1
|
Tran TC, Maiss E, Rose H. The complete genome sequence of Neckar River virus confirms it to be a distinct member of the genus Tombusvirus in the family Tombusviridae. Arch Virol 2023; 168:296. [PMID: 37985520 PMCID: PMC10660902 DOI: 10.1007/s00705-023-05918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
Neckar River virus (NRV), first isolated from a water sample of the Neckar River (Germany) in the 1980s, was serologically characterized as a novel tombusvirus. In this study, the complete genome sequence was determined, and an infectious full-length cDNA clone was constructed. The genome organization of NRV (DSMZ PV-0270) resembles that of tombusviruses. The genome consists of 4739 nucleotides and contains five open reading frames (ORFs) and one additional putative ORF (pX) in the 3'-terminal region. Phylogenetic analysis and sequence comparisons confirmed NRV to be a member of the species Tombusvirus neckarfluminis in the genus Tombusvirus. The infectious full-length cDNA clone was constructed using Gibson assembly and subsequent infection of Nicotiana benthamiana plants by Rhizobium radiobacter inoculation. The virus derived from the full-length cDNA clone caused symptoms resembling those caused by the wild-type virus, but slightly milder.
Collapse
Affiliation(s)
- Thi Chi Tran
- Department of Phytomedicine, Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Edgar Maiss
- Department of Phytomedicine, Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Hanna Rose
- Department of Phytomedicine, Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| |
Collapse
|
2
|
Madirov A, Yermukhambetova R, Masalimov Z. Exploring the diversity and evolution of tombus-like viruses: phylogenetic analysis, recombination events, and suppressor protein homologs. Arch Virol 2023; 168:287. [PMID: 37947857 DOI: 10.1007/s00705-023-05909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/09/2023] [Indexed: 11/12/2023]
Abstract
This study focuses on the phylogenetic analysis of previously unclassified tombus-like viruses, which are characterized by the presence of homologs of the suppressor protein p19. The primary objectives of this research were to investigate the evolutionary relationships among these viruses and to explore the impact of suppressor proteins and recombination events on their evolution. A dataset comprising 94 viral sequences was analyzed to achieve these goals. The phylogenetic analysis revealed the presence of two distinct clusters within the tombus-like virus group. One cluster consisted of viruses that encoded p19-like RNA suppressors, while the other cluster comprised viruses encoding p14-like suppressors. Based on these findings, we propose the classification of PGT-pt108 as an isolate of carnation Italian ringspot virus (CIRV), and both Tombusviridae sp. s48-k141_139792 and Tombusviridae sp. s51-k141_185213 as isolates of tomato bushy stunt virus (TBSV). Furthermore, this study suggests the establishment of two new genera within the family Tombusviridae, based on the observed divergence and distinct characteristics of these tombus-like viruses. Through the analysis of recombination events, we provide insights into the interspecies movement of CIRV, which is reflected in its phylogenetic positioning. This research contributes to our understanding of the evolutionary dynamics and classification of tombus-like viruses, shedding light on the role of suppressor proteins and recombination events in their evolution and interspecies transmission.
Collapse
Affiliation(s)
- Almas Madirov
- Scientific laboratory for Plant Biotechnology named after Rustem Omarov, L. N. Gumilev Eurasian National University, Astana, Kazakhstan.
| | - Roza Yermukhambetova
- Scientific laboratory for Plant Biotechnology named after Rustem Omarov, L. N. Gumilev Eurasian National University, Astana, Kazakhstan
| | - Zhaksylyk Masalimov
- Scientific laboratory for Plant Biotechnology named after Rustem Omarov, L. N. Gumilev Eurasian National University, Astana, Kazakhstan
| |
Collapse
|
3
|
DeMell A, Alvarado V, Scholthof HB. Molecular perspectives on age-related resistance of plants to (viral) pathogens. THE NEW PHYTOLOGIST 2023; 240:80-91. [PMID: 37507820 DOI: 10.1111/nph.19131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Age-related resistance to microbe invasion is a commonly accepted concept in plant pathology. However, the impact of such age-dependent interactive phenomena is perhaps not yet sufficiently recognized by the broader plant science community. Toward cataloging an understanding of underlying mechanisms, this review explores recent molecular studies and their relevance to the concept. Examples describe differences in genetic background, transcriptomics, hormonal balances, protein-mediated events, and the contribution by short RNA-controlled gene silencing events. Throughout, recent findings with viral systems are highlighted as an illustration of the complexity of the interactions. It will become apparent that instead of uncovering a unifying explanation, we unveiled only trends. Nevertheless, with a degree of confidence, we propose that the process of plant age-related defenses is actively regulated at multiple levels. The overarching goal of this control for plants is to avoid a constitutive waste of resources, especially at crucial metabolically draining early developmental stages.
Collapse
Affiliation(s)
- April DeMell
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Veria Alvarado
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
4
|
Vermeulen A, Takken FLW, Sánchez-Camargo VA. Translation Arrest: A Key Player in Plant Antiviral Response. Genes (Basel) 2023; 14:1293. [PMID: 37372472 DOI: 10.3390/genes14061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Plants evolved several mechanisms to protect themselves against viruses. Besides recessive resistance, where compatible host factors required for viral proliferation are absent or incompatible, there are (at least) two types of inducible antiviral immunity: RNA silencing (RNAi) and immune responses mounted upon activation of nucleotide-binding domain leucine-rich repeat (NLR) receptors. RNAi is associated with viral symptom recovery through translational repression and transcript degradation following recognition of viral double-stranded RNA produced during infection. NLR-mediated immunity is induced upon (in)direct recognition of a viral protein by an NLR receptor, triggering either a hypersensitive response (HR) or an extreme resistance response (ER). During ER, host cell death is not apparent, and it has been proposed that this resistance is mediated by a translational arrest (TA) of viral transcripts. Recent research indicates that translational repression plays a crucial role in plant antiviral resistance. This paper reviews current knowledge on viral translational repression during viral recovery and NLR-mediated immunity. Our findings are summarized in a model detailing the pathways and processes leading to translational arrest of plant viruses. This model can serve as a framework to formulate hypotheses on how TA halts viral replication, inspiring new leads for the development of antiviral resistance in crops.
Collapse
Affiliation(s)
- Annemarie Vermeulen
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Victor A Sánchez-Camargo
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
Yang X, Luo X, Zhang Y, Zhang Z, OuYang X, Shi X, Lv X, Li F, Zhang S, Liu Y, Zhang D. Tomato chlorosis virus CPm protein is a pathogenicity determinant and suppresses host local RNA silencing induced by single-stranded RNA. Front Microbiol 2023; 14:1151747. [PMID: 37056753 PMCID: PMC10086252 DOI: 10.3389/fmicb.2023.1151747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionTomato chlorosis virus (ToCV) is a typical member of the genus Crinivirus, which severely threatens Solanaceae crops worldwide. The CPm protein encoded by ToCV has been reported to be associated with virus transmission by vectors and is involved in RNA silencing suppression, while the mechanisms remain ambiguous.MethodsHere, ToCV CPm was ectopically expressed by a Potato virus X (PVX) vector and infiltrated into Nicotiana benthamiana wild-type and GFP-transgenic16c plants.ResultsThe phylogenetic analysis showed that the CPm proteins encoded by criniviruses were distinctly divergent in amino acid sequences and predicted conserved domains, and the ToCV CPm protein possesses a conserved domain homologous to the TIGR02569 family protein, which does not occur in other criniviruses. Ectopic expression of ToCV CPm using a PVX vector resulted in severe mosaic symptoms followed by a hypersensitive-like response in N. benthamiana. Furthermore, agroinfiltration assays in N. benthamiana wilt type or GFP-transgenic 16c indicated that ToCV CPm protein effectively suppressed local RNA silencing induced by single-stranded but not double-stranded RNA, which probably resulted from the activity of binding double-stranded but not single-stranded RNA by ToCV CPm protein.ConclusionTaken together, the results of this study suggest that the ToCV CPm protein possesses the dual activities of pathogenicity and RNA silencing, which might inhibit host post-transcriptional gene silencing (PTGS)-mediated resistance and is pivotal in the primary process of ToCV infecting hosts.
