1
|
Shamloo S, Schloßhauer JL, Tiwari S, Fischer KD, Ghebrechristos Y, Kratzenberg L, Bejoy AM, Aifantis I, Wang E, Imig J. RNA Binding of GAPDH Controls Transcript Stability and Protein Translation in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626357. [PMID: 39677748 PMCID: PMC11642814 DOI: 10.1101/2024.12.02.626357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Dysregulation of RNA binding proteins (RBPs) is a hallmark in cancerous cells. In acute myeloid leukemia (AML) RBPs are key regulators of tumor proliferation. While classical RBPs have defined RNA binding domains, RNA recognition and function in AML by non-canonical RBPs (ncRBPs) remain unclear. Given the inherent complexity of targeting AML broadly, our goal was to uncover potential ncRBP candidates critical for AML survival using a CRISPR/Cas-based screening. We identified the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a pro-proliferative factor in AML cells. Based on cross-linking and immunoprecipitation (CLIP), we are defining the global targetome, detecting novel RNA targets mainly located within 5'UTRs, including GAPDH, RPL13a, and PKM. The knockdown of GAPDH unveiled genetic pathways related to ribosome biogenesis, translation initiation, and regulation. Moreover, we demonstrated a stabilizing effect through GAPDH binding to target transcripts including its own mRNA. The present findings provide new insights on the RNA functions and characteristics of GAPDH in AML.
Collapse
|
2
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
3
|
Wegener M, Dietz KJ. The mutual interaction of glycolytic enzymes and RNA in post-transcriptional regulation. RNA (NEW YORK, N.Y.) 2022; 28:1446-1468. [PMID: 35973722 PMCID: PMC9745834 DOI: 10.1261/rna.079210.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
About three decades ago, researchers suggested that metabolic enzymes participate in cellular processes that are unrelated to their catalytic activity, and the term "moonlighting functions" was proposed. Recently developed advanced technologies in the field of RNA interactome capture now unveil the unexpected RNA binding activity of many metabolic enzymes, as exemplified here for the enzymes of glycolysis. Although for most of these proteins a precise binding mechanism, binding conditions, and physiological relevance of the binding events still await in-depth clarification, several well explored examples demonstrate that metabolic enzymes hold crucial functions in post-transcriptional regulation of protein synthesis. This widely conserved RNA-binding function of glycolytic enzymes plays major roles in controlling cell activities. The best explored examples are glyceraldehyde 3-phosphate dehydrogenase, enolase, phosphoglycerate kinase, and pyruvate kinase. This review summarizes current knowledge about the RNA-binding activity of the ten core enzymes of glycolysis in plant, yeast, and animal cells, its regulation and physiological relevance. Apparently, a tight bidirectional regulation connects core metabolism and RNA biology, forcing us to rethink long established functional singularities.
Collapse
Affiliation(s)
- Melanie Wegener
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
4
|
Goodrum G, Pelchat M. Insight into the Contribution and Disruption of Host Processes during HDV Replication. Viruses 2018; 11:v11010021. [PMID: 30602655 PMCID: PMC6356607 DOI: 10.3390/v11010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/18/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is unique among animal viruses. HDV is a satellite virus of the hepatitis B virus (HBV), however it shares no sequence similarity with its helper virus and replicates independently in infected cells. HDV is the smallest human pathogenic RNA virus and shares numerous characteristics with viroids. Like viroids, HDV has a circular RNA genome which adopts a rod-like secondary structure, possesses ribozyme domains, replicates in the nucleus of infected cells by redirecting host DNA-dependent RNA polymerases (RNAP), and relies heavily on host proteins for its replication due to its small size and limited protein coding capacity. These similarities suggest an evolutionary relationship between HDV and viroids, and information on HDV could allow a better understanding of viroids and might globally help understanding the pathogenesis and molecular biology of these subviral RNAs. In this review, we discuss the host involvement in HDV replication and its implication for HDV pathogenesis.
