1
|
Hepatitis Delta Antigen Regulates mRNA and Antigenome RNA Levels during Hepatitis Delta Virus Replication. J Virol 2019; 93:JVI.01989-18. [PMID: 30728256 DOI: 10.1128/jvi.01989-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of acute and chronic liver disease. HDV produces three processed RNAs that accumulate in infected cells: the circular genome; the circular antigenome, which serves as a replication intermediate; and lesser amounts of the mRNA, which encodes the sole viral protein, hepatitis delta antigen (HDAg). The HDV genome and antigenome RNAs form ribonucleoprotein complexes with HDAg. Although HDAg is required for HDV replication, it is not known how the relative amounts of HDAg and HDV RNA affect replication, or whether HDAg synthesis is regulated by the virus. Using a novel transfection system in which HDV replication is initiated using in vitro-synthesized circular HDV RNAs, HDV replication was found to depend strongly on the relative amounts of HDV RNA and HDAg. HDV controls these relative amounts via differential effects of HDAg on the production of HDV mRNA and antigenome RNA, both of which are synthesized from the genome RNA template. mRNA synthesis is favored at low HDAg levels but becomes saturated at high HDAg concentrations. Antigenome RNA accumulation increases linearly with HDAg and dominates at high HDAg levels. These results provide a conceptual model for how HDV antigenome RNA production and mRNA transcription are controlled from the earliest stage of infection onward and also demonstrate that, in this control, HDV behaves similarly to other negative-strand RNA viruses, even though there is no genetic similarity between them.IMPORTANCE Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of liver disease; approximately 15 million people are chronically infected worldwide. There are no licensed therapies available. HDV is not related to any known virus, and few details regarding its replication cycle are known. One key question is whether and how HDV regulates the relative amounts of viral RNA and protein in infected cells. Such regulation might be important because the HDV RNA and protein form complexes that are essential for HDV replication, and the proper stoichiometry of these complexes could be critical for their function. Our results show that the relative amounts of HDV RNA and protein in cells are indeed important for HDV replication and that the virus does control them. These observations indicate that further study of these regulatory mechanisms is required to better understand replication of this serious human pathogen.
Collapse
|
2
|
Rapid expression and purification of the hepatitis delta virus antigen using the methylotropic yeast Pichia pastoris. BMC Res Notes 2017; 10:340. [PMID: 28750657 PMCID: PMC5530947 DOI: 10.1186/s13104-017-2692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Patients with dual hepatitis B (HBV) and hepatitis D (HDV) virus infection are at an increased risk of progression to liver cirrhosis and hepatocellular carcinoma than patients with a single viral infection. Treatment of viral hepatitis due to dual HBV/HDV infection represents a challenge. Currently there is no vaccine against HDV. Recombinant production of HDV antigen (HDAg) is the first step towards a potential vaccine candidate and the development of assays for HDV detection. RESULTS This study demonstrates the expression of one HDAg isoform, S-HDAg, in Pichia pastoris. A recombinant vector carrying a tagged gene encoding S-HDAg under the control of the methanol-inducible promoter AOX1 was designed and integrated into P. pastoris X33. The protein, which was purified using a Ni2+ affinity column and eluted at 100-150 mM imidazole, has potential as a recombinant antigen for further study.
Collapse
|
3
|
Liao FT, Hsu LS, Ko JL, Lin CC, Sheu GT. Multiple genomic sequences of hepatitis delta virus are associated with cDNA promoter activity and RNA double rolling-circle replication. J Gen Virol 2012; 93:577-587. [DOI: 10.1099/vir.0.037507-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand how DNA-dependent RNA polymerase II (pol II) recognizes hepatitis delta virus (HDV) RNA as a template, it is first necessary to identify the HDV sequence that acts as a promoter of pol II-initiated RNA synthesis. Therefore, we isolated the pol II-response element from HDV cDNA and examined the regulation by hepatitis delta antigens (HDAgs). Two HDV cDNA fragments containing bidirectional promoter activity were identified. One was located at nt 1582–1683 (transcription-promoter region 1, TR-P1) and the other at nt 1223–1363 (transcription-internal region 5, TR-I5). The promoter activities of these two regions were enhanced by HDAgs to differing degrees. Next, the role of these sequences in an HDV cDNA-free RNA replication system was characterized by site-directed mutagenesis. Our data showed that: (i) the AUG codon at the HDAg ORF of HDV RNA (nt 1599–1601) that mutates to UAG (amber stop codon) results in loss of dimeric but not monomeric HDV RNA synthesis. (ii) A 5 nt mutation of TR-P1 (P1-m5, nt 1670–1674) abolishes RNA replication completely. Two-nucleotide-mutated RNA (P1-m2, nt 1662–1663) is able to synthesize short RNAs but not monomeric HDV RNA. (iii) A mutation in 5 nt at the TR-I5 region (I5-m5, nt 1351–1355) also abolishes HDV replication. Mutants with 2 nt mutations (I5-m2, nt 1351–1352) or 3 nt mutations (I5-m3, nt 1353–1355) inhibit HDV dimeric but not monomeric RNA synthesis. Furthermore, large HDAg is expressed in cells transfected with I5-m3 and I5-m2 RNAs and that demonstrate the RNA-editing event in the monomeric HDV RNA. These results provide further understanding of the double rolling-circle mechanism in HDV RNA replication.