Collapse
Affiliation(s)
- Xiao Yang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xiangwen Luo
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Zhanhong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Xian OuYang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Xiaobin Shi
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Xiaoyuan Lv
- Technical Center of Changsha Customs, Changsha, Hunan, China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Songbai Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
- *Correspondence: Songbai Zhang,
| | - Yong Liu
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
- Yong Liu,
| | - Deyong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
- Deyong Zhang,
| |
Collapse
|
6
|
Bera S, Arena GD, Ray S, Flannigan S, Casteel CL. The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection. Viruses 2022; 14:1341. [PMID: 35746814 PMCID: PMC9229136 DOI: 10.3390/v14061341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 12/25/2022] Open
Abstract
Potyviral genomes encode just 11 major proteins and multifunctionality is associated with most of these proteins at different stages of the virus infection cycle. Some potyviral proteins modulate phytohormones and protein degradation pathways and have either pro- or anti-viral/insect vector functions. Our previous work demonstrated that the potyviral protein 6K1 has an antagonistic effect on vectors when expressed transiently in host plants, suggesting plant defenses are regulated. However, to our knowledge the mechanisms of how 6K1 alters plant defenses and how 6K1 functions are regulated are still limited. Here we show that the 6K1 from Turnip mosaic virus (TuMV) reduces the abundance of transcripts related to jasmonic acid biosynthesis and cysteine protease inhibitors when expressed in Nicotiana benthamiana relative to controls. 6K1 stability increased when cysteine protease activity was inhibited chemically, showing a mechanism to the rapid turnover of 6K1 when expressed in trans. Using RNAseq, qRT-PCR, and enzymatic assays, we demonstrate TuMV reprograms plant protein degradation pathways on the transcriptional level and increases 6K1 stability at later stages in the infection process. Moreover, we show 6K1 decreases plant protease activity in infected plants and increases TuMV accumulation in systemic leaves compared to controls. These results suggest 6K1 has a pro-viral function in addition to the anti-insect vector function we observed previously. Although the host targets of 6K1 and the impacts of 6K1-induced changes in protease activity on insect vectors are still unknown, this study enhances our understanding of the complex interactions occurring between plants, potyviruses, and vectors.
Collapse
Affiliation(s)
- Sayanta Bera
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Gabriella D. Arena
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo 04014-002, Brazil;
| | - Swayamjit Ray
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Sydney Flannigan
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Clare L. Casteel
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| |
Collapse
|
7
|
Martin IR, Vigne E, Velt A, Hily JM, Garcia S, Baltenweck R, Komar V, Rustenholz C, Hugueney P, Lemaire O, Schmitt-Keichinger C. Severe Stunting Symptoms upon Nepovirus Infection Are Reminiscent of a Chronic Hypersensitive-like Response in a Perennial Woody Fruit Crop. Viruses 2021; 13:2138. [PMID: 34834945 PMCID: PMC8625034 DOI: 10.3390/v13112138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus-host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood in perennial fruit crops. Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. After validation of the infection status of the experimental vines by high-throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically deregulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptomless. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines, whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Corinne Schmitt-Keichinger
- Santé de la Vigne et Qualité du Vin, INRAE, Université de Strasbourg, 68000 Colmar, France; (E.V.); (A.V.); (J.-M.H.); (S.G.); (R.B.); (V.K.); (C.R.); (P.H.); (O.L.)
| |
Collapse
|
8
|
R-BPMV-Mediated Resistance to Bean pod mottle virus in Phaseolus vulgaris L. Is Heat-Stable but Elevated Temperatures Boost Viral Infection in Susceptible Genotypes. Viruses 2021; 13:v13071239. [PMID: 34206842 PMCID: PMC8310253 DOI: 10.3390/v13071239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
In the context of climate change, elevated temperature is a major concern due to the impact on plant–pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant–virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes. In this work, we focused on the R-BPMV gene, a major resistance gene against Bean pod mottle virus in Phaseolus vulgaris. We inoculated different BPMV constructs in order to study the behavior of the R-BPMV-mediated resistance at normal (20 °C) and elevated temperatures (constant 25, 30, and 35 °C). Our results show that R-BPMV mediates a temperature-dependent phenotype of resistance from hypersensitive reaction at 20 °C to chlorotic lesions at 35 °C in the resistant genotype BAT93. BPMV is detected in inoculated leaves but not in systemic ones, suggesting that the resistance remains heat-stable up to 35 °C. R-BPMV segregates as an incompletely dominant gene in an F2 population. We also investigated the impact of elevated temperature on BPMV infection in susceptible genotypes, and our results reveal that elevated temperatures boost BPMV infection both locally and systemically in susceptible genotypes.
Collapse
|
9
|
Smertenko T, Turner G, Fahy D, Brew-Appiah RAT, Alfaro-Aco R, de Almeida Engler J, Sanguinet KA, Smertenko A. Brachypodium distachyon MAP20 functions in metaxylem pit development and contributes to drought recovery. THE NEW PHYTOLOGIST 2020; 227:1681-1695. [PMID: 31863702 DOI: 10.1111/nph.16383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Pits are regions in the cell walls of plant tracheary elements that lack secondary walls. Each pit consists of a space within the secondary wall called a pit chamber, and a modified primary wall called the pit membrane. The pit membrane facilitates transport of solutions between vessel cells and restricts embolisms during drought. Here we analyzed the role of an angiosperm-specific TPX2-like microtubule protein MAP20 in pit formation using Brachypodium distachyon as a model system. Live cell imaging was used to analyze the interaction of MAP20 with microtubules and the impact of MAP20 on microtubule dynamics. MAP20-specific antibody was used to study expression and localization of MAP20 in different cell types during vascular bundle development. We used an artificial microRNAs (amiRNA) knockdown approach to determine the function of MAP20. MAP20 is expressed during the late stages of vascular bundle development and localizes around forming pits and under secondary cell wall thickenings in metaxylem cells. MAP20 suppresses microtubule depolymerization; however, unlike the animal TPX2 counterpart, MAP20 does not cooperate with the γ-tubulin ring complex in microtubule nucleation. Knockdown of MAP20 causes bigger pits, thinner pit membranes, perturbed vasculature development, lower reproductive potential and higher drought susceptibility. We conclude that MAP20 may contribute to drought adaptation by modulating pit size and pit membrane thickness in metaxylem.
Collapse
Affiliation(s)
- Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Glenn Turner
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Raymundo Alfaro-Aco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Janice de Almeida Engler
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Université Côte d'Azur, Centre National de la Recherche Scientifique, 06903, Sophia-Antipolis, France
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
10
|
Martin IR, Vigne E, Berthold F, Komar V, Lemaire O, Fuchs M, Schmitt‐Keichinger C. The 50 distal amino acids of the 2A HP homing protein of Grapevine fanleaf virus elicit a hypersensitive reaction on Nicotiana occidentalis. MOLECULAR PLANT PATHOLOGY 2018; 19:731-743. [PMID: 28387986 PMCID: PMC6637978 DOI: 10.1111/mpp.12558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 06/02/2023]
Abstract
Avirulence factors are critical for the arm's race between a virus and its host in determining incompatible reactions. The response of plants to viruses from the genus Nepovirus in the family Secoviridae, including Grapevine fanleaf virus (GFLV), is well characterized, although the nature and characteristics of the viral avirulence factor remain elusive. By using infectious clones of GFLV strains F13 and GHu in a reverse genetics approach with wild-type, assortant and chimeric viruses, the determinant of necrotic lesions caused by GFLV-F13 on inoculated leaves of Nicotiana occidentalis was mapped to the RNA2-encoded protein 2AHP , particularly to its 50 C-terminal amino acids. The necrotic response showed hallmark characteristics of a genuine hypersensitive reaction, such as the accumulation of phytoalexins, reactive oxygen species, pathogenesis-related protein 1c and hypersensitivity-related (hsr) 203J transcripts. Transient expression of the GFLV-F13 protein 2AHP fused to an enhanced green fluorescent protein (EGFP) tag in N. occidentalis by agroinfiltration was sufficient to elicit a hypersensitive reaction. In addition, the GFLV-F13 avirulence factor, when introduced in GFLV-GHu, which causes a compatible reaction on N. occidentalis, elicited necrosis and partially restricted the virus. This is the first identification of a nepovirus avirulence factor that is responsible for a hypersensitive reaction in both the context of virus infection and transient expression.