Collapse
Affiliation(s)
- Gabrielle Goodrum
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
5
|
Raj M, Langley M, McArthur SJ, Jean F. Moonlighting glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is required for efficient hepatitis C virus and dengue virus infections in human Huh-7.5.1 cells. J Gen Virol 2017; 98:977-991. [PMID: 28548037 DOI: 10.1099/jgv.0.000754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hijacking of cellular biosynthetic pathways by human enveloped viruses is a shared molecular event essential for the viral lifecycle. In this study, the accumulating evidence of the importance of human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the host secretory pathway led us to hypothesize that this moonlighting enzyme could play a key role in the lifecycle steps of two important Flaviviridae members, hepatitis C virus (HCV) and dengue virus (DENV). We used short interfering RNA (siRNA)-mediated knockdown of human GAPDH in Huh-7.5.1 cells- both pre- and post-HCV infection- to demonstrate that GAPDH is a host factor for HCV infection. siRNA-induced GAPDH knockdown performed pre-HCV infection inhibits HCV core production in infected cells and leads to a decrease in infectivity of the HCV-infected cell supernatants. siRNA-induced GAPDH knockdown performed post-HCV infection does not have an effect on HCV core abundance in infected cells, but does lead to a decrease in infectivity of the HCV-infected cell supernatants. Exogenous expression of V5-tagged human GAPDH, pre- and post-infection, increases the infectivity of HCV-infected cell supernatants, suggesting a role for GAPDH during HCV post-replication steps. Interestingly, siRNA-induced GAPDH knockdown in HCV replicon-harbouring cells had no effect on viral RNA replication. Importantly, we confirmed the important role of GAPDH in the HCV lifecycle using Huh-7-derived stable GAPDH-knockdown clones. Finally, siRNA-induced GAPDH knockdown inhibits intracellular DENV-2 E glycoprotein production in infected cells. Collectively, our findings suggest that the moonlighting enzyme, GAPDH, is an important host factor for HCV infection, and they support its potential role in the DENV lifecycle.
Collapse
Affiliation(s)
- Meera Raj
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Present address: Canadian Blood Services and the Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Mary Langley
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Present address: School of Medicine, Flinders University, Adelaide, South Australia
| | - Steven J McArthur
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - François Jean
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Abstract
Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization , biomolecular interactions, post-translational modifications , and variations in subcellular localization . Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.
Collapse
|
7
|
White MR, Garcin ED. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:53-70. [PMID: 26564736 DOI: 10.1002/wrna.1315] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/26/2023]
Abstract
The glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has a vast array of extraglycolytic cellular functions, including interactions with nucleic acids. GAPDH has been implicated in the translocation of transfer RNA (tRNA), the regulation of cellular messenger RNA (mRNA) stability and translation, as well as the regulation of replication and gene expression of many single-stranded RNA viruses. A growing body of evidence supports GAPDH-RNA interactions serving as part of a larger coordination between intermediary metabolism and RNA biogenesis. Despite the established role of GAPDH in nucleic acid regulation, it is still unclear how and where GAPDH binds to its RNA targets, highlighted by the absence of any conserved RNA-binding sequences. This review will summarize our current understanding of GAPDH-mediated regulation of RNA function. WIREs RNA 2016, 7:53-70. doi: 10.1002/wrna.1315 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael R White
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA
| |
Collapse
|
8
|
Katsarou K, Rao ALN, Tsagris M, Kalantidis K. Infectious long non-coding RNAs. Biochimie 2015; 117:37-47. [PMID: 25986218 DOI: 10.1016/j.biochi.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
Abstract
Long non protein coding RNAs (lncRNAs) constitute a large category of the RNA world, able to regulate different biological processes. In this review we are focusing on infectious lncRNAs, their classification, pathogenesis and impact on the infected organisms. Here they are presented in two separate groups: 'dependent lncRNAs' (comprising satellites RNA, Hepatitis D virus and lncRNAs of viral origin) which need a helper virus and 'independent lncRNAs' (viroids) that can self-replicate. Even though these lncRNA do not encode any protein, their structure and/or sequence comprise all the necessary information to drive specific interactions with host factors and regulate several cellular functions. These new data that have emerged during the last few years concerning lncRNAs modify the way we understand molecular biology's 'central dogma' and give new perspectives for applications and potential therapeutic strategies.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - A L N Rao
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521-01222, USA
| | - Mina Tsagris
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
9
|
LIU SHUANG, ZHU PENGFEI, ZHANG LING, LI ZHUO, LV QUANJUN, ZHENG SUJUN, WANG YANG, LU FENGMIN. Increased glyceraldehyde-3-phosphate dehydrogenase expression indicates higher survival rates in male patients with hepatitis B virus-accociated hepatocellular carcinoma and cirrhosis. Exp Ther Med 2015; 9:1597-1604. [PMID: 26136865 PMCID: PMC4471696 DOI: 10.3892/etm.2015.2309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 01/15/2015] [Indexed: 12/22/2022] Open
Abstract
Elevated expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported in different human malignancies. To understand its role in hepatitis B virus (HBV) infection-associated hepatocellular carcinoma (HCC), the expression of GAPDH was quantitatively measured in a cohort of 72 male HCC patients without preoperative treatment, all with evidence of chronic HBV infection. Using C-terminal banding protein 1 (CTBP1) or hypoxanthine phosphori-bosyltransferase 1 (HPRT1) as reference genes, the level of GAPDH mRNA in tumor tissue was found to be significantly higher compared with that in paired non tumor tissues (P=0.0087 for CTBP1; P=0.0116 for HPRT1). Accordingly, compared with the non-tumor tissue, 37.5% (27/72) of patients' tumor tissues had a more than 2-fold increase of GAPDH expression. Furthermore, following knockdown GAPDH expression via siRNA transient transfection, HepG2 cells exhibited enhanced resistance to cytosine arabinoside (IC50, 308.28 µM vs. 67.68 µM in the control; P=0.01). Notably, higher GAPDH expression was significantly associated with lower liver fibrosis score (P=0.0394) and a tendency towards higher survival rates for patients with HCC. To the best of our knowledge, the present study is the first study to report that the elevated expression levels of GAPDH in HCC tumor tissue may be relevant to an improved fibrosis score and survival probability in male patients with HBV infection; however, the underlying mechanism requires further investigation.