Collapse
Affiliation(s)
- Fu-Tien Liao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Chun-Che Lin
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
4
|
Hepatitis delta virus RNA replication. Viruses 2009; 1:818-31. [PMID: 21994571 PMCID: PMC3185533 DOI: 10.3390/v1030818] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 12/12/2022] Open
Abstract
Hepatitis delta virus (HDV) is a distant relative of plant viroids in the animal world. Similar to plant viroids, HDV replicates its circular RNA genome using a double rolling-circle mechanism. Nevertheless, the production of hepatitis delta antigen (HDAg), which is indispensible for HDV replication, is a unique feature distinct from plant viroids, which do not encode any protein. Here the HDV RNA replication cycle is reviewed, with emphasis on the function of HDAg in modulating RNA replication and the nature of the enzyme involved.
Collapse
|
5
|
Abstract
Hepatitis delta antigen (HDAg) is a nuclear protein that is intimately involved in hepatitis delta virus (HDV) RNA replication. HDAg consists of two protein species, the small form (S-HDAg) and the large form (L-HDAg). Previous studies have shown that posttranslational modifications of S-HDAg, such as phosphorylation, acetylation, and methylation, can modulate HDV RNA replication. In this study, we show that S-HDAg is a small ubiquitin-like modifier 1 (SUMO1) target protein. Mapping data showed that multiple lysine residues are SUMO1 acceptors within S-HDAg. Using a genetic fusion strategy, we found that conjugation of SUMO1 to S-HDAg selectively enhanced HDV genomic RNA and mRNA synthesis but not antigenomic RNA synthesis. This result supports our previous proposition that the cellular machinery involved in the synthesis of HDV antigenomic RNA is different from that for genomic RNA synthesis and mRNA transcription, requiring different modified forms of S-HDAg. Sumoylation represents a new type of modification for HDAg.
Collapse
|
6
|
Liao FT, Lee YJ, Ko JL, Tsai CC, Tseng CJ, Sheu GT. Hepatitis delta virus epigenetically enhances clusterin expression via histone acetylation in human hepatocellular carcinoma cells. J Gen Virol 2009; 90:1124-1134. [PMID: 19264665 DOI: 10.1099/vir.0.007211-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Both isoforms of the hepatitis delta antigen (HDAg) of hepatitis delta virus (HDV) are highly associated with virus proliferation and may act as co-activators of cellular gene expression. Human hepatocellular carcinoma (HCC) cell line Huh7, which stably expresses HDAgs, was differentially screened and the results showed that clusterin gene expression was enhanced. The mechanisms for HDAg-mediated clusterin gene upregulation were investigated. Expression of HDAgs was associated with enhanced histone H3 acetylation within the clusterin promoter in a chromatin immunoprecipitation assay. Transient transfection of HDAg-expressing plasmids into Huh7 cells also enhanced clusterin expression and histone acetylation. Furthermore, HDV replication was associated with histone hyperacetylation and clusterin induction. The effect of increased clusterin expression was determined by a chemosensitivity assay with adriamycin treatment. These data indicated that HDV-induced clusterin protein increases cell survival potential. Thus, it is possible that epigenetic regulation by HDV contributes to a pathological outcome of hepatitis D/hepatitis B viral hepatitis and HCC.