Collapse
Affiliation(s)
| | - Emmanuelle Vigne
- Université de Strasbourg, INRA, SVQV UMR‐A 1131Colmar68000France
| | - François Berthold
- Université de Strasbourg, CNRS, IBMP UPR 2357Strasbourg67000France
- Present address:
Université de StrasbourgINRA, SVQV UMR‐A 1131Colmar68000France
| | - Véronique Komar
- Université de Strasbourg, INRA, SVQV UMR‐A 1131Colmar68000France
| | - Olivier Lemaire
- Université de Strasbourg, INRA, SVQV UMR‐A 1131Colmar68000France
| | - Marc Fuchs
- Department of Plant Pathology and Plant–Microbe BiologyCornell University, New York State Agricultural Experiment StationGenevaNY14456USA
| | | |
Collapse
|
11
|
Lukan T, Baebler Š, Pompe-Novak M, Guček K, Zagorščak M, Coll A, Gruden K. Cell Death Is Not Sufficient for the Restriction of Potato Virus Y Spread in Hypersensitive Response-Conferred Resistance in Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:168. [PMID: 29497431 PMCID: PMC5818463 DOI: 10.3389/fpls.2018.00168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/30/2018] [Indexed: 05/25/2023]
Abstract
Hypersensitive response (HR)-conferred resistance to viral infection restricts the virus spread and is accompanied by the induction of cell death, manifested as the formation of necrotic lesions. While it is known that salicylic acid is the key component in the orchestration of the events restricting viral spread in HR, the exact function of the cell death in resistance is still unknown. We show that potato virus Y (PVY) can be detected outside the cell death zone in Ny-1-mediated HR in potato plants (cv. Rywal), observed as individual infected cells or small clusters of infected cells outside the cell death zone. By exploiting the features of temperature dependent Ny-1-mediated resistance, we confirmed that the cells at the border of the cell death zone are alive and harbor viable PVY that is able to reinitiate infection. To get additional insights into this phenomenon we further studied the dynamics of both cell death zone expansion and occurrence of viral infected cell islands outside it. We compared the response of Rywal plants to their transgenic counterparts, impaired in SA accumulation (NahG-Rywal), where the lesions occur but the spread of the virus is not restricted. We show that the virus is detected outside the cell death zone in all lesion developmental stages of HR lesions. We also measured the dynamics of lesions expansion in both genotypes. We show that while rapid lesion expansion is observed in SA-depleted plants, virus spread is even faster. On the other hand the majority of analyzed lesions slowly expand also in HR-conferred resistance opening the possibility that the infected cells are eventually engulfed by cell death zone. Taken altogether, we suggest that the HR cell death is separated from the resistance mechanisms which lead to PVY restriction in Ny-1 genetic background. We propose that HR should be regarded as a process where the dynamics of events is crucial for effectiveness of viral arrest albeit the exact mechanism conferring this resistance remains unknown.
Collapse
Affiliation(s)
- Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maruša Pompe-Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Katja Guček
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
12
|
Roshan P, Kulshreshtha A, Kumar S, Purohit R, Hallan V. AV2 protein of tomato leaf curl Palampur virus promotes systemic necrosis in Nicotiana benthamiana and interacts with host Catalase2. Sci Rep 2018; 8:1273. [PMID: 29352245 PMCID: PMC5775426 DOI: 10.1038/s41598-018-19292-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/27/2017] [Indexed: 11/08/2022] Open
Abstract
Tomato leaf curl Palampur virus (ToLCPalV) is a whitefly-transmitted, bipartite begomovirus. Here, we demonstrated that ectopic expression of AV2 from a Potato virus X (PVX)-based vector accelerated systemic necrosis and reactive oxygen species (ROS) accumulation in Nicotiana benthamiana. Furthermore, 10 amino acids from N-terminal region of AV2 were found to be associated with the systemic necrosis symptom/phenotype. Mutational studies of ToLCPalV infectious clones lacking the AV2 revealed that AV2 is essential for the systemic movement of DNA-A, symptom severity and viral DNA accumulation. In a yeast two-hybrid assay, Catalase2 (Cat2) was found to associate with AV2 protein. Further, silencing of Cat2 resulted in appearance of necrotic lesions on N. benthamiana and these plants were highly susceptible to ToLCPalV infection in comparison to control plants. Infection ToLCPalV on Solanum lycopersicum resulted in downregulation of Cat2 transcripts, followed by accumulation of ROS and stress marker transcripts. The AV2 protein also suppressed virus-induced gene silencing (VIGS) of the Phytoene desaturase (PDS) gene. Our results show that AV2 is essential for the pathogenicity, systemic movement and suppression of gene silencing in the host. Altogether, our findings suggest that interactions between AV2 and Cat2 might play a crucial role in the establishment of ToLCPalV infection.
Collapse
Affiliation(s)
- Poonam Roshan
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India
| | - Aditya Kulshreshtha
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India
| | - Surender Kumar
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India
| | - Rituraj Purohit
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India
- Biotechnology division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Vipin Hallan
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, HP, 176061, India.
- Plant Virology Lab, CSIR-IHBT, Palampur, HP, 176061, India.
| |
Collapse
|
13
|
Iki T, Tschopp MA, Voinnet O. Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing. RNA (NEW YORK, N.Y.) 2017; 23:639-654. [PMID: 28148824 PMCID: PMC5393175 DOI: 10.1261/rna.060434.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/25/2017] [Indexed: 05/08/2023]
Abstract
Phytoviruses encode viral suppressors of RNA silencing (VSRs) to counteract the plant antiviral silencing response, which relies on virus-derived small interfering (si)RNAs processed by Dicer RNaseIII enzymes and subsequently loaded into ARGONAUTE (AGO) effector proteins. Here, a tobacco cell-free system was engineered to recapitulate the key steps of antiviral RNA silencing and, in particular, the most upstream double-stranded (ds)RNA processing reaction, not kinetically investigated thus far in the context of plant VSR studies. Comparative biochemical analyses of distinct VSRs in the reconstituted assay showed that in all cases tested, VSR interactions with siRNA duplexes inhibited the loading, but not the activity, of antiviral AGO1 and AGO2. Turnip crinkle virus P38 displayed the additional and unique property to bind both synthetic and RNA-dependent-RNA-polymerase-generated long dsRNAs, and inhibited the processing into siRNAs. Single amino acid substitutions in P38 could dissociate dsRNA-processing from AGO-loading inhibition in vitro and in vivo, illustrating dual-inhibitory strategies discriminatively deployed within a single viral protein, which, we further show, are bona fide suppressor functions that evolved independently of the conserved coat protein function of P38.
Collapse
Affiliation(s)
- Taichiro Iki
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Marie-Aude Tschopp
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| |
Collapse
|
14
|
Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EPB. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants. Front Microbiol 2017; 7:2139. [PMID: 28105028 PMCID: PMC5214455 DOI: 10.3389/fmicb.2016.02139] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of antiviral defense that is specific to plant DNA viruses and relies on transmembrane receptor-mediated translational suppression for defense.
Collapse
Affiliation(s)
- Bianca C. Gouveia
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Iara P. Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - João Paulo B. Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Anésia A. Santos
- Department of General Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Elizabeth P. B. Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| |
Collapse
|
15
|
Odokonyero D, Mendoza MR, Alvarado VY, Zhang J, Wang X, Scholthof HB. Transgenic down-regulation of ARGONAUTE2 expression in Nicotiana benthamiana interferes with several layers of antiviral defenses. Virology 2015; 486:209-18. [PMID: 26454664 DOI: 10.1016/j.virol.2015.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022]
Abstract
The present study aimed to analyze the contribution of Nicotiana benthamiana ARGONAUTE2 (NbAGO2) to its antiviral response against different viruses. For this purpose, dsRNA hairpin technology was used to reduce NbAGO2 expression in transgenic plants as verified with RT-PCR. This reduction was specific because the expression of other NbAGOs was not affected, and did not cause obvious developmental defects under normal growth conditions. Inoculation of transgenic plants with an otherwise silencing-sensitive GFP-expressing Tomato bushy stunt virus (TBSV) variant resulted in high GFP accumulation because antiviral silencing was compromised. These transgenic plants also exhibited accelerated spread and/or enhanced susceptibility and symptoms for TBSV mutants defective for P19 or coat protein expression, other tombusviruses, Tobacco mosaic virus, and Potato virus X; but not noticeably for Foxtail mosaic virus. These findings support the notion that NbAGO2 in N. benthamiana can contribute to antiviral defense at different levels.
Collapse
Affiliation(s)
- Denis Odokonyero
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Maria R Mendoza
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Veria Y Alvarado
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Jiantao Zhang
- Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research, Weslaco, TX, USA
| | - Xiaofeng Wang
- Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research, Weslaco, TX, USA
| | - Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
16
|
Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology 2015; 479-480:167-79. [DOI: 10.1016/j.virol.2015.01.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 01/11/2023]
|
17
|
Viral factors involved in plant pathogenesis. Curr Opin Virol 2015; 11:21-30. [DOI: 10.1016/j.coviro.2015.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022]
|
18
|
Shamekova M, Mendoza MR, Hsieh YC, Lindbo J, Omarov RT, Scholthof HB. Tombusvirus-based vector systems to permit over-expression of genes or that serve as sensors of antiviral RNA silencing in plants. Virology 2014; 452-453:159-65. [PMID: 24606693 DOI: 10.1016/j.virol.2013.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/19/2013] [Accepted: 12/23/2013] [Indexed: 01/16/2023]
Abstract
A next generation Tomato bushy stunt virus (TBSV) coat protein gene replacement vector system is described that can be applied by either RNA inoculation or through agroinfiltration. A vector expressing GFP rapidly yields high levels of transient gene expression in inoculated leaves of various plant species, as illustrated for Nicotiana benthamiana, cowpea, tomato, pepper, and lettuce. A start-codon mutation to down-regulate the dose of the P19 silencing suppressor reduces GFP accumulation, whereas mutations that result in undetectable levels of P19 trigger rapid silencing of GFP. Compared to existing virus vectors the TBSV system has a unique combination of a very broad host range, rapid and high levels of replication and gene expression, and the ability to regulate its suppressor. These features are attractive for quick transient assays in numerous plant species for over-expression of genes of interest, or as a sensor to monitor the efficacy of antiviral RNA silencing.