Collapse
Affiliation(s)
- SHUANG LIU
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - PENGFEI ZHU
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - LING ZHANG
- Department of Hepatobiliary Surgery, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - ZHUO LI
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - QUANJUN LV
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - SUJUN ZHENG
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - YANG WANG
- Beijing Artificial Liver Treatment and Training Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - FENGMIN LU
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing 100086, P.R. China
| |
Collapse
|
10
|
Kaido M, Abe K, Mine A, Hyodo K, Taniguchi T, Taniguchi H, Mise K, Okuno T. GAPDH--a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PLoS Pathog 2014; 10:e1004505. [PMID: 25411849 PMCID: PMC4239097 DOI: 10.1371/journal.ppat.1004505] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 10/06/2014] [Indexed: 01/15/2023] Open
Abstract
The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.
Collapse
Affiliation(s)
- Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazutomo Abe
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kiwamu Hyodo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takako Taniguchi
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Huang TS, Nagy PD. Direct inhibition of tombusvirus plus-strand RNA synthesis by a dominant negative mutant of a host metabolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, in yeast and plants. J Virol 2011; 85:9090-102. [PMID: 21697488 PMCID: PMC3165801 DOI: 10.1128/jvi.00666-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 06/08/2011] [Indexed: 12/12/2022] Open
Abstract
The replication of plus-strand RNA viruses depends on many cellular factors. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an abundant metabolic enzyme that is recruited to the replicase complex of Tomato bushy stunt virus (TBSV) and affects asymmetric viral RNA synthesis. To further our understanding on the role of GAPDH in TBSV replication, we used an in vitro TBSV replication assay based on recombinant p33 and p92(pol) viral replication proteins and cell-free yeast extract. We found that the addition of purified recombinant GAPDH to the cell extract prepared from GAPDH-depleted yeast results in increased plus-strand RNA synthesis and asymmetric production of viral RNAs. Our data also demonstrate that GAPDH interacts with p92(pol) viral replication protein, which may facilitate the recruitment of GAPDH into the viral replicase complex in the yeast model host. In addition, we have identified a dominant negative mutant of GAPDH, which inhibits RNA synthesis and RNA recruitment in vitro. Moreover, this mutant also exhibits strong suppression of tombusvirus accumulation in yeast and in virus-infected Nicotiana benthamiana. Overall, the obtained data support the model that the co-opted GAPDH plays a direct role in TBSV replication by stimulating plus-strand synthesis by the viral replicase.
Collapse
Affiliation(s)
- Tyng-Shyan Huang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
12
|
Prasanth KR, Huang YW, Liou MR, Wang RYL, Hu CC, Tsai CH, Meng M, Lin NS, Hsu YH. Glyceraldehyde 3-phosphate dehydrogenase negatively regulates the replication of Bamboo mosaic virus and its associated satellite RNA. J Virol 2011; 85:8829-40. [PMID: 21715476 PMCID: PMC3165797 DOI: 10.1128/jvi.00556-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/21/2011] [Indexed: 01/24/2023] Open
Abstract
The identification of cellular proteins associated with virus replicase complexes is crucial to our understanding of virus-host interactions, influencing the host range, replication, and virulence of viruses. A previous in vitro study has demonstrated that partially purified Bamboo mosaic virus (BaMV) replicase complexes can be employed for the replication of both BaMV genomic and satellite BaMV (satBaMV) RNAs. In this study, we investigated the BaMV and satBaMV 3' untranslated region (UTR) binding proteins associated with these replicase complexes. Two cellular proteins with molecular masses of ∼35 and ∼55 kDa were specifically cross-linked with RNA elements, whereupon the ∼35-kDa protein was identified as the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Gel mobility shift assays confirmed the direct interaction of GAPDH with the 3' UTR sequences, and competition gel shift analysis revealed that GAPDH binds preferentially to the positive-strand BaMV and satBaMV RNAs over the negative-strand RNAs. It was observed that the GAPDH protein binds to the pseudoknot poly(A) tail of BaMV and stem-loop-C poly(A) tail of satBaMV 3' UTR RNAs. It is important to note that knockdown of GAPDH in Nicotiana benthamiana enhances the accumulation of BaMV and satBaMV RNA; conversely, transient overexpression of GAPDH reduces the accumulation of BaMV and satBaMV RNA. The recombinant GAPDH principally inhibits the synthesis of negative-strand RNA in exogenous RdRp assays. These observations support the contention that cytosolic GAPDH participates in the negative regulation of BaMV and satBaMV RNA replication.