Collapse
Affiliation(s)
- Fu-Tien Liao
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Yi-Ju Lee
- Institute of Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Jiunn-Liang Ko
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Chu-Cheng Tsai
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Chao-Jung Tseng
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Gwo-Tarng Sheu
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
7
|
Hepatitis delta antigen requires a minimum length of the hepatitis delta virus unbranched rod RNA structure for binding. J Virol 2009; 83:4548-56. [PMID: 19244338 DOI: 10.1128/jvi.02467-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatitis delta virus (HDV) is a subviral pathogen that increases the severity of liver disease caused by hepatitis B virus. Both the small circular RNA genome and its complement, the antigenome, form a characteristic unbranched rod structure in which approximately 70% of the nucleotides are base paired. These RNAs are associated with the sole virally encoded protein, hepatitis delta antigen (HDAg), in infected cells; however, the nature of the ribonucleoprotein complexes (RNPs) is not well understood. Previous analyses of binding in vitro using native, bacterially expressed HDAg have been hampered by a lack of specificity for HDV RNA. Here, we show that removal of the C-terminal 35 amino acids of HDAg yields a native, bacterially expressed protein, HDAg-160, that specifically binds HDV unbranched rod RNA with high affinity. In an electrophoretic mobility shift assay, this protein produced a discrete, micrococcal nuclease-resistant complex with an approximately 400-nucleotide (nt) segment of HDV unbranched rod RNA. Binding occurred with several segments of HDV RNA, although with various affinities and efficiencies. Analysis of the effects of deleting segments of the unbranched rod indicated that binding did not require one or two specific binding sites within these RNA segments. Rather, a minimum-length HDV RNA unbranched rod approximately 311 nt was essential for RNP formation. The results are consistent with a model in which HDAg binds HDV unbranched rod RNA as multimers of fixed size rather than as individual subunits.
Collapse
|
8
|
Yamaguchi Y, Mura T, Chanarat S, Okamoto S, Handa H. Hepatitis delta antigen binds to the clamp of RNA polymerase II and affects transcriptional fidelity. Genes Cells 2007; 12:863-75. [PMID: 17584298 DOI: 10.1111/j.1365-2443.2007.01094.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis delta virus (HDV) is an RNA virus whose replication and transcription are considered to proceed via RNA-dependent RNA synthesis by RNA polymerase II (Pol II), and the viral protein called hepatitis delta antigen (HDAg) is essential for these processes. HDAg was previously shown to stimulate Pol II elongation on both DNA and RNA templates in vitro. Here, the mechanism of elongation control by HDAg was investigated because it serves as a prototype of cellular transcription elongation factors and also plays an interesting role in HDV proliferation. With site-specific photocrosslinking and transcription using reconstituted elongation complexes, evidence is presented that HDAg functionally interacts with the clamp of Pol II, a mobile structure that holds DNA and RNA in place. Strikingly, HDAg not only increases the rate of elongation but also affects the decision of which nucleotide is incorporated. These and our previous findings lead us to propose a model in which HDAg interacts with and loosens the clamp, and thereby accelerates forward translocation of Pol II at the cost of fidelity. By reducing transcriptional fidelity in terms of not only discrimination of incoming nucleotides but also recognition of templates, HDAg may facilitate the unusual RNA-dependent RNA synthesis by Pol II.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
9
|
Abstract
HDV replicates its circular RNA genome using a double rolling-circle mechanism and transcribes a hepatitis delta antigen-encodeing mRNA from the same RNA template during its life cycle. Both processes are carried out by RNA-dependent RNA synthesis despite the fact that HDV does not encode an RNA-dependent RNA polymerase (RdRP). Cellular RNA polymerase II has long been implicated in these processes. Recent findings, however, have shown that the syntheses of genomic and antigenomic RNA strands have different metabolic requirements, including sensitives to alpha-amanitin and the site of synthesis. Evidence is summarized here for the involvement of other cellular polymerases, probably pol I, in the synthesis of antigenomic RNA strand. The ability of mammalian cells to replicate HDV RNA implies that RNA-dependent RNA synthesis was preserved throughout evolution.