Collapse
Affiliation(s)
- Malika Shamekova
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Maria R Mendoza
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Yi-Cheng Hsieh
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - John Lindbo
- Department of Plant Pathology, Ohio State University, Wooster, OH 44691, USA
| | - Rustem T Omarov
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
19
|
Incarbone M, Dunoyer P. RNA silencing and its suppression: novel insights from in planta analyses. TRENDS IN PLANT SCIENCE 2013; 18:382-92. [PMID: 23684690 DOI: 10.1016/j.tplants.2013.04.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 05/19/2023]
Abstract
Plants employ multiple layers of innate immunity to fight pathogens. For both RNA and DNA viruses, RNA silencing plays a critical role in plant resistance. To escape this antiviral silencing-based immune response, viruses have evolved various counterdefense strategies, the most widespread being production of viral suppressors of RNA silencing (VSRs) that target various stages of the silencing mechanisms. Recent findings from in planta analyses have provided new insights into the mode of action of VSRs and revealed that plants react to the perturbation of the silencing pathways brought by viral infection by deploying a battery of counter-counterdefense measures. As well as discussing which experimental approaches have been most effective in delivering clear and unambiguous results, this review provides a detailed account of the surprising variety of offensive and defensive strategies set forth by both viruses and hosts in their struggle for survival.
Collapse
Affiliation(s)
- Marco Incarbone
- IBMP-CNRS, 12 rue du General Zimmer, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
20
|
Sansregret R, Dufour V, Langlois M, Daayf F, Dunoyer P, Voinnet O, Bouarab K. Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing. PLoS Pathog 2013; 9:e1003435. [PMID: 23785291 PMCID: PMC3681747 DOI: 10.1371/journal.ppat.1003435] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/06/2013] [Indexed: 01/02/2023] Open
Abstract
RNA silencing mediated by small RNAs (sRNAs) is a conserved regulatory process with key antiviral and antimicrobial roles in eukaryotes. A widespread counter-defensive strategy of viruses against RNA silencing is to deploy viral suppressors of RNA silencing (VSRs), epitomized by the P19 protein of tombusviruses, which sequesters sRNAs and compromises their downstream action. Here, we provide evidence that specific Nicotiana species are able to sense and, in turn, antagonize the effects of P19 by activating a highly potent immune response that protects tissues against Tomato bushy stunt virus infection. This immunity is salicylate- and ethylene-dependent, and occurs without microscopic cell death, providing an example of "extreme resistance" (ER). We show that the capacity of P19 to bind sRNA, which is mandatory for its VSR function, is also necessary to induce ER, and that effects downstream of P19-sRNA complex formation are the likely determinants of the induced resistance. Accordingly, VSRs unrelated to P19 that also bind sRNA compromise the onset of P19-elicited defense, but do not alter a resistance phenotype conferred by a viral protein without VSR activity. These results show that plants have evolved specific responses against the damages incurred by VSRs to the cellular silencing machinery, a likely necessary step in the never-ending molecular arms race opposing pathogens to their hosts.
Collapse
Affiliation(s)
- Raphaël Sansregret
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vanessa Dufour
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mathieu Langlois
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
21
|
Dawson WO, Garnsey SM, Tatineni S, Folimonova SY, Harper SJ, Gowda S. Citrus tristeza virus-host interactions. Front Microbiol 2013; 4:88. [PMID: 23717303 PMCID: PMC3653117 DOI: 10.3389/fmicb.2013.00088] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/28/2013] [Indexed: 11/24/2022] Open
Abstract
Citrus tristeza virus (CTV) is a phloem-limited virus whose natural host range is restricted to citrus and related species. Although the virus has killed millions of trees, almost destroying whole industries, and continually limits production in many citrus growing areas, most isolates are mild or symptomless in most of their host range. There is little understanding of how the virus causes severe disease in some citrus and none in others. Movement and distribution of CTV differs considerably from that of well-studied viruses of herbaceous plants where movement occurs largely through adjacent cells. In contrast, CTV systemically infects plants mainly by long-distance movement with only limited cell-to-cell movement. The virus is transported through sieve elements and occasionally enters an adjacent companion or phloem parenchyma cell where virus replication occurs. In some plants this is followed by cell-to-cell movement into only a small cluster of adjacent cells, while in others there is no cell-to-cell movement. Different proportions of cells adjacent to sieve elements become infected in different plant species. This appears to be related to how well viral gene products interact with specific hosts. CTV has three genes (p33, p18, and p13) that are not necessary for infection of most of its hosts, but are needed in different combinations for infection of certain citrus species. These genes apparently were acquired by the virus to extend its host range. Some specific viral gene products have been implicated in symptom induction. Remarkably, the deletion of these genes from the virus genome can induce large increases in stem pitting (SP) symptoms. The p23 gene, which is a suppressor of RNA silencing and a regulator of viral RNA synthesis, has been shown to be the cause of seedling yellows (SY) symptoms in sour orange. Most isolates of CTV in nature are populations of different strains of CTV. The next frontier of CTV biology is the understanding how the virus variants in those mixtures interact with each other and cause diseases.
Collapse
Affiliation(s)
- W. O. Dawson
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. M. Garnsey
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. Tatineni
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. Y. Folimonova
- Department of Plant Pathology, University of FloridaGainesville, FL, USA
| | - S. J. Harper
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| | - S. Gowda
- Department of Plant Pathology, Citrus Research and Education Center, University of FloridaLake Alfred, FL, USA
| |
Collapse
|
22
|
Manabayeva SA, Shamekova M, Park JW, Ding XS, Nelson RS, Hsieh YC, Omarov RT, Scholthof HB. Differential requirements for Tombusvirus coat protein and P19 in plants following leaf versus root inoculation. Virology 2013; 439:89-96. [PMID: 23490050 DOI: 10.1016/j.virol.2013.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/02/2012] [Accepted: 01/16/2013] [Indexed: 12/19/2022]
Abstract
Traditional virus inoculation of plants involves mechanical rubbing of leaves, whereas in nature viruses like Tomato bushy stunt virus (TBSV) are often infected via the roots. A method was adapted to compare leaf versus root inoculation of Nicotiana benthamiana and tomato with transcripts of wild-type TBSV (wtTBSV), a capsid (Tcp) replacement construct expressing GFP (T-GFP), or mutants not expressing the silencing suppressor P19 (TBSVΔp19). In leaves, T-GFP remained restricted to the cells immediately adjacent to the site of inoculation, unless Tcp was expressed in trans from a Potato virus X vector; while T-GFP inoculation of roots gave green fluorescence in upper tissues in the absence of Tcp. Conversely, leaf inoculation with wtTBSV or TBSVΔp19 transcripts initiated systemic infections, while upon root inoculation this only occurred with wtTBSV, not with TBSVΔp19. Evidently the contribution of Tcp or P19 in establishing systemic infections depends on the point-of-entry of TBSV in the plants.
Collapse
Affiliation(s)
- Shuga A Manabayeva
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Law SM, Zhang BW, Brooks CL. pH-sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability. Protein Sci 2013; 22:595-604. [PMID: 23450521 DOI: 10.1002/pro.2243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/06/2013] [Accepted: 02/10/2013] [Indexed: 01/08/2023]
Abstract
Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short-interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH-dependent residues that affect CIRV p19-siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH-dependent binding profile.
Collapse
Affiliation(s)
- Sean M Law
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
24
|
Efficient and specific gene knockdown by small interfering RNAs produced in bacteria. Nat Biotechnol 2013; 31:350-6. [PMID: 23475073 PMCID: PMC3622153 DOI: 10.1038/nbt.2537] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 02/15/2013] [Indexed: 01/01/2023]
Abstract
Synthetic small interfering RNAs (siRNAs) are an indispensable tool to investigate gene function in eukaryotic cells1,2 and may be used for therapeutic purposes to knockdown genes implicated in disease3. Thus far, most synthetic siRNAs have been produced by chemical synthesis. Here we present a method to produce highly potent siRNAs in E. coli. This method relies on ectopic expression of p19, a siRNA-binding protein found in a plant RNA virus4, 5. When expressed in E. coli, p19 stabilizes ~21 nt siRNA-like species produced by bacterial RNase III. Transfection of mammalian cells with siRNAs, generated in bacteria expressing p19 and a hairpin RNA encoding 200 or more nucleotides of a target gene, at low nanomolar concentrations reproducibly knocks down gene expression by ~90% without immunogenicity or off-target effects. Because bacterially produced siRNAs contain multiple sequences against a target gene, they may be especially useful for suppressing polymorphic cellular or viral genes.