Collapse
Affiliation(s)
- K. Reddisiva Prasanth
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ming-Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Robert Yung-Liang Wang
- Department of Biomedical Sciences and Research Center for Emerging Viral Infections, Chang Gung University, Tao Yuan 33302, Taiwan, Republic of China
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
13
|
Evolution and diversity of the human hepatitis d virus genome. Adv Bioinformatics 2010:323654. [PMID: 20204073 PMCID: PMC2829689 DOI: 10.1155/2010/323654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/11/2009] [Indexed: 12/17/2022] Open
Abstract
Human hepatitis delta virus (HDV) is the smallest RNA virus in genome. HDV genome is divided into a viroid-like sequence and a protein-coding sequence which could have originated from different resources and the HDV genome was eventually constituted through RNA recombination. The genome subsequently diversified through accumulation of mutations selected by interactions between the mutated RNA and proteins with host factors to successfully form the infectious virions. Therefore, we propose that the conservation of HDV nucleotide sequence is highly related with its functionality. Genome analysis of known HDV isolates shows that the C-terminal coding sequences of large delta antigen (LDAg) are the highest diversity than other regions of protein-coding sequences but they still retain biological functionality to interact with the heavy chain of clathrin can be selected and maintained. Since viruses interact with many host factors, including escaping the host immune response, how to design a program to predict RNA genome evolution is a great challenging work.
Collapse
|
14
|
Interaction of host cellular proteins with components of the hepatitis delta virus. Viruses 2010; 2:189-212. [PMID: 21994607 PMCID: PMC3185554 DOI: 10.3390/v2010189] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 12/18/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known RNA pathogen capable of propagation in the human host and causes substantial global morbidity and mortality. Due to its small size and limited protein coding capacity, HDV is exquisitely reliant upon host cellular proteins to facilitate its transcription and replication. Remarkably, HDV does not encode an RNA-dependent RNA polymerase which is traditionally required to catalyze RNA-templated RNA synthesis. Furthermore, HDV lacks enzymes responsible for post-transcriptional and -translational modification, processes which are integral to the HDV life cycle. This review summarizes the known HDV-interacting proteins and discusses their significance in HDV biology.
Collapse
|
15
|
Cao D, Haussecker D, Huang Y, Kay MA. Combined proteomic-RNAi screen for host factors involved in human hepatitis delta virus replication. RNA (NEW YORK, N.Y.) 2009; 15:1971-9. [PMID: 19776158 PMCID: PMC2764473 DOI: 10.1261/rna.1782209] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Human hepatitis delta virus (HDV) is the only animal virus known to replicate its RNA genome using a host polymerase because its only virally encoded proteins, the small and large hepatitis delta antigens (HDAg-S and HDAg-L), lack polymerase activity. Although this makes HDV an ideal model system to study RNA-directed transcription in mammalian cells, little is known about the host factors involved in its replication. To comprehensively identify such host factors, we created a stable cell line carrying a functional FLAG-HDAg-S. Anti-Flag immunopurification and mass spectrometry identified >100 proteins associated with FLAG-HDAg-S, many of which had predicted roles in RNA metabolism. The biological relevance of this screen was strongly supported by the identification of nine out of the 12 subunits of the RNA polymerase II complex thought to mediate HDV replication. To further investigate the significance of these factors for HDV replication, we selected 65 proteins to look for factors that would also affect the accumulation of HDV RNA following siRNA knockdown. Fifteen and three factors were found to regulate HDV RNA accumulation negatively and positively, respectively, upon RNAi knockdown. Our results provide a valuable resource for future research to advance our mechanistic understanding of HDV replication and RNA-directed transcription in mammalian cells.
