1
|
Herpesvirus Nuclear Egress across the Outer Nuclear Membrane. Viruses 2021; 13:v13122356. [PMID: 34960625 PMCID: PMC8706699 DOI: 10.3390/v13122356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Herpesvirus capsids are assembled in the nucleus and undergo a two-step process to cross the nuclear envelope. Capsids bud into the inner nuclear membrane (INM) aided by the nuclear egress complex (NEC) proteins UL31/34. At that stage of egress, enveloped virions are found for a short time in the perinuclear space. In the second step of nuclear egress, perinuclear enveloped virions (PEVs) fuse with the outer nuclear membrane (ONM) delivering capsids into the cytoplasm. Once in the cytoplasm, capsids undergo re-envelopment in the Golgi/trans-Golgi apparatus producing mature virions. This second step of nuclear egress is known as de-envelopment and is the focus of this review. Compared with herpesvirus envelopment at the INM, much less is known about de-envelopment. We propose a model in which de-envelopment involves two phases: (i) fusion of the PEV membrane with the ONM and (ii) expansion of the fusion pore leading to release of the viral capsid into the cytoplasm. The first phase of de-envelopment, membrane fusion, involves four herpes simplex virus (HSV) proteins: gB, gH/gL, gK and UL20. gB is the viral fusion protein and appears to act to perturb membranes and promote fusion. gH/gL may also have similar properties and appears to be able to act in de-envelopment without gB. gK and UL20 negatively regulate these fusion proteins. In the second phase of de-envelopment (pore expansion and capsid release), an alpha-herpesvirus protein kinase, US3, acts to phosphorylate NEC proteins, which normally produce membrane curvature during envelopment. Phosphorylation of NEC proteins reverses tight membrane curvature, causing expansion of the membrane fusion pore and promoting release of capsids into the cytoplasm.
Collapse
|
2
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
3
|
RNA Polymerase II Promoter-Proximal Pausing and Release to Elongation Are Key Steps Regulating Herpes Simplex Virus 1 Transcription. J Virol 2020; 94:JVI.02035-19. [PMID: 31826988 DOI: 10.1128/jvi.02035-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (Pol II). Expression of viral immediate early (α) genes is followed sequentially by early (β), late (γ1), and true late (γ2) genes. We used precision nuclear run-on with deep sequencing to map and to quantify Pol II on the HSV-1(F) genome with single-nucleotide resolution. Approximately 30% of total Pol II relocated to viral genomes within 3 h postinfection (hpi), when it occupied genes of all temporal classes. At that time, Pol II on α genes accumulated most heavily at promoter-proximal pause (PPP) sites located ∼60 nucleotides downstream of the transcriptional start site, while β genes bore Pol II more evenly across gene bodies. At 6 hpi, Pol II increased on γ1 and γ2 genes while Pol II pausing remained prominent on α genes. At that time, average cytoplasmic mRNA expression from α and β genes decreased, relative to levels at 3 hpi, while γ1 relative expression increased slightly and γ2 expression increased more substantially. Cycloheximide treatment during the first 3 h reduced the amount of Pol II associated with the viral genome and confined most of the remaining Pol II to α gene PPP sites. Inhibition of both cyclin-dependent kinase 9 activity and viral DNA replication reduced Pol II on the viral genome and restricted much of the remaining Pol II to PPP sites.IMPORTANCE These data suggest that viral transcription is regulated not only by Pol II recruitment to viral genes but also by control of elongation into viral gene bodies. We provide a detailed map of Pol II occupancy on the HSV-1 genome that clarifies features of the viral transcriptome, including the first identification of Pol II PPP sites. The data indicate that Pol II is recruited to late genes early in infection. Comparing α and β gene occupancy at PPP sites and gene bodies suggests that Pol II is released more efficiently into the bodies of β genes than α genes at 3 hpi and that repression of α gene expression late in infection is mediated by prolonged promoter-proximal pausing. In addition, DNA replication is required to maintain full Pol II occupancy on viral DNA and to promote elongation on late genes later in infection.
Collapse
|
4
|
Zheng C, Lin F, Wang S, Xing J. A novel virus-encoded nucleocytoplasmic shuttling protein: the UL3 protein of herpes simplex virus type 1. J Virol Methods 2011; 177:206-10. [PMID: 21864580 DOI: 10.1016/j.jviromet.2011.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/07/2011] [Accepted: 08/04/2011] [Indexed: 01/20/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) UL3 protein is a nuclear protein. In this study, the molecular mechanism of the subcellular localization of UL3 was characterized by fluorescence microscopy in living cells. A nuclear localization signal (NLS) and a nuclear export signal (NES) were also identified. UL3 was demonstrated to target to the cytoplasm through the NES via chromosomal region maintenance 1 (CRM-1) dependent pathway, and to the nucleus through RanGTP-dependent mechanism. Heterokaryon assays confirmed that UL3 was capable of shuttling between the nucleus and the cytoplasm. These results demonstrate that the UL3 protein is a novel HSV-1 encoded nucleocytoplasmic shuttling protein.
