Abstract
A decade ago, a new mite-transmitted disease was described on wheat (Triticum aesativum) and maize (Zea mays) that due to its geographical location was referred to as High Plains Disease (HPD). To determine the etiology, we established colonies of HPD pathogen-transmitting eriophyid wheat curl mites (Aceria tosichella) on wheat plants for maintenance of a continuous source of infected material. Analyses of nucleic acid obtained from infected plants showed the presence of HPD-specific RNAs ranging from 1.5 to 8 kilobases, but comparisons between the sequence of cDNAs and the databases did not reveal any clear identity with known viruses. We demonstrate that a diagnostic HPD-specific 32-kDa protein that accumulates in plants is encoded by a small RNA species (RNA-s). Upon infestation of upper wheat parts with viruliferous mites, the RNA-s encoded protein becomes detectable within a few days in the roots, indicative of an effective virus-like mode of transport. Membranous particles, resembling those observed in thin sections of infected plants, were isolated and shown to envelope a thread-like ribonucleoprotein complex containing the RNA-s encoded 32-kDa protein. This complex was associated with single-stranded (-)-sense RNAs, whereas free (+)-sense RNA was only detected in total RNA of infected plants. Based on the collective properties, we conclude that HPD is caused by a newly emerged mite-borne virus, for which we propose the name Maize red stripe virus (MRStV).
Collapse
Affiliation(s)
- Joanna M Skare
- Department of Plant Pathology and Microbiology, Texas A&M University, TX 77843, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Omarov RT, Qi D, Scholthof KBG. The capsid protein of satellite Panicum mosaic virus contributes to systemic invasion and interacts with its helper virus. J Virol 2005; 79:9756-64. [PMID: 16014937 PMCID: PMC1181559 DOI: 10.1128/jvi.79.15.9756-9764.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus (PMV) for replication and spread in host plants. The SPMV RNA encodes a 17-kDa capsid protein (CP) that is essential for formation of its 16-nm virions. The results of this study indicate that in addition to the expression of the full-length SPMV CP from the 5'-proximal AUG start codon, SPMV RNA also expresses a 9.4-kDa C-terminal protein from the third in-frame start codon. Differences in solubility between the full-length protein and its C-terminal product were observed. Subcellular fractionation of infected plant tissues showed that SPMV CP accumulates in the cytosol, cell wall-, and membrane-enriched fractions. However, the 9.4-kDa protein exclusively cofractionated with cell wall- and membrane-enriched fractions. Earlier studies revealed that the 5'-untranslated region (5'-UTR) from nucleotides 63 to 104 was associated with systemic infection in a host-specific manner in millet plants. This study shows that nucleotide deletions and insertions in the 5'-UTR plus simultaneous truncation of the N-terminal part of the CP impaired SPMV spread in foxtail millet, but not in proso millet plants. In contrast, the expression of the full-length version of SPMV CP efficiently compensated the negative effect of the 5'-UTR deletions in foxtail millet. Finally, immunoprecipitation assays revealed the presence of a specific interaction between the capsid proteins of SPMV and its helper virus (PMV). Our findings show that the SPMV CP has several biological functions, including facilitating efficient satellite virus infection and movement in millet plants.
Collapse
Affiliation(s)
- Rustem T Omarov
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, 77843-2132, USA
| | | | | |
Collapse
|
39
|
Qiu W, Scholthof KBG. Satellite panicum mosaic virus capsid protein elicits symptoms on a nonhost plant and interferes with a suppressor of virus-induced gene silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:263-71. [PMID: 15000393 DOI: 10.1094/mpmi.2004.17.3.263] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The capsid protein (CP) of satellite panicum mosaic virus (SPMV) has been implicated as a pathogenicity factor, inducing severe chlorosis on millet plants co-infected with SPMV and its helper virus, Panicum mosaic virus (PMV). In this study, we tested the effects of SPMV CP on Nicotiana benthamiana, a plant that does not support PMV+SPMV infections. SPMV CP expressed from a Potato virus X (PVX) gene vector elicited necrotic lesions on N. benthamiana. Pathogenicity factors often have the additional feature of acting as suppressors of gene silencing; therefore, several assays were developed to test if SPMV CP could act in such a capacity. The results showed that SPMV CP failed to act as a suppressor of posttranscriptional gene silencing when such tests were performed with transgenic N. benthamiana plants silenced for green fluorescent protein (GFP) expression by agroinfiltration or plant virus vectors. However SPMV CP expressed from the PVX gene vector did interfere with suppressor activity associated with PVX p25. This included a rebounded level of GFP silencing along the vascular tissues, including the veins on upper noninoculated leaves. Therefore, the roles of the SPMV CP now include encapsidation of the SPMV RNA, activity as a pathogenicity factor in both host and nonhost plants, and the enigmatic feature of interfering with suppression of gene silencing.