Collapse
|
25
|
Danielson DC, Pezacki JP. Studying the RNA silencing pathway with the p19 protein. FEBS Lett 2013; 587:1198-205. [PMID: 23376479 DOI: 10.1016/j.febslet.2013.01.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 01/05/2023]
Abstract
The origins of the RNA silencing pathway are in defense against invading viruses and in response, viruses have evolved counter-measures to interfere with the host pathway. The p19 protein is expressed by tombusviruses as a suppressor of RNA silencing and functions to sequester small RNA duplexes, thereby preventing induction of the pathway. p19 exhibits size-specific and sequence-independent binding of its small RNA ligands, binding with high affinity to duplexes 20-22 nucleotides long. p19's binding specificity and its ability to sequester small RNAs has made it a unique protein-based tool for probing the molecular mechanisms of the highly complex RNA silencing pathway in a variety of systems. Furthermore, protein engineering of this 'molecular caliper' promises novel applications in biotechnology and medicine where small RNA molecules are of remarkable interest given their potent gene regulatory abilities.
Collapse
Affiliation(s)
- Dana C Danielson
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Canada K1H 8M5
| | | |
Collapse
|
26
|
Liu X, Houzet L, Jeang KT. Tombusvirus P19 RNA silencing suppressor (RSS) activity in mammalian cells correlates with charged amino acids that contribute to direct RNA-binding. Cell Biosci 2012; 2:41. [PMID: 23216864 PMCID: PMC3533911 DOI: 10.1186/2045-3701-2-41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 12/31/2022] Open
Abstract
Background Tombusvirus P19 is a protein encoded by tomato bushy stunt virus and related tombusviruses. Earlier studies have demonstrated that P19 is an RNA silencing suppressor (RSS) in plant cells. However, it has not been systematically investigated how P19 suppresses RNA interference in various mammalian cell settings. Results We have studied the RSS effect of P19 in mammalian cells, HEK293T, HeLa, and mouse embryonic fibroblasts. We have individually mutated 18 positively charged residues in P19 and found that 6 of these charged residues in P19 reduce its ability to suppress RNA interference. In each case, the reduction of silencing of RNA interference correlated with the reduced ability by these P19 mutants to bind siRNAs (small interfering RNAs). Conclusions Our findings characterize a class of RNA-binding proteins that function as RSS moieties. We find a tight correlation between positively charged residues in P19 accounting for siRNA-binding and their RSS activity. Because P19’s activity is conserved in plant and animal cells, we conclude that its RSS function unlikely requires cell type-specific co-factors and likely arises from direct RNA-binding.
Collapse
Affiliation(s)
- Xiang Liu
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
27
|
Kim S, Cho WK, Lee HG, Park SH, Sohn SH, Kim KH. The p19 protein of Grapevine Algerian latent virus is a determinant of systemic infection of Chenopodium quinoa. Virus Res 2012; 165:81-9. [PMID: 22342277 DOI: 10.1016/j.virusres.2012.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 11/29/2022]
Abstract
A previous study showed that both Grapevine Algerian latent virus (GALV) and Tomato bushy stunt virus (TBSV) systemically infect Nicotiana benthamiana, but GALV causes systemic infection whereas TBSV causes only local lesions in Chenopodium quinoa (C. quinoa). We recently isolated GALV strain Naju (GALV-N) from Limonium sinense and TBSV strain Sacheon (TBSV-S) from tomato. Both viruses belong to the genus Tombusvirus and have a similar genome organization. To identify determinants of systemic infection of GALV-N in C. quinoa in the current study, we generated infectious clones and capsid protein (CP)-deletion clones for the two viruses and confirmed that CP of GALV-N is required for systemic infection of C. quinoa due to its primary structural role in virus assembly. Through the use of chimeras, we identified a viral factor in addition to CP that contributes to systemic infection by GALV-N. Inactivation of the p19 demonstrated that host-specific activities of p19 are necessary for efficient systemic infection of C. quinoa by GALV-N. Our study is the first report to determine the viral factors required for systemic infection of GALV in C. quinoa.
Collapse
Affiliation(s)
- Semin Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Carbonell A, Dujovny G, García JA, Valli A. The Cucumber vein yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox virus infection in a host-specific manner. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:151-64. [PMID: 21970691 DOI: 10.1094/mpmi-08-11-0216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.
Collapse
|
29
|
Omarov RT, Scholthof HB. Biological chemistry of virus-encoded suppressors of RNA silencing: an overview. Methods Mol Biol 2012; 894:39-56. [PMID: 22678571 DOI: 10.1007/978-1-61779-882-5_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
RNA interference (RNAi) plays multiple biological roles in eukaryotic organisms to regulate gene expression. RNAi also operates as a conserved adaptive molecular immune mechanism against invading viruses. The antiviral RNAi pathway is initiated with the generation of virus-derived short-interfering RNAs (siRNAs) that are used for subsequent sequence-specific recognition and degradation of the cognate viral RNA molecules. As an efficient counter-defensive strategy, most plant viruses evolved the ability to encode specific proteins capable of interfering with RNAi, and this process is commonly known as RNA silencing suppression. Virus-encoded suppressors of RNAi (VSRs) operate at different steps in the RNAi pathway and display distinct biochemical properties that enable these proteins to efficiently interfere with the host-defense system. Recent molecular and biochemical studies of several VSRs significantly expanded our understanding of the complex nature of silencing suppression, and also remarkably advanced our overall knowledge on complex host-virus interactions. In this review, we describe the current knowledge on activities and biochemical mechanisms of selected VSRs with regard to their biological role of suppressing RNAi in plants.
Collapse
Affiliation(s)
- Rustem T Omarov
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
30
|
Jing XL, Fan MN, Jia G, Liu LW, Ma L, Zheng CC, Zhu XP, Liu HM, Wang XY. A multifunctional protein encoded by turkey herpesvirus suppresses RNA silencing in Nicotiana benthamiana. J Virol 2011; 85:12792-803. [PMID: 21957299 PMCID: PMC3209371 DOI: 10.1128/jvi.05565-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/14/2011] [Indexed: 12/31/2022] Open
Abstract
Many plant and animal viruses counteract RNA silencing-mediated defense by encoding diverse RNA silencing suppressors. We characterized HVT063, a multifunctional protein encoded by turkey herpesvirus (HVT), as a silencing suppressor in coinfiltration assays with green fluorescent protein transgenic Nicotiana benthamiana line 16c. Our results indicated that HVT063 could strongly suppress both local and systemic RNA silencing induced by either sense RNA or double-stranded RNA (dsRNA). HVT063 could reverse local silencing, but not systemic silencing, in newly emerging leaves. The local silencing suppression activity of HVT063 was also verified using the heterologous vector PVX. Further, single alanine substitution of arginine or lysine residues of the HVT063 protein showed that each selected single amino acid contributed to the suppression activity of HVT063 and region 1 (residues 138 to 141) was more important, because three of four single amino acid mutations in this region could abolish the silencing suppressor activity of HVT063. Moreover, HVT063 seemed to induce a cell death phenotype in the infiltrated leaf region, and the HVT063 dilutions could decrease the silencing suppressor activity and alleviate the cell death phenotype. Collectively, these results suggest that HVT063 functions as a viral suppressor of RNA silencing that targets a downstream step of the dsRNA formation in the RNA silencing process. Positively charged amino acids in HVT063, such as arginine and lysine, might contribute to the suppressor activity by boosting the interaction between HVT063 and RNA, since HVT063 has been demonstrated to be an RNA binding protein.
Collapse
Affiliation(s)
- Xiu-li Jing
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Mei-na Fan
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Gang Jia
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Lan-wei Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Lin Ma
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Cheng-chao Zheng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xiao-ping Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Hong-mei Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xiao-yun Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| |
Collapse
|
31
|
Ahn JW, Lee JS, Davarpanah SJ, Jeon JH, Park YI, Liu JR, Jeong WJ. Host-dependent suppression of RNA silencing mediated by the viral suppressor p19 in potato. PLANTA 2011; 234:1065-1072. [PMID: 21717188 DOI: 10.1007/s00425-011-1465-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 06/17/2011] [Indexed: 05/31/2023]
Abstract
p19 protein encoded by tomato bushy stunt virus (TBSV) is known as a suppressor of RNA silencing via inhibition of small RNA-guided cleavage in plants. In this study, we generated TBSVp19-expressing patatin-RNAi transgenic potatoes to identify the inhibitory mechanisms of RNA silencing mediated by TBSVp19. In TBSVp19-expressing patatin-RNAi lines, reduction of patatin-derived siRNA accumulation and complementation of patatin transcripts were detected in comparison with the non-TBSVp19-expressing patatin-RNAi line, suggesting that TBSVp19 suppresses the siRNA-mediated silencing pathway. Interestingly, no apparent effect on the accumulation of miRNA168 and other miRNAs was detected in TBSVp19-expressing lines; previous studies reported that p19 induced the accumulation of both miRNA168 and its target Argonaute 1 (AGO1) mRNA, but suppressed AGO1 translation via up-regulation of miRNA168 in Arabidopsis. In addition, the expression of Argonaute 1 (AGO1-1 and AGO1-2) and Dicer-like 1 (DCL1) was not significantly altered in p19-expressing lines. Interestingly, no translational inhibition of AGO1 mediated by p19 was detected. These results suggest that p19 suppresses siRNA-mediated silencing in potato, but may not affect miRNA-mediated silencing, possibly due to the host-dependent manner of p19 activity.