Collapse
Affiliation(s)
- T B Macnaughton
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
10
|
Lai MMC. RNA replication without RNA-dependent RNA polymerase: surprises from hepatitis delta virus. J Virol 2005; 79:7951-8. [PMID: 15956541 PMCID: PMC1143735 DOI: 10.1128/jvi.79.13.7951-7958.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Michael M C Lai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, 2011 Zonal Ave., HMR503C, Los Angeles, California 90033, USA.
| |
Collapse
|
11
|
Li YJ, Stallcup MR, Lai MMC. Hepatitis delta virus antigen is methylated at arginine residues, and methylation regulates subcellular localization and RNA replication. J Virol 2004; 78:13325-34. [PMID: 15542683 PMCID: PMC524986 DOI: 10.1128/jvi.78.23.13325-13334.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis delta virus (HDV) contains a circular RNA which encodes a single protein, hepatitis delta antigen (HDAg). HDAg exists in two forms, a small form (S-HDAg) and a large form (L-HDAg). S-HDAg can transactivate HDV RNA replication. Recent studies have shown that posttranslational modifications, such as phosphorylation and acetylation, of S-HDAg can modulate HDV RNA replication. Here we show that S-HDAg can be methylated by protein arginine methyltransferase (PRMT1) in vitro and in vivo. The major methylation site is at arginine-13 (R13), which is in the RGGR motif of an RNA-binding domain. The methylation of S-HDAg is essential for HDV RNA replication, especially for replication of the antigenomic RNA strand to form the genomic RNA strand. An R13A mutation in S-HDAg inhibited HDV RNA replication. The presence of a methylation inhibitor, S-adenosyl-homocysteine, also inhibited HDV RNA replication. We further found that the methylation of S-HDAg affected its subcellular localization. Methylation-defective HDAg lost the ability to form a speckled structure in the nucleus and also permeated into the cytoplasm. These results thus revealed a novel posttranslational modification of HDAg and indicated its importance for HDV RNA replication. This and other results further showed that, unlike replication of the HDV genomic RNA strand, replication of the antigenomic RNA strand requires multiple types of posttranslational modification, including the phosphorylation and methylation of HDAg.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90033-1054, USA
| | | | | |
Collapse
|
12
|
Gudima SO, Chang J, Taylor JM. Features affecting the ability of hepatitis delta virus RNAs to initiate RNA-directed RNA synthesis. J Virol 2004; 78:5737-44. [PMID: 15140971 PMCID: PMC415839 DOI: 10.1128/jvi.78.11.5737-5744.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In models of the replication of human hepatitis delta virus (HDV) RNA, it is generally assumed that circular RNAs are the only templates. However, noncircular HDV RNAs are also produced during replication, and it is known that replication can be initiated by transfection with noncircular RNAs. Therefore, strategies were devised to determine the relative ability of different HDV RNA species to initiate RNA replication. One strategy used in vivo intermolecular competition following cotransfection into cells, between two sequence-marked HDV RNA species. Circular RNA templates were found to be at least severalfold more efficient than a dimeric linear template. Unit-length linear species, that is, equivalent to circles opened at different sites, were in most cases but not always of efficiency comparable to that of each other. Greater-than-unit-length linear species were more efficient than unit-length species, presumably because of the increased opportunities for template switching. Genomic linear RNAs were generally of initiation ability comparable to that of antigenomic RNAs. A second strategy measured the ability of initiation to occur on different regions of HDV RNAs that were twice the unit length. In summary, results from these two experimental strategies make clear that linear HDV RNA species, as well as circles, can contribute to the overall process of HDV genome replication. In addition, the results from the two experimental strategies provided information on the impact of template switching during RNA-directed transcription.
Collapse
Affiliation(s)
- Severin O Gudima
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111-2497, USA
| | | | | |
Collapse
|
13
|
Hsu SC, Wu JC, Sheen IJ, Syu WJ. Interaction and replication activation of genotype I and II hepatitis delta antigens. J Virol 2004; 78:2693-700. [PMID: 14990689 PMCID: PMC353722 DOI: 10.1128/jvi.78.6.2693-2700.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequences of hepatitis D viruses (HDV) vary 5 to 14% among isolates of the same genotype and 23 to 34% among different genotypes. The only viral-genome-encoded antigen, hepatitis delta antigen (HDAg), has two forms that differ in size. The small HDAg (HDAg-S) trans-activates viral replication, while the large form (HDAg-L) is essential for viral assembly. Previously, it has been shown that the packaging efficiency of HDAg-L is higher for genotype I than for genotype II. In this study, the question of whether other functional properties of the HDAgs are affected by genotype differences is addressed. By coexpression of the two antigens in HuH-7 cells followed by specific antibody precipitation, it was found that HDAgs of different origins interacted without genotypic discrimination. Moreover, in the presence of hepatitis B virus surface antigen, HDAg-S was incorporated into virion-like particles through interaction with HDAg-L without genotype restriction. As to the differences in replication activation of genotype I HDV RNA, all HDAg-S clones tested had some trans-activation activity, and this activity varied greatly among isolates. As to the support of HDV genotype II replication, only clones of HDAg-S from genotype II showed trans-activation activity, and this activity also varied among isolates. In conclusion, genotype has no effect on HDAg interaction and genotype per se only partly predicts how much the HDAg-S of an HDV isolate affects the replication of a second HDV isolate.