Collapse
Affiliation(s)
- Wenping Qiu
- Department of Fruit Science, Southwest Missouri State University, Mountain Grove 65711, USA
| | | |
Collapse
|
40
|
Ayllón MA, Gowda S, Satyanarayana T, Karasev AV, Adkins S, Mawassi M, Guerri J, Moreno P, Dawson WO. Effects of modification of the transcription initiation site context on citrus tristeza virus subgenomic RNA synthesis. J Virol 2003; 77:9232-43. [PMID: 12915539 PMCID: PMC187412 DOI: 10.1128/jvi.77.17.9232-9243.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Citrus tristeza virus (CTV), a member of the Closteroviridae, has a positive-sense RNA genome of about 20 kb organized into 12 open reading frames (ORFs). The last 10 ORFs are expressed through 3'-coterminal subgenomic RNAs (sgRNAs) regulated in both amounts and timing. Additionally, relatively large amounts of complementary sgRNAs are produced. We have been unable to determine whether these sgRNAs are produced by internal promotion from the full-length template minus strand or by transcription from the minus-stranded sgRNAs. Understanding the regulation of 10 sgRNAs is a conceptual challenge. In analyzing commonalities of a replicase complex in producing so many sgRNAs, we examined initiating nucleotides of the sgRNAs. We mapped the 5' termini of intermediate- (CP and p13) and low- (p18) produced sgRNAs that, like the two highly abundant sgRNAs (p20 and p23) previously mapped, all initiate with an adenylate. We then examined modifications of the initiation site, which has been shown to be useful in defining mechanisms of sgRNA synthesis. Surprisingly, mutation of the initiating nucleotide of the CTV sgRNAs did not prevent sgRNA accumulation. Based on our results, the CTV replication complex appears to initiate sgRNA synthesis with purines, preferably with adenylates, and is able to initiate synthesis using a nucleotide a few positions 5' or 3' of the native initiation nucleotide. Furthermore, the context of the initiation site appears to be a regulatory mechanism for levels of sgRNA production. These data do not support either of the established mechanisms for synthesis of sgRNAs, suggesting that CTV sgRNA production utilizes a different mechanism.
Collapse
Affiliation(s)
- María A Ayllón
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, Lake Alfred, Florida 33850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Desvoyes B, Faure-Rabasse S, Chen MH, Park JW, Scholthof HB. A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein. PLANT PHYSIOLOGY 2002; 129:1521-32. [PMID: 12177465 PMCID: PMC166740 DOI: 10.1104/pp.004754] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2002] [Accepted: 03/27/2002] [Indexed: 05/20/2023]
Abstract
Tomato bushy stunt virus and its cell-to-cell movement protein (MP; P22) provide valuable tools to study trafficking of macromolecules through plants. This study shows that wild-type P22 and selected movement-defective P22 amino acid substitution mutants were equivalent for biochemical features commonly associated with MPs (i.e. RNA binding, phosphorylation, and membrane partitioning). This generated the hypothesis that their movement defect was caused by improper interaction between the P22 mutants and one or more host factors. To test this, P22 was used as bait in a yeast (Saccharomyces cerevisiae) two-hybrid screen with a tobacco (Nicotiana tabacum) cDNA library, which identified a new plant homeodomain leucine-zipper protein that reproducibly interacted with P22 but not with various control proteins. These results were confirmed with an independent in vitro binding test. An mRNA for the host protein was detected in plants, and its accumulation was enhanced upon Tomato bushy stunt virus infection of two plant species. The significance of this interaction was further demonstrated by the failure of the homeodomain protein to interact efficiently with two of the well-defined movement-deficient P22 mutants in yeast and in vitro. This is the first report, to our knowledge, that a new plant homeodomain leucine-zipper protein interacts specifically and in a functionally relevant manner with a plant virus MP.