Collapse
|
16
|
Sikora D, Greco-Stewart VS, Miron P, Pelchat M. The hepatitis delta virus RNA genome interacts with eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2. Virology 2009; 390:71-8. [PMID: 19464723 DOI: 10.1016/j.virol.2009.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 03/26/2009] [Accepted: 04/29/2009] [Indexed: 02/08/2023]
Abstract
Because of its extremely limited coding capacity, the hepatitis delta virus (HDV) takes over cellular machineries for its replication and propagation. Despite the functional importance of host factors in both HDV biology and pathogenicity, little is known about proteins that associate with its RNA genome. Here, we report the identification of several host proteins interacting with an RNA corresponding to the right terminal stem-loop domain of HDV genomic RNA, using mass spectrometry on a UV crosslinked ribonucleoprotein complex, RNA affinity chromatography, and screening of a library of purified RNA-binding proteins. Co-immunoprecipitation was used to confirm the interactions of eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2 with the right terminal stem-loop domain of HDV genomic RNA in vitro, and with both polarities of HDV RNA within HeLa cells. Our discovery that HDV RNA associates with RNA-processing pathways and translation machinery during its replication provides new insights into HDV biology and its pathogenicity.
Collapse
Affiliation(s)
- Dorota Sikora
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4111A, Ottawa, Ontario, Canada, K1H 8M5
| | | | | | | |
Collapse
|
17
|
Zhou Y, Yi X, Stoffer JB, Bonafe N, Gilmore-Hebert M, McAlpine J, Chambers SK. The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res 2008; 6:1375-84. [PMID: 18708368 PMCID: PMC2587019 DOI: 10.1158/1541-7786.mcr-07-2170] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although glyceraldehyde-3-phosphate dehydrogenase's (GAPDH) predilection for AU-rich elements has long been known, the expected connection between GAPDH and control of mRNA stability has never been made. Recently, we described GAPDH binding the AU-rich terminal 144 nt of the colony-stimulating factor-1 (CSF-1) 3' untranslated region (UTR), which we showed to be an mRNA decay element in ovarian cancer cells. CSF-1 is strongly correlated with the poor prognosis of patients with ovarian cancer. We investigated the functional significance of GAPDH's association with CSF-1 mRNA and found that GAPDH small interfering RNA reduces both CSF-1 mRNA and protein levels by destabilizing CSF-1 mRNA. CSF-1 mRNA half-lives were decreased by 50% in the presence of GAPDH small interfering RNA. RNA footprinting analysis of the 144 nt CSF-1 sequence revealed that GAPDH associates with a large AU-rich-containing region. The effects of binding of GAPDH protein or ovarian extracts to mutations of the AU-rich regions within the footprint were consistent with this finding. In a tissue array containing 256 ovarian and fallopian tube cancer specimens, we found that GAPDH was regulated in these cancers, with almost 50% of specimens having no GAPDH staining. Furthermore, we found that low GAPDH staining was associated with a low CSF-1 score (P = 0.008). In summary, GAPDH, a multifunctional protein, now adds regulation of mRNA stability to its repertoire. We are the first to evaluate the clinical role of GAPDH protein in cancer. In ovarian cancers, we show that GAPDH expression is regulated, and we now recognize that one of the many functions of GAPDH is to promote mRNA stability of CSF-1, an important cytokine in tumor progression.
Collapse
Affiliation(s)
- Yi Zhou
- Arizona Cancer Center, University of Arizona, Tucson, AZ 85724-5024
| | - Xiaofang Yi
- Arizona Cancer Center, University of Arizona, Tucson, AZ 85724-5024
| | | | | | | | - Jessica McAlpine
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC V5Z-1M9
| | | |
Collapse
|
18
|
Kim S, Lee J, Kim J. Regulation of oncogenic transcription factor hTAF(II)68-TEC activity by human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem J 2007; 404:197-206. [PMID: 17302560 PMCID: PMC1868794 DOI: 10.1042/bj20061297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumour-specific chromosomal rearrangements are known to create chimaeric products with the ability to generate many human cancers. hTAF(II)68-TEC (where hTAF(II)68 is human TATA-binding protein-associated factor II 68 and TEC is translocated in extraskeletal chondrosarcoma) is such a fusion product, resulting from a t(9;17) chromosomal translocation found in extraskeletal myxoid chondrosarcomas, where the hTAF(II)68 NTD (N-terminal domain) is fused to TEC protein. To identify proteins that control hTAF(II)68-TEC function, we used affinity chromatography on immobilized hTAF(II)68 (NTD) and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS and isolated a novel hTAF(II)68-TEC-interacting protein, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). GAPDH is a glycolytic enzyme that is also involved in the early steps of apoptosis, nuclear tRNA export, DNA replication, DNA repair and transcription. hTAF(II)68-TEC and GAPDH were co-immunoprecipitated from cell extracts, and glutathione S-transferase pull-down assays revealed that the C-terminus of hTAF(II)68 (NTD) was required for interaction with GAPDH. In addition, three independent regions of GAPDH (amino acids 1-66, 67-160 and 160-248) were involved in binding to hTAF(II)68 (NTD). hTAF(II)68-TEC-dependent transcription was enhanced by GAPDH, but not by a GAPDH mutant defective in hTAF(II)68-TEC binding. Moreover, a fusion of GAPDH with the GAL4 DNA-binding domain increased the promoter activity of a reporter containing GAL4 DNA-binding sites, demonstrating the presence of a transactivation domain(s) in GAPDH. The results of the present study suggest that the transactivation potential of the hTAF(II)68-TEC oncogene product is positively modulated by GAPDH.