Collapse
Affiliation(s)
- Sheng-Chieh Hsu
- Institutes of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
14
|
Sheu GT. Initiation of hepatitis delta virus (HDV) replication: HDV RNA encoding the large delta antigen cannot replicate. J Gen Virol 2002; 83:2507-2513. [PMID: 12237434 DOI: 10.1099/0022-1317-83-10-2507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hepatitis delta virus (HDV) nucleocapsid consists of a genomic-length RNA of 1.7 kb and approximately equimolar amounts of the small and large forms of the hepatitis delta antigen (S-HDAg and L-HDAg, respectively). Since HDV RNA particles contain not only a genomic RNA species encoding S-HDAg but also an RNA species encoding L-HDAg, which is produced by an RNA-editing process, the question arises as to whether RNAs encoding either L-HDAg or S-HDAg can initiate replication. To study this, two cDNA-free transfection methods were employed: HDV RNA cotransfected with either the S-HDAg-encoding mRNA species or the ribonucleocapsid protein complex, comprising HDV RNA and recombinant S-HDAg. Results showed that the genomic-sense RNA encoding S-HDAg could promote HDV replication, whereas the L-HDAg-encoding RNA species was unable to replicate under the same conditions. The antigenomic RNA species encoding either S-HDAg or L-HDAg could not replicate by either of these procedures. In addition, L-HDAg alone could not promote replication of the genomic RNA but, by supplementing an equal amount of S-HDAg, replication occurred. These data indicate that L-HDAg-encoding RNA species are probably not involved in the initiation of HDV RNA synthesis; instead, their main function may be to serve as template for producing L-HDAg, which regulates HDV RNA synthesis and virion assembly. These results suggest that the genomic RNA species encoding S-HDAg is the only functional genome for HDV infection and explain why the presence of the edited HDV RNA encoding L-HDAg does not interfere with HDV infection.
Collapse
Affiliation(s)
- Gwo-Tarng Sheu
- Institute of Toxicology, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung 40203, Taiwan, Republic of China1
| |
Collapse
|
15
|
Chen CW, Tsay YG, Wu HL, Lee CH, Chen DS, Chen PJ. The double-stranded RNA-activated kinase, PKR, can phosphorylate hepatitis D virus small delta antigen at functional serine and threonine residues. J Biol Chem 2002; 277:33058-67. [PMID: 12060652 DOI: 10.1074/jbc.m200613200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis D virus (HDV) encodes two proteins, the 24-kDa small delta antigen (S-HDAg) and 27-kDa large delta antigen (L-HDAg) in its single open reading frame. Both of them had been identified as nuclear phosphoproteins. Moreover, the phosphorylated form of S-HDAg was shown to be important for HDV replication. However, the kinase responsible for S-HDAg phosphorylation remains unknown. Therefore, we employed an in-gel kinase assay to search candidate kinases and indeed identified a kinase with a molecular mass of about 68 kDa. Much evidence demonstrated this kinase to be the double-stranded RNA-activated kinase, PKR. The immunoprecipitated endogenous PKR was sufficient to catalyze S-HDAg phosphorylation, and the kinase activity disappeared in the PKR-depleted cell lysate. The S-HDAg and PKR could be co-immunoprecipitated together, and both of them co-located in the nucleolus. The LC/MS/MS analysis revealed that the serine 177, serine 180, and threonine 182 of S-HDAg were phosphorylated by PKR in vitro. This result was consistent with previous phosphoamino acid analysis indicating that serine and threonine were phosphorylation targets in S-HDAg. Furthermore, serine 177 was also shown to be the predominant phosphorylation site for S-HDAg purified the from cell line. In dominant negative PKR-transfected cells, the level of phosphorylated S-HDAg was suppressed, but replication of HDV was enhanced. Other than human immunodeficiency virus type 1 trans-activating protein (Tat), S-HDAg is another viral protein phosphorylated by PKR that may regulates HDV replication and viral response to interferon therapy.