Collapse
Affiliation(s)
- Bénédicte Desvoyes
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
42
|
Qiu W, Scholthof KB. Defective interfering RNAs of a satellite virus. J Virol 2001; 75:5429-32. [PMID: 11333930 PMCID: PMC114954 DOI: 10.1128/jvi.75.11.5429-5432.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2000] [Accepted: 03/07/2001] [Indexed: 11/20/2022] Open
Abstract
Panicum mosaic virus (PMV) is a recently molecularly characterized RNA virus with the unique feature of supporting the replication of two subviral RNAs in a few species of the family Gramineae. The subviral agents include a satellite RNA (satRNA) that is devoid of a coding region and the unrelated satellite panicum mosaic virus (SPMV) that encodes its own capsid protein. Here we report the association of this complex with a new entity in the RNA world, a defective-interfering RNA (DI) of a satellite virus. The specificity of interactions governing this four-component viral system is illustrated by the ability of the SPMV DIs to strongly interfere with the accumulation of the parental SPMV. The SPMV DIs do not interfere with PMV satRNA, but they do slightly enhance the rate of spread and titer of PMV. The SPMV-derived DIs provide an additional avenue by which to investigate fundamental biological questions, including the evolution and interactions of infectious RNAs.
Collapse
Affiliation(s)
- W Qiu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA
| | | |
Collapse
|
43
|
Qiu W, Scholthof KB. Genetic identification of multiple biological roles associated with the capsid protein of satellite panicum mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:21-30. [PMID: 11194868 DOI: 10.1094/mpmi.2001.14.1.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Satellite panicum mosaic virus (SPMV), an 824-nucleotide, positive-sense, single-stranded RNA virus, depends on Panicum mosaic virus (PMV) for replication and spread in host plants. Compared with PMV infection alone, symptoms are intensified and develop faster on millet plants infected with SPMV and PMV. SPMV encodes a 157 amino acid capsid protein (CP) (17.5 kDa) to encapsidate SPMV RNA and form T = 1 satellite virions. The present study identifies additional biological activities of the SPMV CP, including the induction of severe chlorosis on proso millet plants (Panicum miliaceum cv. Sunup or Red Turghai). Initial deletion mutagenesis experiments mapped the chlorosis-inducing domain to amino acids 50 to 157 on the C-terminal portion of the SPMV CP. More defined analyses revealed that amino acids 124 to 135 comprised a critical domain associated with chlorosis induction and virion formation, whereas the extreme C-terminal residues 148 to 157 were not strictly essential for either role. The results also demonstrated that the absence of SPMV CP tended to stimulate the accumulation of defective RNAs. This suggests that the SPMV CP plays a significant role in maintaining the structural integrity of the full-length satellite virus RNA and harbors multiple functions associated with pathogenesis in SPMV-infected host plants.
Collapse
Affiliation(s)
- W Qiu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843, USA
| | | |
Collapse
|
44
|
Abstract
The interactions between satellite panicum mosaic virus (SPMV) capsid protein (CP) and its 824 nucleotide (nt) single stranded RNA were investigated by gel mobility shift assay and Northwestern blot assay. SPMV CP has specificity for its RNA at high affinity, but little affinity for non-viral RNA. The SPMV CP also bound a 350 nt satellite RNA (satRNA) that, like SPMV, is dependent on panicum mosaic virus for its replication. SPMV CP has the novel property of encapsidating SPMV RNA and satRNA. Competition gel mobility shift assays performed with a non-viral RNA and unlabeled SPMV RNA and satRNA revealed that these RNA:protein interactions were in part sequence specific.