Collapse
Affiliation(s)
- Sol Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jungwoon Lee
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jungho Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Wang HC, Wang HC, Leu JH, Kou GH, Wang AHJ, Lo CF. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:672-86. [PMID: 17188354 DOI: 10.1016/j.dci.2006.11.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 05/13/2023]
Abstract
To better understand the pathogenesis of white spot syndrome virus (WSSV) and to determine which cell pathways might be affected after WSSV infection, two-dimensional gel electrophoresis (2-DE) was used to produce protein expression profiles from samples taken at 48 h post-infection (hpi) from the stomachs of Litopenaeus vannamei (also called Penaeus vannamei) that were either specific pathogen free or else infected with WSSV. Seventy-five protein spots that consistently showed either a marked change (>50%) in accumulated levels or else were highly expressed throughout the course of WSSV infection were selected for further study. After in-gel trypsin digestion followed by LC-nanoESI-MS/MS, bioinformatics databases were searched for matches. A total of 53 proteins were identified, with functions that included energy production, calcium homeostasis, nucleic acid synthesis, signaling/communication, oxygen carrier/transportation, and SUMO-related modification. 2-DE results were shown to be consistent with relative EST database data from a previously developed EST database of two Penaeus monodon cDNA libraries. For seven selected genes, 2-DE and EST data were also compared with transcriptional time-course RT-PCR data. This study is the first global analysis of differentially expressed proteins in WSSV-infected shrimp, and in addition to increasing our understanding of the molecular pathogenesis of this virus-associated shrimp disease, the results presented here should be useful both for identifying potential biomarkers and for developing antiviral measures.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
20
|
Medvedev A, Buneeva O, Gnedenko O, Fedchenko V, Medvedeva M, Ivanov Y, Glover V, Sandler M. Isatin interaction with glyceraldehyde-3-phosphate dehydrogenase, a putative target of neuroprotective drugs: partial agonism with deprenyl. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:97-103. [PMID: 17447420 DOI: 10.1007/978-3-211-33328-0_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is evidence that the binding of deprenyl, a monoamine oxidase (MAO) B inhibitor, and other propargylamines to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is primarily responsible for their neuroprotective and antiapoptotic effects. Thus, GAPDH may be a target for other neuroprotective drugs. Using two independent approaches, radioligand analysis and an optical biosensor technique, we demonstrate here that GAPDH also interacts with the endogenous, reversible MAO B inhibitor, isatin. Deprenyl inhibited both [3H]isatin binding to GAPDH, and the binding of this enzyme to an isatin analogue, 5-aminoisatin, immobilized on to an optical biosensor cell. Another MAO inhibitor, tranylcypromine, was ineffective. Both deprenyl and isatin inhibited GAPDH-mediated cleavage of E. coli tRNA, and their effects were not additive. We suggest that isatin may be an endogenous partial functional agonist of deprenyl in its effect on GAPDH and GAPDH-mediated RNA cleavage. Changes in level of endogenous isatin may influence the neuroprotective effect of deprenyl in vivo.
Collapse
Affiliation(s)
- A Medvedev
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Greco-Stewart VS, Thibault CSL, Pelchat M. Binding of the polypyrimidine tract-binding protein-associated splicing factor (PSF) to the hepatitis delta virus RNA. Virology 2006; 356:35-44. [PMID: 16938326 DOI: 10.1016/j.virol.2006.06.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/04/2006] [Accepted: 06/09/2006] [Indexed: 12/17/2022]
Abstract
The hepatitis delta virus (HDV) has a very limited protein coding capacity and must rely on host proteins for its replication. A ribonucleoprotein complex was detected following UV cross-linking between HeLa nuclear proteins and an RNA corresponding to the right terminal stem-loop domain of HDV genomic RNA. Mass spectrometric analysis of the complex revealed the polypyrimidine tract-binding protein-associated splicing factor (PSF) as a novel HDV RNA-interacting protein. Co-immunoprecipitation demonstrated the interaction between HDV RNA and PSF both in vitro in HeLa nuclear extract and in vivo within HeLa cells containing both polarities of the HDV genome. Analysis of the binding of various HDV-derived RNAs to purified, recombinant PSF further confirmed the specificity of the interaction and revealed that PSF directly binds to the terminal stem-loop domains of both polarities of HDV RNA. Our findings provide evidence of the involvement of a host mRNA processing protein in the HDV life cycle.