Collapse
Affiliation(s)
- Chi-Wu Chen
- Graduate Institute of Microbiology and Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
16
|
Macnaughton TB, Lai MMC. Genomic but not antigenomic hepatitis delta virus RNA is preferentially exported from the nucleus immediately after synthesis and processing. J Virol 2002; 76:3928-35. [PMID: 11907232 PMCID: PMC136093 DOI: 10.1128/jvi.76.8.3928-3935.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) contains a viroid-like circular RNA that replicates via a double rolling circle replication mechanism. It is generally assumed that HDV RNA is synthesized and remains exclusively in the nucleus until being exported to the cytoplasm for virion assembly. Using a [32P]orthophosphate metabolic labeling procedure to study HDV RNA replication (T. B. Macnaughton, S. T. Shi, L. E. Modahl, and M. M. C. Lai. J. Virol. 76:3920-3927, 2002), we unexpectedly found that a significant amount of newly synthesized HDV RNA was detected in the cytoplasm. Surprisingly, Northern blot analysis revealed that the genomic-sense HDV RNA is present almost equally in both the nucleus and cytoplasm, whereas antigenomic HDV RNA was mostly retained in the nucleus, suggesting the specific and highly selective export of genomic HDV RNA. Kinetic studies showed that genomic HDV RNA was exported soon after synthesis. However, only the monomer and, to a lesser extent, the dimer HDV RNAs were exported to the cytoplasm; very little higher-molecular-weight HDV RNA species were detected in the cytoplasm. These results suggest that the cleavage and processing of HDV RNA may facilitate RNA export. The export of genomic HDV RNA was resistant to leptomycin B, indicating that a cell region maintenance 1 (Crm1)-independent pathway was involved. The large form of hepatitis delta antigen (L-HDAg), which is responsible for virus packaging, was not required for RNA export, as a mutant HDV RNA genome unable to synthesize L-HDAg was still exported. The proportions of genomic HDV RNA in the nucleus and cytoplasm remained relatively constant throughout replication, indicating that export of genomic HDV RNA occurred continuously. In contrast, while antigenomic HDV RNA was predominantly in the nucleus, there was a proportionally large fraction of antigenomic HDV RNA in the cytoplasm at early time points of RNA replication. These findings uncover a previously unrecognized presence of HDV RNA in the cytoplasm, which may have implications for viral RNA synthesis and packaging.
Collapse
Affiliation(s)
- Thomas B Macnaughton
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-1054, USA
| | | |
Collapse
|
17
|
Mu JJ, Chen DS, Chen PJ. The conserved serine 177 in the delta antigen of hepatitis delta virus is one putative phosphorylation site and is required for efficient viral RNA replication. J Virol 2001; 75:9087-95. [PMID: 11533172 PMCID: PMC114477 DOI: 10.1128/jvi.75.19.9087-9095.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis delta virus (HDV) small delta antigen (S-HDAg) plays a critical role in virus replication. We previously demonstrated that the S-HDAg phosphorylation occurs on both serine and threonine residues. However, their biological significance and the exact phosphorylation sites of S-HDAg are still unknown. In this study, phosphorylated S-HDAg was detected only in the intracellular compartment, not in viral particles. In addition, the number of phosphorylated isoforms of S-HDAg significantly increased with the extent of viral replication in transfection system. Site-directed mutagenesis showed that alanine replacement of serine 177, which is conserved among all the known HDV strains, resulted in reduced phosphorylation of S-HDAg, while the mutation of the other two conserved serine residues (2 and 123) had little effect. The S177A mutant dramatically decreased its capability in assisting HDV RNA replication, with a preferential and profound impairment of the antigenomic RNA replication. Furthermore, the viral RNA editing, a step relying upon antigenomic RNA replication, was also abolished by this mutation. These results suggested that phosphorylation of S-HDAg, with serine 177 as a presumable site, plays a critical role in viral RNA replication, especially in augmenting the replication of antigenomic RNA.
Collapse
Affiliation(s)
- J J Mu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|