Collapse
Affiliation(s)
- B Desvoyes
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845-2132, USA
| | | |
Collapse
|
45
|
Cabrera O, Roossinck MJ, Scholthof KB. Genetic Diversity of Panicum mosaic virus Satellite RNAs in St. Augustinegrass. PHYTOPATHOLOGY 2000; 90:977-980. [PMID: 18944522 DOI: 10.1094/phyto.2000.90.9.977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT St. Augustine decline is a viral disease caused by Panicum mosaic virus (PMV) alone or in combination with a satellite virus (SPMV) and/or satellite RNAs (satRNAs). A ribonuclease protection assay (RPA) was used to evaluate the genetic diversity of PMV satRNAs isolated from 100 naturally infected St. Augustinegrass plants (Stenotaphrum secundatum). Distinctive satRNA RPA profiles were observed for 40 of 52 samples from College Station (CS) and 37 of 48 samples from Corpus Christi (CC), Texas. A dendrogram constructed from the RPA data revealed that satRNAs were grouped in two distinct clusters based on their place of origin. From 100 samples, only 4 satRNAs from CS were placed in the CC group, and only 2 satRNAs from CC were placed in the CS group. The data show that there is genetic variability in PMV satRNAs in naturally occurring infections, and distinct geographically separate populations can be identified from CC and CS.
Collapse
|
46
|
Qiu W, Scholthof KB. In vitro- and in vivo-generated defective RNAs of satellite panicum mosaic virus define cis-acting RNA elements required for replication and movement. J Virol 2000; 74:2247-54. [PMID: 10666255 PMCID: PMC111706 DOI: 10.1128/jvi.74.5.2247-2254.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1999] [Accepted: 11/24/1999] [Indexed: 11/20/2022] Open
Abstract
Satellite panicum mosaic virus (SPMV) depends on its helper virus, panicum mosaic virus (PMV), to provide trans-acting proteins for replication and movement. The 824-nucleotide (nt) genome of SPMV possesses an open reading frame encoding a 17.5-kDa capsid protein (CP), which is shown to be dispensable for SPMV replication. To localize cis-acting RNA elements required for replication and movement, a comprehensive set of SPMV cDNA deletion mutants was generated. The results showed that the 263-nt 3' untranslated region (UTR) plus 73 nt upstream of the CP stop codon and the first 16 nt in the 5' UTR are required for SPMV RNA amplification and/or systemic spread. A region from nt 17 to 67 within the 5' UTR may have an accessory role in RNA accumulation, and a fragment bracketing nt 68 to 104 appears to be involved in the systemic movement of SPMV RNA in a host-dependent manner. Unexpectedly, defective RNAs (D-RNAs) accumulated de novo in millet plants coinfected with PMV and either of two SPMV mutants: SPMV-91, which is incapable of expressing the 17.5-kDa CP, and SPMV-GUG, which expresses low levels of the 17.5-kDa CP. The D-RNA derived from SPMV-91 was isolated from infected plants and used as a template to generate a cDNA clone. RNA transcripts derived from this 399-nt cDNA replicated and moved in millet plants coinoculated with PMV. The characterization of this D-RNA provided a biological confirmation that the critical RNA domains identified by the reverse genetic strategy are essential for SPMV replication and movement. The results additionally suggest that a potential "trigger" for spontaneous D-RNA accumulation may be associated with the absence or reduced accumulation of the 17.5-kDa SPMV CP. This represents the first report of a D-RNA associated with a satellite virus.
Collapse
Affiliation(s)
- W Qiu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
47
|
Scheets K. Maize chlorotic mottle machlomovirus expresses its coat protein from a 1.47-kb subgenomic RNA and makes a 0.34-kb subgenomic RNA. Virology 2000; 267:90-101. [PMID: 10648186 DOI: 10.1006/viro.1999.0107] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Analysis of double-stranded RNAs produced in maize plants infected with maize chlorotic mottle machlomovirus (MCMV) and Northern blots of total RNA from infected plants or protoplasts showed two subgenomic RNAs (sgRNAs). Primer extension was used to map these sgRNAs, which are 1.47 and 0.34 kb long. The transcription start sites are nucleotide (nt) 2970 or 2971 for sgRNA1 and nt 4101 for sgRNA2. The 5' ends of the sgRNAs are similar to one another and to the 5' end of genomic RNA, and 11 nt sequences immediately upstream of their transcription start sites are similar. The location of the sgRNA1 transcription start site indicates that MCMV expresses a 7-kDa open reading frame (ORF) from nt 2995 to 3202 instead of the predicted 9-kDa ORF from nt 2959 to 3202. In protoplast inoculation experiments, a silent mutation at nt 2965 and a 4-nt change at nt 2959-2962 stopped the synthesis of sgRNA1 and expression of the coat protein ORF, which begins more than 400 nt downstream. Replication of MCMV does not require the expression of any of the ORFs encoded on sgRNA1. SgRNA2 has the potential to encode 2.3-, 2.7-, and 4. 6-kDa peptides, but the function, if any, of sgRNA2 is unknown.