Collapse
Affiliation(s)
- Valerie S Greco-Stewart
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4223A, Ottawa, ON, Canada K1H 8M5
| | | | | |
Collapse
|
22
|
Abstract
Group II introns are autocatalytic RNAs which self-splice in vitro. However, in vivo additional protein factors might be involved in the splicing process. We used an affinity chromatography method called 'StreptoTag' to identify group II intron binding proteins from Saccharomyces cerevisiae. This method uses a hybrid RNA consisting of a streptomycin-binding affinity tag and the RNA of interest, which is bound to a streptomycin column and incubated with yeast protein extract. After several washing steps the bound RNPs are eluted by addition of streptomycin. The eluted RNPs are separated and the proteins identified by mass-spectrometric analysis. Using crude extract from yeast in combination with a substructure of the bl1 group II intron (domains IV-VI) we were able to identify four glycolytic enzymes; glucose-6-phosphate isomerase (GPI), 3-phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI). From these proteins GAPDH increases in vitro splicing of the bl1 group II intron by up to three times. However, in vivo GAPDH is not a group II intron-splicing factor, since it is not localised in yeast mitochondria. Therefore, the observed activity reflects an unexpected property of GAPDH. Band shift experiments and UV cross linking demonstrated the interaction of GAPDH with the group II intron RNA. This novel activity expands the reaction repertoire of GAPDH to a new RNA species.
Collapse
Affiliation(s)
- Petra Böck-Taferner
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Genetics, Vienna Biocenter, Dr. Bohrgasse 9/4, A-1030 Vienna, Austria
| | | |
Collapse
|
23
|
Deocaris CC, Kaul SC, Taira K, Wadhwa R. Emerging Technologies: Trendy RNA Tools for Aging Research. J Gerontol A Biol Sci Med Sci 2004; 59:771-83. [PMID: 15345725 DOI: 10.1093/gerona/59.8.b771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aging is an inevitable biological phenomenon. Attempts to understand its mechanisms and, consequently, to therapeutically decelerate or even reverse the process are limited by its daunting complexity. Rapid and robust functional genomic tools suited to a wide array of experimental model systems are needed to dissect the interplay of individual genes during aging. In this article, we review principles that transcend the view of RNA, from a molecule merely mediating the flow of genetic information, into a unique molecular tool. In the form of catalytic molecular scissors (ribozymes), antibody-like antagonists (aptamers) and gene silencers (interfering RNAs, RNAi) can be effectively used to dissect biofunctions conserved throughout the evolution. In this review, application of recent RNA tools in aging research is discussed.
Collapse
Affiliation(s)
- Custer C Deocaris
- Gene Function Research Center, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | |
Collapse
|
24
|
McLean JE, Hamaguchi N, Belenky P, Mortimer SE, Stanton M, Hedstrom L. Inosine 5'-monophosphate dehydrogenase binds nucleic acids in vitro and in vivo. Biochem J 2004; 379:243-51. [PMID: 14766016 PMCID: PMC1224093 DOI: 10.1042/bj20031585] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 02/06/2004] [Indexed: 11/17/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides. In addition to the catalytic domain, IMPDH contains a subdomain of unknown function composed of two cystathione beta-synthase domains. Our results, using three different assays, show that IMPDHs from Tritrichomonas foetus, Escherichia coli, and both human isoforms bind single-stranded nucleic acids with nanomolar affinity via the subdomain. Approx. 100 nucleotides are bound per IMPDH tetramer. Deletion of the subdomain decreases affinity 10-fold and decreases site size to 60 nucleotides, whereas substitution of conserved Arg/Lys residues in the subdomain with Glu decreases affinity by 20-fold. IMPDH is found in the nucleus of human cells, as might be expected for a nucleic-acid-binding protein. Lastly, immunoprecipitation experiments show that IMPDH binds both RNA and DNA in vivo. These experiments indicate that IMPDH has a previously unappreciated role in replication, transcription or translation that is mediated by the subdomain.