Collapse
Affiliation(s)
- Joon-Woo Ahn
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Cheng J, Danielson DC, Nasheri N, Singaravelu R, Pezacki JP. Enhanced specificity of the viral suppressor of RNA silencing protein p19 toward sequestering of human microRNA-122. Biochemistry 2011; 50:7745-55. [PMID: 21819044 DOI: 10.1021/bi2008273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tombusviruses express a 19 kDa protein (p19) that, as a dimeric protein, suppresses the RNAs silencing pathway during infection by binding short-interfering RNA (siRNA) and preventing their association with the RNA-induced silencing complex (RISC). The p19 protein can bind to both endogenous and synthetic siRNAs with a high degree of size selectivity but with little sequence dependence. It also binds to other endogenous small RNAs such as microRNAs (miRNAs) but with lower affinity than to canonical siRNAs. It has become apparent, however, that miRNAs play a large role in gene regulation; their influence extends to expression and processing that affects virtually all eukaryotic processes. In order to develop new tools to study endogenous small RNAs, proteins that suppress specific miRNAs are required. Herein we describe mutational analysis of the p19 binding surface with the aim of creating p19 mutants with increased affinity for miR-122. By site-directed mutagenesis of a single residue, we describe p19 mutants with a nearly 50-fold increased affinity for miR-122 without altering the affinity for siRNA. Upon further mutational analysis of this site, we postulate that the higher affinity relies on hydrogen-bonding interactions but can be sterically hindered by residues with bulky side chains. Finally, we demonstrate the effectiveness of a mutant p19, p19-T111S, at sequestering miR-122 in human hepatoma cell lines, as compared to wild-type p19. Overall, our results suggest that p19 can be engineered to enhance its affinity toward specific small RNA molecules, particularly noncanonical miRNAs that are distinguishable based on locations of base-pair mismatches. The p19-T111S mutant also represents a new tool for the study of the function of miR-122 in post-transcriptional silencing in the human liver.
Collapse
Affiliation(s)
- Jenny Cheng
- Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6
| | | | | | | | | |
Collapse
|
33
|
Pallas V, García JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 2011; 92:2691-2705. [PMID: 21900418 DOI: 10.1099/vir.0.034603-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant viruses are biotrophic pathogens that need living tissue for their multiplication and thus, in the infection-defence equilibrium, they do not normally cause plant death. In some instances virus infection may have no apparent pathological effect or may even provide a selective advantage to the host, but in many cases it causes the symptomatic phenotypes of disease. These pathological phenotypes are the result of interference and/or competition for a substantial amount of host resources, which can disrupt host physiology to cause disease. This interference/competition affects a number of genes, which seems to be greater the more severe the symptoms that they cause. Induced or repressed genes belong to a broad range of cellular processes, such as hormonal regulation, cell cycle control and endogenous transport of macromolecules, among others. In addition, recent evidence indicates the existence of interplay between plant development and antiviral defence processes, and that interference among the common points of their signalling pathways can trigger pathological manifestations. This review provides an update on the latest advances in understanding how viruses affect substantial cellular processes, and how plant antiviral defences contribute to pathological phenotypes.
Collapse
Affiliation(s)
- Vicente Pallas
- Instituto de Biología Molecular y Celular de las Plantas, CSIC-Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
34
|
Saxena P, Hsieh YC, Alvarado VY, Sainsbury F, Saunders K, Lomonossoff GP, Scholthof HB. Improved foreign gene expression in plants using a virus-encoded suppressor of RNA silencing modified to be developmentally harmless. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:703-12. [PMID: 21078051 DOI: 10.1111/j.1467-7652.2010.00574.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Endeavours to obtain elevated and prolonged levels of foreign gene expression in plants are often hampered by the onset of RNA silencing that negatively affects target gene expression. Plant virus-encoded suppressors of RNA silencing are useful tools for counteracting silencing but their wide applicability in transgenic plants is limited because their expression often causes harmful developmental effects. We hypothesized that a previously characterized tombusvirus P19 mutant (P19/R43W), typified by reduced symptomatic effects while maintaining the ability to sequester short-interfering RNAs, could be used to suppress virus-induced RNA silencing without the concomitant developmental effects. To investigate this, transient expression in Nicotiana benthamiana was used to evaluate the ability of P19/R43W to enhance heterologous gene expression. Although less potent than wt-P19, P19/R43W was an effective suppressor when used to enhance protein expression from either a traditional T-DNA expression cassette or using the CPMV-HT expression system. Stable transformation of N. benthamiana yielded plants that expressed detectable levels of P19/R43W that was functional as a suppressor. Transgenic co-expression of green fluorescent protein (GFP) and P19/R43W also showed elevated accumulation of GFP compared with the levels found in the absence of a suppressor. In all cases, transgenic expression of P19/R43W caused no or minimal morphological defects and plants produced normal-looking flowers and fertile seed. We conclude that the expression of P19/R43W is developmentally harmless to plants while providing a suitable platform for transient or transgenic overexpression of value-added genes in plants with reduced hindrance by RNA silencing.
Collapse
Affiliation(s)
- Pooja Saxena
- John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Scholthof HB, Alvarado VY, Vega-Arreguin JC, Ciomperlik J, Odokonyero D, Brosseau C, Jaubert M, Zamora A, Moffett P. Identification of an ARGONAUTE for antiviral RNA silencing in Nicotiana benthamiana. PLANT PHYSIOLOGY 2011; 156:1548-55. [PMID: 21606315 PMCID: PMC3135948 DOI: 10.1104/pp.111.178764] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/09/2011] [Indexed: 05/21/2023]
Abstract
ARGONAUTE proteins (AGOs) are known to be key components of the RNA silencing mechanism in eukaryotes that, among other functions, serves to protect against viral invaders. Higher plants encode at least 10 individual AGOs yet the role played by many in RNA silencing-related antiviral defense is largely unknown, except for reports that AGO1, AGO2, and AGO7 play an antiviral role in Arabidopsis (Arabidopsis thaliana). In the plant virus model host Nicotiana benthamiana, Tomato bushy stunt virus (TBSV) P19 suppressor mutants are very susceptible to RNA silencing. Here, we report that a N. benthamiana AGO (NbAGO) with similarity to Arabidopsis AGO2, is involved in antiviral defense against TBSV. The activity of this NbAGO2 is shown to be directly associated with anti-TBSV RNA silencing, while its inactivation does not influence silencing of transiently expressed transgenes. Thus, the role of NbAGO2 might be primarily for antiviral defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter Moffett
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843 (H.B.S., V.Y.A., J.C., D.O.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (J.C.V.-A., M.J., A.Z., P.M.); Département de Biologie, Université de Sherbrooke, Quebec, Canada J1K 2R1 (C.B., P.M.)
| |
Collapse
|
36
|
Rawlings RA, Krishnan V, Walter NG. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover. J Mol Biol 2011; 408:262-76. [PMID: 21354178 DOI: 10.1016/j.jmb.2011.02.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 02/02/2011] [Accepted: 02/16/2011] [Indexed: 01/13/2023]
Abstract
RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy.
Collapse
Affiliation(s)
- Renata A Rawlings
- Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
37
|
Angel CA, Hsieh YC, Schoelz JE. Comparative analysis of the capacity of tombusvirus P22 and P19 proteins to function as avirulence determinants in Nicotiana species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:91-9. [PMID: 20977306 DOI: 10.1094/mpmi-04-10-0089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have used an agroinfiltration assay for a comparative study of the roles of tombusvirus P22 and P19 proteins in elicitation of hypersensitive response (HR)-like necrosis and the role of P19 in silencing suppression in Nicotiana species. The advantage of agroinfiltration rather than expression in plant virus vectors is that putative viral avirulence proteins can be evaluated in isolation, eliminating the possibility of synergistic effects with other viral proteins. We found that tombusvirus P22 and P19 proteins elicited HR-like necrosis in certain Nicotiana species but, also, that Nicotiana species could recognize subtle differences in sequence between these proteins. Furthermore, Nicotiana species that responded with systemic necrosis to virion inoculations responded to agroinfiltration of tombusvirus P19 with a very weak and delayed necrosis, indicating that the rapid HR-like necrosis was associated with putative resistance genes and a plant defense response that limited the spread of the virus. Tombusvirus P19 proteins also appeared to differ in their effectiveness as silencing suppressors; in our assay, the P19 proteins of Cymbidium ringspot virus and Tomato bushy stunt virus were stronger silencing suppressors than Cucumber necrosis virus P20. Finally, we show that agroinfiltration can be used to track the presence of putative plant resistance genes in Nicotiana species that target either tombusvirus P19 or P22.