Collapse
Affiliation(s)
- Chunfu Zheng
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, 44 Xiaohongshan, Wuchang, Wuhan 430071, China.
| | | | | | | |
Collapse
|
5
|
Molecular determinants responsible for the subcellular localization of HSV-1 UL4 protein. Virol Sin 2011; 26:347-56. [PMID: 21979574 DOI: 10.1007/s12250-011-3217-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022] Open
Abstract
The function of the herpes simplex virus type 1 (HSV-1) UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study, fluorescence microscopy was employed to investigate the subcellular localization of UL4 and characterize the transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein (EYFP), the nuclear export signals (NES) of UL4 were for the first time mapped to amino acid residues 178 to 186. In addition, the N-terminal 19 amino acids are identified to be required for the granule-like cytoplasmic pattern of UL4. Furthermore, the UL4 protein was demonstrated to be exported to the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis.
Collapse
|
6
|
Comprehensive characterization of interaction complexes of herpes simplex virus type 1 ICP22, UL3, UL4, and UL20.5. J Virol 2010; 85:1881-6. [PMID: 21147926 DOI: 10.1128/jvi.01730-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been reported that herpes simplex virus type 1 UL3, UL4, and UL20.5 proteins are localized to small, dense nuclear bodies together with ICP22 in infected cells. In the present study, we comprehensively characterized these interactions by subcellular colocalization, coimmunoprecipitation, and bimolecular fluorescence complementation assays. For the first time, it was demonstrated that both UL3 and UL20.5 are targeted to small, dense nuclear bodies by a direct interaction with ICP22, whereas UL4 colocalizes with ICP22 through its interaction with UL3 but not UL20.5 or ICP22. There was no detectable interaction between UL3 and UL20.5.
Collapse
|
7
|
Lin F, Ren X, Guo H, Ding Q, Zheng AC. Expression, purification of the UL3 protein of herpes simplex virus type 1, and production of UL3 polyclonal antibody. J Virol Methods 2010; 166:72-6. [PMID: 20188759 DOI: 10.1016/j.jviromet.2010.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a common pathogen which causes infections of the mucocutaneous membranes. The UL3 protein belongs to a group of HSV-1 late proteins. To date, the function of the UL3 protein in cell culture, animal models, and natural infection is unknown. To investigate further the function of the UL3 protein, this study was undertaken to express the UL3 protein and raise a polyclonal antibody. The UL3 gene was cloned in the prokaryotic expression vector pET-28a (+) to yield pET-28a (+)-UL3. The His6-tagged UL3 protein was expressed in Escherichia coli (E. coli) BL21 (DE3) cells and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). After purification by nickel affinity chromatography and refolding, the recombinant protein was used to raise the anti-UL3 polyclonal antibody. Western blot analysis demonstrated that the UL3 protein was recognized by the polyclonal antibody, and immunofluorescent assay also showed that the antibody was able to recognize the UL3 protein in the cells infected with HSV-1.
Collapse
Affiliation(s)
- Fusen Lin
- Molecular Virology and Viral Immunology Research Group, National Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan, Hubei 430071, China
| | | | | | | | | |
Collapse
|
8
|
The herpes simplex virus type 1 infected cell protein 22. Virol Sin 2010; 25:1-7. [PMID: 20960278 DOI: 10.1007/s12250-010-3080-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 07/16/2009] [Indexed: 10/19/2022] Open
Abstract
As one of the immediate-early (IE) proteins of herpes simplex virus type 1 (HSV-1), ICP22 is a multifunctional viral regulator that localizes in the nucleus of infected cells. It is required in experimental animal systems and some nonhuman cell lines, but not in Vero or HEp-2 cells. ICP22 is extensively phosphorylated by viral and cellular kinases and nucleotidylylated by casein kinase II. It has been shown to be required for efficient expression of early (E) genes and a subset of late (L) genes. ICP22, in conjunction with the UL13 kinase, mediates the phosphorylation of RNA polymerase II. Both ICP22 and UL13 are required for the activation of cdc2, the degradation of cyclins A and B and the acquisition of a new cdc2 partner, the UL42 DNA polymerase processivity factor. The cdc2-UL42 complex mediates postranscriptional modification of topoisomerase IIα in an ICP22-dependent manner to promote L gene expression. In addition, ICP22 interacts with cdk9 in a Us3 kinase dependent fashion to phosphorylate RNA polymerase II.