Collapse
Affiliation(s)
- Jeremy E McLean
- Program in Biophysics and Structural Biology, Brandeis University, MS 009, 415 South St., Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hotchkiss G, Maijgren-Steffensson C, Ahrlund-Richter L. Efficacy and mode of action of hammerhead and hairpin ribozymes against various HIV-1 target sites. Mol Ther 2004; 10:172-80. [PMID: 15233952 DOI: 10.1016/j.ymthe.2004.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 04/21/2004] [Indexed: 10/26/2022] Open
Abstract
Ribozymes have been proposed as gene therapy agents against HIV-1, although many fundamental questions about their mechanism of action remain unclear. Few studies have compared directly the potential of different modified ribozyme species against a particular target. Here we compare the relative abilities of hammerhead (HhU5) and hairpin (HpU5) ribozymes directed against a well-studied target RNA that has therapeutic potential, located in the untranslated 5' region (U5), to inhibit HIV-1 replication. The two types of ribozymes showed similar antiviral efficacy after being stably transfected into HUT78 cells and subsequently challenged with HIV-1(SF2), but the HhU5 ribozyme showed faster cleavage kinetics when tested in a cell-free system. In the second part of this study, we examined whether different ribozymes were able to inhibit the integration of proviral DNA in infected HUT78 cells. We found that cell pools stably expressing HpU5 could limit the appearance of integrated provirus, indicating that they could inhibit the infecting viral RNA before reverse transcription. A preintegration effect was also found for cell pools expressing a ribozyme targeting the nef gene (HhNef) or a ribozyme targeting the LTR (HhLTR). However, no discernible preintegration effects were seen for the HhU5 ribozyme or an active ribozyme directed against an RNA target site in the pol gene (HhPol). Thus, the results suggest that the mode of ribozyme action varied between sites and is not dependent solely on inhibiting the infecting viral RNA. Evidence for a preintegration effect is extremely encouraging and indicates that "resistant" cells have some chance to repopulate the immune system through such a selective advantage. We also studied the ability of the different ribozymes to down regulate viral RNA postintegration.
Collapse
Affiliation(s)
- Graham Hotchkiss
- Clinical Research Centre, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden
| | | | | |
Collapse
|
26
|
Mazzola JL, Sirover MA. Subcellular localization of human glyceraldehyde-3-phosphate dehydrogenase is independent of its glycolytic function. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1622:50-6. [PMID: 12829261 DOI: 10.1016/s0304-4165(03)00117-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was considered a classical glycolytic protein involved exclusively in cytosolic energy production. However, recent evidence suggests that it is a multifunctional protein displaying diverse activities distinct from its conventional metabolic role. These new roles for GAPDH may be dependent on its subcellular localization, oligomeric state or on the proliferative state of the cell. GAPDH is encoded by a single gene without alternate splicing. The regulatory mechanisms are unknown through which an individual GAPDH molecule fulfills its non-glycolytic functions or is targeted to a specific intracellular localization. Accordingly, as a first step to elucidate these subcellular regulatory mechanisms, we examined the interrelationship between the intracellular expression of the GAPDH protein and its glycolytic function in normal human fetal and senior cells. GAPDH localization was determined by immunoblot analysis. Enzyme activity was quantitated by in vitro biochemical assay. We now report that the subcellular expression of GAPDH was independent of its classical glycolytic function. In particular, in both fetal and senior cells, considerable GADPH protein was present in intracellular domains characterized by significantly reduced catalysis. Gradient analysis indicated that this lower activity was not due to the dissociation of tetrameric GAPDH. These results suggest that human cells contain significant intracellular levels of enzymatically inactive GAPDH which is age-independent. The possibility is considered that the functional diversity of GAPDH may be mediated either by posttranslational alteration or by subcellular protein:protein and/or protein:nucleic acid interactions.
Collapse
Affiliation(s)
- Jennifer L Mazzola
- Department of Pharmacology, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140, USA
| | | |
Collapse
|
27
|
Evguenieva-Hackenberg E, Schiltz E, Klug G. Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 2002; 277:46145-50. [PMID: 12359717 DOI: 10.1074/jbc.m208717200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific interactions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with RNA have been reported both in vitro and in vivo. We show that eukaryotic and bacterial GAPDH and two proteins from the hyperthermophilic archaeon Sulfolobus solfataricus, which are annotated as dehydrogenases, cleave RNA producing similar degradation patterns. RNA cleavage is most efficient at 60 degrees C, at MgCl(2) concentrations up to 5 mm, and takes place between pyrimidine and adenosine. The RNase active center of the putative aspartate semialdehyde dehydrogenase from S. solfataricus is located within the N-terminal 73 amino acids, which comprise the first mononucleotide-binding site of the predicted Rossmann fold. Thus, RNA cleavage has to be taken into account in the ongoing discussion of the possible biological function of RNA binding by dehydrogenases.
Collapse
Affiliation(s)
- Elena Evguenieva-Hackenberg
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | | | | |
Collapse
|