Collapse
Affiliation(s)
- Carlos A Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
38
|
Ren B, Guo Y, Gao F, Zhou P, Wu F, Meng Z, Wei C, Li Y. Multiple functions of Rice dwarf phytoreovirus Pns10 in suppressing systemic RNA silencing. J Virol 2010; 84:12914-23. [PMID: 20926568 PMCID: PMC3004324 DOI: 10.1128/jvi.00864-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 08/31/2010] [Indexed: 12/29/2022] Open
Abstract
RNA silencing is a potent mechanism of antiviral defense response in plants and other organisms. For counterdefense, viruses have evolved a variety of suppressors of RNA silencing (VSRs) that can inhibit distinct steps of a silencing pathway. We previously identified Pns10 encoded by Rice dwarf phytoreovirus (RDV) as a VSR, the first of its kind from double-stranded RNA (dsRNA) viruses. In this study we investigated the mechanisms of Pns10 function in suppressing systemic RNA silencing in the widely used Nicotiana benthamiana model plant. We report that Pns10 suppresses local and systemic RNA silencing triggered by sense mRNA, enhances viral replication and/or viral RNA stability in inoculated leaves, accelerates the systemic spread of viral infection, and enables viral invasion of shoot apices. Mechanistically, Pns10 interferes with the perception of silencing signals in recipient tissues, binds double-stranded small interfering RNA (siRNAs) with two-nucleotide 3' overhangs, and causes the downregulated expression of RDR6. These results significantly deepen our mechanistic understanding of the VSR functions encoded by a dsRNA virus and contribute additional evidence that binding siRNAs and interfering with RDR6 expression are broad mechanisms of VSR functions encoded by diverse groups of viruses.
Collapse
Affiliation(s)
- Bo Ren
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Yuanyuan Guo
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Feng Gao
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Peng Zhou
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Feng Wu
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Zheng Meng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Chunhong Wei
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Yi Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| |
Collapse
|
39
|
Omarov RT, Bersimbai RI. Biochemical mechanisms of suppression of RNA interference by plant viruses. BIOCHEMISTRY. BIOKHIMIIA 2010; 75:965-970. [PMID: 21073416 DOI: 10.1134/s0006297910080031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
RNA interference (RNAi) plays an important biological role in regulation of gene expression of eukaryotes. In addition, RNAi was shown to be an adaptive protective molecular immune mechanism against viral diseases. Antiviral RNAi initiates from generation of short interfering RNAs used in the subsequent recognition and degradation of the viral RNA molecules. As a response to protective reaction of plants, most of the viruses encode specific proteins able to counteract RNAi. This process is known as RNAi suppression. Viral suppressors act on various stages of RNAi and have biochemical properties that enable viruses to effectively counteract the protective system of plants. Modern molecular and biochemical investigations of a number of viral suppressors have significantly expanded our understanding of the complexity of the nature of RNAi suppression as well as mechanisms of interaction between viruses and plants.
Collapse
Affiliation(s)
- R T Omarov
- Gumilev Eurasian National Institute, Astana, 10008, Kazakhstan.
| | | |
Collapse
|
40
|
Abstract
One branch of plant innate immunity is mediated through what is traditionally known as race-specific or gene-for-gene resistance wherein the outcome of an attempted infection is determined by the genotypes of both the host and the pathogen. Dominant plant disease resistance (R) genes confer resistance to a variety of biotrophic pathogens, including viruses, encoding corresponding dominant avirulence (Avr) genes. R genes are among the most highly variable plant genes known, both within and between populations. Plant genomes encode hundreds of R genes that code for NB-LRR proteins, so named because they posses nucleotide-binding (NB) and leucine-rich repeat (LRR) domains. Many matching pairs of NB-LRR and Avr proteins have been identified as well as cellular proteins that mediate R/Avr interactions, and the molecular analysis of these interactions have led to the formulation of models of how products of R genes recognize pathogens. Data from multiple NB-LRR systems indicate that the LRR domains of NB-LRR proteins determine recognition specificity. However, recent evidence suggests that NB-LRR proteins have co-opted cellular recognition co-factors that mediate interactions between Avr proteins and the N-terminal domains of NB-LRR proteins.
Collapse
|
41
|
Xia Z, Zhu Z, Zhu J, Zhou R. Recognition mechanism of siRNA by viral p19 suppressor of RNA silencing: a molecular dynamics study. Biophys J 2009; 96:1761-9. [PMID: 19254536 DOI: 10.1016/j.bpj.2008.11.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 11/20/2008] [Indexed: 01/30/2023] Open
Abstract
The p19 protein (p19) encoded from Tombusvirus is involved in various activities such as pathogenicity and virus transport. Recent studies have found that p19 is a plant suppressor of RNA silencing, which binds to short interfering RNAs (siRNAs) with high affinity. We use molecular dynamics (MD) simulations of the wild-type and mutant p19 protein (W39 and W42G) binding with a 21-nt siRNA duplex to study the p19-siRNA recognition mechanism and mutation effects. Our simulations with standard MD and steered molecular dynamics have shown that the double mutant structure is indeed much less stable than the wild-type, consistent with the recent experimental findings. Comprehensive structural analysis also shows that the W39/42G mutations first induce the loss of stacking interactions between p19 and siRNA, Trp(42)-Cyt1 (Cyt1 from the 5' to 3' strand) and Trp(39)-Gua'19 (Gua19 from the 3' to 5' strand), and then breaks the hydrophobic core formed by W39-W42 with nucleotide basepairs in the wild-type. The steered molecular dynamics simulations also show that the mutant p19 complex is "decompounded" very fast under a constant separation force, whereas the wild-type remains largely intact under the same steering force. Moreover, we have used the free energy perturbation to predict a binding affinity loss of 6.98 +/- 0.95 kcal/mol for the single mutation W39G, and 12.8 +/- 1.0 kcal/mol loss for the double mutation W39/42G, with the van der Waals interactions dominating the contribution ( approximately 90%). These results indicate that the W39/42G mutations essentially destroy the important p19-siRNA recognition by breaking the strong stacking interaction between Cyt1 and Gua'19 with end-capping tryptophans. These large scale simulations might provide new insights to the interactions and co-evolution relationship between RNA virus proteins and their hosts.
Collapse
Affiliation(s)
- Zhen Xia
- Institute of Bioinformatics, Zhejang University, Hangzhou 310027, People's Republic of China
| | | | | | | |
Collapse
|
42
|
Hemmes H, Kaaij L, Lohuis D, Prins M, Goldbach R, Schnettler E. Binding of small interfering RNA molecules is crucial for RNA interference suppressor activity of rice hoja blanca virus NS3 in plants. J Gen Virol 2009; 90:1762-1766. [PMID: 19282433 DOI: 10.1099/vir.0.010488-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The NS3 protein of rice hoja blanca virus represents a viral suppressor of RNA interference (RNAi) that sequesters small interfering (si)RNAs in vitro. To determine whether this siRNA binding property is the critical determinant for the suppressor activity of NS3, NS3 was altered by alanine point mutations and the resulting mutant proteins were tested for both siRNA binding ability and RNAi suppressor activity in plants. Alanine substitutions of lysine residues at positions 173-175 resulted in mutant proteins that lost both their affinity for siRNAs and their RNAi suppressor activity in planta. This indicates that siRNA binding of NS3 is indeed essential for the suppressor function of NS3 and that residues at positions 173-175 are involved in the siRNA binding and suppressor activities.
Collapse
Affiliation(s)
- Hans Hemmes
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Lucas Kaaij
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Dick Lohuis
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Marcel Prins
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Rob Goldbach
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Esther Schnettler
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| |
Collapse
|
43
|
Hsieh YC, Omarov RT, Scholthof HB. Diverse and newly recognized effects associated with short interfering RNA binding site modifications on the Tomato bushy stunt virus p19 silencing suppressor. J Virol 2009; 83:2188-200. [PMID: 19052093 PMCID: PMC2643727 DOI: 10.1128/jvi.02186-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 11/21/2008] [Indexed: 12/15/2022] Open
Abstract
The Tomato bushy stunt virus-encoded P19 forms dimers that bind duplex short interfering RNAs (siRNAs) to suppress RNA silencing. P19 is also involved in multiple host-specific activities, including the elicitation of symptoms, and in local and/or systemic spread. To study the correlation between those various roles and the siRNA binding by P19, predicted siRNA-interacting sites were modified. Twenty-two mutants were generated and inoculated onto Nicotiana benthamiana plants, to reveal that (i) they were all infectious, (ii) symptom differences did not correlate strictly with mutation-associated variation in P19 accumulation, and (iii) substitutions affecting a central domain of P19 generally exhibited symptoms more severe than for mutations affecting peripheral regions. Three mutants selected to represent separate phenotypic categories all displayed a substantially reduced ability to sequester siRNA. Consequently, these three mutants were compromised for systemic virus spread in P19-dependent hosts but had differential plant species-dependent effects on the symptom severity. One mutant in particular caused relatively exacerbated symptoms, exemplified by extensive morphological leaf deformations in N. benthamiana; this was especially remarkable because P19 was undetectable. Another striking feature of this mutant was that only within a few days after infection, viral RNA was cleared by silencing. One more original property was that host RNAs and proteins (notably, the P19-interactive Hin19 protein) were also susceptible to degradation in these infected N. benthamiana plants but not in spinach. In conclusion, even though siRNA binding by P19 is a key functional property, compromised siRNA sequestration can result in novel and diverse host-dependent properties.