Collapse
|
9
|
Reduction in severity of a herpes simplex virus type 1 murine infection by treatment with a ribozyme targeting the UL20 gene RNA. J Virol 2008; 82:7467-74. [PMID: 18508896 DOI: 10.1128/jvi.02720-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hammerhead ribozymes were designed to target mRNA of several essential herpes simplex virus type 1 (HSV-1) genes. A ribozyme specific for the late gene U(L)20 was packaged in an adenovirus vector (Ad-U(L)20 Rz) and evaluated for its capacity to inhibit the viral replication of several HSV-1 strains, including that of the wild-type HSV-1 (17syn+ and KOS) and several acycloguanosine-resistant strains (PAAr5, tkLTRZ1, and ACGr4) in tissue culture. The Ad-U(L)20 Rz was also tested for its ability to block an HSV-1 infection, using the mouse footpad model. Mouse footpads were treated with either the Ad-U(L)20 Rz or an adenoviral vector expressing green fluorescent protein (Ad-GFP) and then infected immediately thereafter with 10(4) PFU of HSV-1 strain 17syn+. Ad-U(L)20 ribozyme treatment consistently led to a 90% rate of protection for mice from lethal HSV-1 infection, while the survival rate in the control groups was less than 45%. Consistent with this protective effect, treatment with the Ad-U(L)20 Rz reduced the viral DNA load in the feet, the dorsal root ganglia, and the spinal cord relative to that of the Ad-GFP-treated animals. This study suggests that ribozymes targeting essential genes of the late kinetic class may represent a new therapeutic strategy for inhibiting HSV infection.
Collapse
|
10
|
Luebcke E, Dubovi E, Black D, Ohsawa K, Eberle R. Isolation and characterization of a chimpanzee alphaherpesvirus. J Gen Virol 2006; 87:11-19. [PMID: 16361413 DOI: 10.1099/vir.0.81606-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although both beta- and gammaherpesviruses indigenous to great-ape species have been isolated, to date all alphaherpesviruses isolated from apes have proven to be human viruses [herpes simplex virus types 1 (HSV1) and 2 (HSV2) or varicella-zoster virus]. If the alphaherpesviruses have co-evolved with their host species, some if not all ape species should harbour their own alphaherpesviruses. Here, the isolation and characterization of an alphaherpesvirus from a chimpanzee (ChHV) are described. Sequencing of a number of genes throughout the ChHV genome indicates that it is collinear with that of HSV. Phylogenetic analyses place ChHV in a clade with HSV1 and HSV2, the alphaherpesviruses of Old World monkeys comprising a separate clade. Analysis of reactivity patterns of HSV2-immune human sera and ChHV-immune chimpanzee sera by competition ELISA support this relationship. Phylogenetic analyses also place ChHV rather than HSV1 as the closest relative of HSV2.
Collapse
Affiliation(s)
- Emily Luebcke
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edward Dubovi
- Animal Health Diagnostic Center, Cornell University, Ithaca, NY, USA
| | - Darla Black
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kazutaka Ohsawa
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan
| | - Richard Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
11
|
Foster TP, Melancon JM, Baines JD, Kousoulas KG. The herpes simplex virus type 1 UL20 protein modulates membrane fusion events during cytoplasmic virion morphogenesis and virus-induced cell fusion. J Virol 2004; 78:5347-57. [PMID: 15113914 PMCID: PMC400383 DOI: 10.1128/jvi.78.10.5347-5357.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) UL20 protein is an important determinant for virion morphogenesis and virus-induced cell fusion. A precise deletion of the UL20 gene in the HSV-1 KOS strain was constructed without affecting the adjacent UL20.5 gene. The resultant KOS/UL20-null virus produced small plaques of 8 to 15 cells in Vero cells while it produced wild-type plaques on the complementing cell line G5. Electron microscopic examination of infected cells revealed that the KOS/UL20-null virions predominantly accumulated capsids in the cytoplasm while a small percentage of virions were found as enveloped virions within cytoplasmic vacuoles. Recently, it was shown that UL20 expression was necessary and sufficient for cell surface expression of gK (T. P. Foster, X. Alvarez, and K. G. Kousoulas, J. Virol. 77:499-510, 2003). Therefore, we investigated the effect of UL20 on virus-induced cell fusion caused by syncytial mutations in gB and gK by constructing recombinant viruses containing the gBsyn3 or gKsyn1 mutations in a UL20-null genetic background. Both recombinant viruses failed to cause virus-induced cell fusion in Vero cells while they readily caused fusion of UL20-null complementing G5 cells. Ultrastructural examination of UL20-null viruses carrying the gBsyn3 or gKsyn1 mutation revealed a similar distribution of virions as the KOS/UL20-null virus. However, cytoplasmic vacuoles contained aberrant virions having multiple capsids within a single envelope. These multicapsid virions may have been formed either by fusion of viral envelopes or by the concurrent reenvelopment of multiple capsids. These results suggest that the UL20 protein regulates membrane fusion phenomena involved in virion morphogenesis and virus-induced cell fusion.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