Collapse
Affiliation(s)
- K Scheets
- Department of Microbiology, Oklahoma State University, Stillwater, Oklahoma, 74078, USA.
| |
Collapse
|
48
|
Turina M, Desvoyes B, Scholthof KB. A gene cluster encoded by panicum mosaic virus is associated with virus movement. Virology 2000; 266:120-8. [PMID: 10612666 DOI: 10.1006/viro.1999.0069] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A subgenomic RNA (sgRNA) of about 1500 nucleotides has been detected in millet plants and protoplasts infected with panicum mosaic virus (PMV). This sgRNA expressed p8, p6.6, p15, and the 26-kDa capsid protein (CP) genes during in vitro translation assays, as determined by using mutants inactivated for expression of each open reading frame. Abolishing expression of p8 and p6.6, the two 5'-proximal genes on the sgRNA, did not affect the replication of PMV in millet protoplasts, but obstructed spread in plants. As predicted for a typical cell-to-cell movement protein, p8 localized to the cell wall fraction of PMV-infected millet plants. The introduction of premature stop codons downstream of the PMV p15 start codon (p15*) abolished infectivity in planta, but did not impair replication in protoplasts. However, a delayed systemic infection in millet plants was supported by the p15aug(-) start codon mutant, which may reflect very low levels of expression from a suboptimal start codon context and/or leaky scanning to a second inframe AUG codon to express the C-terminal portion of the 15-kDa protein. PMV CP mutants had little effect on sgRNA accumulation, but were correlated with a reduction of the gRNA and the decreased expression of the 8-kDa protein in protoplasts as well as abolishment of cell-to-cell spread in plants. These results imply that the successful establishment of a PMV systemic infection in millet host plants appears to be dependent on the concerted expression of the p8, p6.6, p15, and CP genes.
Collapse
Affiliation(s)
- M Turina
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, 77843-2132, USA
| | | | | |
Collapse
|
49
|
Cabrera O, Scholthof KBG. The Complex Viral Etiology of St. Augustine Decline. PLANT DISEASE 1999; 83:902-904. [PMID: 30841070 DOI: 10.1094/pdis.1999.83.10.902] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
St. Augustine decline is a viral disease of St. Augustinegrass, a turfgrass grown in the Gulf Coast region of the United States. Analyses of 204 plants in two locations in southeast Texas indicate that the disease is caused by an infection with panicum mosaic virus (PMV), alone or in any combination with satellite panicum mosaic virus (SPMV) and/or its satellite RNAs (satRNAs). This is the first report of the incidence of PMV satRNAs in field samples of St. Augustinegrass. Leaf symptoms of plants collected from the field ranged from severe bleaching to a mild chlorotic mottle, but after 5 months in the greenhouse, the plants had a relatively homogeneous chlorotic mottle phenotype, suggesting that environmental conditions have a significant influence on the development of this disease.
Collapse
Affiliation(s)
- Over Cabrera
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843
| | - Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843
| |
Collapse
|
50
|
Scholthof HB. Rapid delivery of foreign genes into plants by direct rub-inoculation with intact plasmid DNA of a tomato bushy stunt virus gene vector. J Virol 1999; 73:7823-9. [PMID: 10438874 PMCID: PMC104311 DOI: 10.1128/jvi.73.9.7823-7829.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/1999] [Accepted: 05/17/1999] [Indexed: 11/20/2022] Open
Abstract
Tomato bushy stunt virus (TBSV) cDNA, positioned between a modified cauliflower mosaic virus 35S promoter and the hepatitis delta virus antigenomic ribozyme with a downstream nopaline synthase gene polyadenylation signal, established infections upon rub-inoculation of plants with intact plasmids. Application of this methodology produced a TBSV DNA-based gene vector which yielded readily detectable levels of localized foreign gene expression in inoculated leaves. This is the first demonstration of an infectious DNA from a member of the Tombusviridae which permits rapid TBSV-mediated foreign-gene expression upon direct rub-inoculation of miniprep DNA onto a variety of plant species.
Collapse
Affiliation(s)
- H B Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|