Collapse
Affiliation(s)
- Yi-Cheng Hsieh
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, Texas 77843, USA
| | | | | |
Collapse
|
44
|
Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus. Virology 2008; 379:168-74. [DOI: 10.1016/j.virol.2008.06.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/08/2008] [Accepted: 06/16/2008] [Indexed: 11/22/2022]
|
45
|
Abstract
Systemic invasion of plants by viruses is thought to involve two processes: cell-to-cell movement between adjacent cells and long-distance movement that allows the virus to rapidly move through sieve elements and unload at the growing parts of the plant. There is a continuum of proportions of these processes that determines the degrees of systemic infection of different plants by different viruses. We examined the systemic distribution of Citrus tristeza virus (CTV) in citrus species with a range of susceptibilities. By using a "pure" culture of CTV from a cDNA clone and green fluorescent protein-labeled virus we show that both cell-to-cell and long-distance movement are unusually limited, and the degree of limitation varies depending on the citrus host. In the more-susceptible hosts CTV infected only a small portion of phloem-associated cells, and moreover, the number of infection sites in less-susceptible citrus species was substantially decreased further, indicating that long-distance movement was reduced in those hosts. Analysis of infection foci in the two most differential citrus species, Citrus macrophylla and sour orange, revealed that in the more-susceptible host the infection foci were composed of a cluster of multiple cells, while in the less-susceptible host infection foci were usually single cells, suggesting that essentially no cell-to-cell movement occurred in the latter host. Thus, CTV in sour orange represents a pattern of systemic infection in which the virus appears to function with only the long-distance movement mechanism, yet is able to survive in nature.
Collapse
|
46
|
Díaz-Pendón JA, Ding SW. Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:303-26. [PMID: 18680427 DOI: 10.1146/annurev.phyto.46.081407.104746] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant and animal viruses overcome host antiviral silencing by encoding diverse viral suppressors of RNA silencing (VSRs). Prior to the identification and characterization of their silencing suppression activities mostly in transgene silencing assays, plant VSRs were known to enhance virus accumulation in the inoculated protoplasts, promote cell-to-cell virus movement in the inoculated leaves, facilitate the phloem-dependent long-distance virus spread, and/or intensify disease symptoms in systemically infected tissues. Here we discuss how the various silencing suppression activities of VSRs may facilitate these distinct steps during plant infection and why VSRs may not play a direct role in eliciting disease symptoms by general impairments of host endogenous small RNA pathways. We also highlight many of the key questions still to be addressed on the role of viral suppression of antiviral silencing in plant infection.
Collapse
Affiliation(s)
- Juan A Díaz-Pendón
- Center for Plant Cell Biology, Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
47
|
Scholthof HB. Heterologous expression of viral RNA interference suppressors: RISC management. PLANT PHYSIOLOGY 2007; 145:1110-7. [PMID: 18056861 PMCID: PMC2151731 DOI: 10.1104/pp.107.106807] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 09/20/2007] [Indexed: 05/25/2023]
Affiliation(s)
- Herman B Scholthof
- Department of Plant Pathology and Microbiology, and Intercollegiate Faculty of Virology, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
48
|
Qiu W, Scholthof HB. Using vectors derived from tomato bushy stunt virus (TBSV) and TBSV defective interfering RNAs (DIs). CURRENT PROTOCOLS IN MICROBIOLOGY 2007; Chapter 16:Unit 16I.4. [PMID: 18770620 DOI: 10.1002/9780471729259.mc16i04s7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit describes principles and protocols for expressing a gene of interest in plant cells using gene vectors that are derived from an infectious full-length cDNA plasmid of the tomato bushy stunt virus (TBSV) genomic RNA, and from defective interfering RNAs (DIs). The TBSV gene vector system permits convenient cloning, allows modification and abundant expression of the gene of interest, and facilitates biosecure containment of the gene vectors. These vectors can be employed for functional genomics studies and for analyzing the biochemical properties and subcellular distribution of expressed RNAs and/or their cognate proteins. As with other plant virus gene vectors, recombination and deletion of the gene of interest during virus multiplication limits the application of the TBSV gene vectors to the inoculated cells or leaves.
Collapse
Affiliation(s)
- Wenping Qiu
- Department of Agriculture, Missouri State University at Mountain Grove, Mountain Grove, Missouri, USA
| | | |
Collapse
|
49
|
Koukiekolo R, Sagan SM, Pezacki JP. Effects of pH and salt concentration on the siRNA binding activity of the RNA silencing suppressor protein p19. FEBS Lett 2007; 581:3051-6. [PMID: 17559839 DOI: 10.1016/j.febslet.2007.05.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 01/03/2023]
Abstract
The RNA silencing pathway is an important component of the anti-viral immune response in eukaryotes, particularly in plants. In turn, many viruses have evolved mechanisms to evade or suppress this pathway. Tombusviruses such as the Carnation Italian ringspot virus (CIRV) express a 19kDa protein (p19) that is a suppressor of RNA silencing in infected plants. This protein acts as a dimer and binds specifically to short-interfering RNA (siRNA) through electrostatic interactions between charged residues in the binding cleft. Since pH and salt concentrations can vary widely from host to host, we have investigated the influence of these parameters on the siRNA binding activity of CIRV p19. Previously, we established a convenient fluorescence-based method for assaying CIRV p19:siRNA binding using Ni(2+)-NTA coated 96-well plates. Using this method, we observe that the CIRV p19 protein binds to siRNA with nanomolar affinity and that this binding is sensitive to pH and salt concentration. The pH-dissociation constant profile shows that CIRV p19:siRNA binding is dependent on three different apparent pK(a) values. The values extrapolated from the curve are 7.1, 8.0 and 10.6 that we interpret as the ionization of one or more histidine, cysteine and lysine residues, respectively. We find that the optimal suppression of RNA silencing by CIRV p19 occurs in the pH range from 6.2 to 7.6.
Collapse
Affiliation(s)
- Roger Koukiekolo
- The Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Canada
| | | | | |
Collapse
|
50
|
Pignatta D, Kumar P, Turina M, Dandekar A, Falk BW. Quantitative analysis of efficient endogenous gene silencing in Nicotiana benthamiana plants using tomato bushy stunt virus vectors that retain the capsid protein gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:609-18. [PMID: 17555269 DOI: 10.1094/mpmi-20-6-0609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tomato bushy stunt virus (TBSV) coat protein (CP) replacement vectors have been used previously to silence transgenes (e.g., the green fluorescent protein gene) but have not been effective for silencing endogenous plant genes. New TBSV vectors which retained the CP gene were developed by engineering an XhoI restriction site in three positions (3f, CEB, and CEA) of the pTBSV-100 infectious clone. Magnesium chelatase (ChlH) and phytoene desaturase (PDS) were chosen as targets for endogenous gene silencing. Initial experiments using CP replacement vectors with a 230-bp sense or antisense ChlH insert gave a silencing phenotype prominent only in the first new leaves above those inoculated. No silencing phenotype was apparent beyond these leaves whereas, for PDS, no silencing phenotype was observed. When plants were inoculated with the XhoI insert vectors containing ChlH and PDS sequences, plants showed a silencing phenotype extensively throughout the challenged plant, indicating an improved ability for virus movement and silencing in Nicotiana benthamiana host plants. Silencing efficiencies were quantified using realtime reverse-transcription polymerase chain reaction, indicating specific silencing effects of each individual silencing vector. Only one recombinant vector (pPD-3f5), where the XhoI insert was at the 3' end of the CP gene, failed to give effective silencing. Here, we show that our new CP-retaining TBSV vectors (CEA-CEB) form typical TBSV virions, retain silencing inserts of variable lengths (110 to 260 nucleotides), and can systemically silence endogenous genes in N. benthamiana.
Collapse
Affiliation(s)
- Daniela Pignatta
- Dipartimento di Scienze e Tecnologie Agroambientali, Bologna, Italy
| | | | | | | | | |
Collapse
|