12
|
Perelygina L, Zhu L, Zurkuhlen H, Mills R, Borodovsky M, Hilliard JK. Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey. J Virol 2003; 77:6167-77. [PMID: 12743273 PMCID: PMC155011 DOI: 10.1128/jvi.77.11.6167-6177.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of herpes B virus (Cercopithecine herpesvirus 1) strain E2490, isolated from a rhesus macaque, was determined. The total genome length is 156,789 bp, with 74.5% G+C composition and overall genome organization characteristic of alphaherpesviruses. The first and last residues of the genome were defined by sequencing the cloned genomic termini. There were six origins of DNA replication in the genome due to tandem duplication of both oriL and oriS regions. Seventy-four genes were identified, and sequence homology to proteins known in herpes simplex viruses (HSVs) was observed in all cases but one. The degree of amino acid identity between B virus and HSV proteins ranged from 26.6% (US5) to 87.7% (US15). Unexpectedly, B virus lacked a homolog of the HSV gamma(1)34.5 gene, which encodes a neurovirulence factor. Absence of this gene was verified in two low-passage clinical isolates derived from a rhesus macaque and a zoonotically infected human. This finding suggests that B virus most likely utilizes mechanisms distinct from those of HSV to sustain efficient replication in neuronal cells. Despite the considerable differences in G+C content of the macaque and B virus genes (51% and 74.2%, respectively), codons used by B virus are optimal for the tRNA population of macaque cells. Complete sequence of the B virus genome will certainly facilitate identification of the genetic basis and possible molecular mechanisms of enhanced B virus neurovirulence in humans, which results in an 80% mortality rate following zoonotic infection.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Viral/analysis
- Genome, Viral
- Herpesvirus 1, Cercopithecine/chemistry
- Herpesvirus 1, Cercopithecine/genetics
- Herpesvirus 1, Human/chemistry
- Herpesvirus 1, Human/genetics
- Herpesvirus 2, Human/chemistry
- Herpesvirus 2, Human/genetics
- Humans
- Macaca mulatta
- Molecular Sequence Data
- Open Reading Frames/genetics
- Sequence Analysis, DNA
- Viral Proteins/chemistry
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Ludmila Perelygina
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta 30303, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Yao F, Eriksson E. Inhibition of herpes simplex virus type 2 (HSV-2) viral replication by the dominant negative mutant polypeptide of HSV-1 origin binding protein. Antiviral Res 2002; 53:127-33. [PMID: 11750938 DOI: 10.1016/s0166-3542(01)00207-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UL9-C535C, the trans-dominant negative mutant polypeptide of herpes simplex virus type 1 (HSV-1) UL9 origin binding protein, is a potent inhibitor of HSV-1 viral DNA replication. This study focused on testing whether HSV-1 UL9-C535C and a genetically engineered UL9-C535C-encoding HSV-1 recombinant virus CJ83193 could inhibit herpes simplex virus type 2 (HSV-2) infection. First, a stable cell line, R-C535C, expressing a high level of UL9-C535C in the presence of tetracycline and little or no UL9-C535C in the absence of tetracycline was established. The single step growth experiment showed that like HSV-1, the de novo synthesis of HSV-2 could be suppressed approximately 1000-fold by UL9-C535C expressed in R-C535C cells in the presence of tetracycline. Secondly, compared with cells singly infected with HSV-2, co-infection of Vero cells with HSV-2 and CJ83193 reduced the replication efficiency of HSV-2 in co-infected cells by 30-40 fold in a single-step growth assay, which coincided with marked reduction in viral late gene expression, but not the expression of viral immediate-early genes. Taken together, in view of our recent demonstration that CJ83193 can serve as an effective vaccine in preventing HSV-1 infection in mice, one can generate a CJ83193-like HSV-2 recombinant virus that could potentially function as a new therapeutic class of recombinant viral vaccine against HSV-2 infection.
Collapse
Affiliation(s)
- Feng Yao
- Laboratory of Wound Repair and Gene Transfer, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|