1
|
USP10 regulates B cell response to SARS-CoV-2 or HIV-1 nanoparticle vaccines through deubiquitinating AID. Signal Transduct Target Ther 2022; 7:7. [PMID: 34983926 PMCID: PMC8724756 DOI: 10.1038/s41392-021-00858-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates class-switch recombination and somatic hypermutation (SHM) in antibody genes. Protein expression and activity are tightly controlled by various mechanisms. However, it remains unknown whether a signal from the extracellular environment directly affects the AID activity in the nucleus where it works. Here, we demonstrated that a deubiquitinase USP10, which specifically stabilizes nuclear AID protein, can translocate into the nucleus after AKT-mediated phosphorylation at its T674 within the NLS domain. Interestingly, the signals from BCR and TLR1/2 synergistically promoted this phosphorylation. The deficiency of USP10 in B cells significantly decreased AID protein levels, subsequently reducing neutralizing antibody production after immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or human immunodeficiency virus type 1 (HIV-1) nanoparticle vaccines. Collectively, we demonstrated that USP10 functions as an integrator for both BCR and TLR signals and directly regulates nuclear AID activity. Its manipulation could be used for the development of vaccines and adjuvants.
Collapse
|
2
|
Ghorbani A, Quinlan EM, Larijani M. Evolutionary Comparative Analyses of DNA-Editing Enzymes of the Immune System: From 5-Dimensional Description of Protein Structures to Immunological Insights and Applications to Protein Engineering. Front Immunol 2021; 12:642343. [PMID: 34135887 PMCID: PMC8201067 DOI: 10.3389/fimmu.2021.642343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
The immune system is unique among all biological sub-systems in its usage of DNA-editing enzymes to introduce targeted gene mutations and double-strand DNA breaks to diversify antigen receptor genes and combat viral infections. These processes, initiated by specific DNA-editing enzymes, often result in mistargeted induction of genome lesions that initiate and drive cancers. Like other molecules involved in human health and disease, the DNA-editing enzymes of the immune system have been intensively studied in humans and mice, with little attention paid (< 1% of published studies) to the same enzymes in evolutionarily distant species. Here, we present a systematic review of the literature on the characterization of one such DNA-editing enzyme, activation-induced cytidine deaminase (AID), from an evolutionary comparative perspective. The central thesis of this review is that although the evolutionary comparative approach represents a minuscule fraction of published works on this and other DNA-editing enzymes, this approach has made significant impacts across the fields of structural biology, immunology, and cancer research. Using AID as an example, we highlight the value of the evolutionary comparative approach in discoveries already made, and in the context of emerging directions in immunology and protein engineering. We introduce the concept of 5-dimensional (5D) description of protein structures, a more nuanced view of a structure that is made possible by evolutionary comparative studies. In this higher dimensional view of a protein's structure, the classical 3-dimensional (3D) structure is integrated in the context of real-time conformations and evolutionary time shifts (4th dimension) and the relevance of these dynamics to its biological function (5th dimension).
Collapse
Affiliation(s)
- Atefeh Ghorbani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Emma M. Quinlan
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mani Larijani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
3
|
Laffleur B, Basu U, Lim J. RNA Exosome and Non-coding RNA-Coupled Mechanisms in AID-Mediated Genomic Alterations. J Mol Biol 2017; 429:3230-3241. [PMID: 28069372 DOI: 10.1016/j.jmb.2016.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022]
Abstract
The eukaryotic RNA exosome is a well-conserved protein complex with ribonuclease activity implicated in RNA metabolism. Various families of non-coding RNAs have been identified as substrates of the complex, underscoring its role as a non-coding RNA processing/degradation unit. However, the role of RNA exosome and its RNA processing activity on DNA mutagenesis/alteration events have not been investigated until recently. B lymphocytes use two DNA alteration mechanisms, class switch recombination (CSR) and somatic hypermutation (SHM), to re-engineer their antibody gene expressing loci until a tailored antibody gene for a specific antigen is satisfactorily generated. CSR and SHM require the essential activity of the DNA activation-induced cytidine deaminase (AID). Causing collateral damage to the B-cell genome during CSR and SHM, AID induces unwanted (and sometimes oncogenic) mutations at numerous non-immunoglobulin gene sequences. Recent studies have revealed that AID's DNA mutator activity is regulated by the RNA exosome complex, thus providing an example of a mechanism that relates DNA mutagenesis to RNA processing. Here, we review the emergent functions of RNA exosome during CSR, SHM, and other chromosomal alterations in B cells, and discuss implications relevant to mechanisms that maintain B-cell genomic integrity.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
AID expression increased by TNF-α is associated with class switch recombination of Igα gene in cancers. Cell Mol Immunol 2015; 13:484-91. [PMID: 25849121 DOI: 10.1038/cmi.2015.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 02/28/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022] Open
Abstract
Recently, immunoglobulins (Igs) were unexpectedly found to be expressed in epithelial cancers. Immunoglobulin class switching or class switch recombination (CSR) is a natural biological process that alters a B cell's production of antibodies (immunoglobulins) from one class to another. However, the mechanism of CSR of Ig genes in cancer is still unknown. Here, we confirmed by detecting the hallmark of CSR that the Igα gene in cancer underwent CSR. Then we focused on activation-induced cytidine deaminase (AID), a crucial factor for initiating CSR. Further studies using tumor necrosis factor (TNF)-α stimulation and specific inhibitor of NF-κB revealed that TNF-α could increase AID expression through NF-κB signaling. Finally, we demonstrated that AID could co-localize with protein kinase A and bind to the switching (Sα) region of the Igα gene. Overexpression of AID obviously enhanced Igα heavy chain expression and its binding ability to the Sα region. These findings indicated that TNF-α-induced AID expression is involved with CSR in cancer.
Collapse
|
5
|
Marusawa H, Takai A, Chiba T. Role of activation-induced cytidine deaminase in inflammation-associated cancer development. Adv Immunol 2011; 111:109-41. [PMID: 21970953 DOI: 10.1016/b978-0-12-385991-4.00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human cancer is a genetic disease resulting from the stepwise accumulation of genetic alterations in various tumor-related genes. Normal mutation rates, however, cannot account for the abundant genetic changes accumulated in tumor cells, suggesting that certain molecular mechanisms underlie such a large number of genetic alterations. Activation-induced cytidine deaminase (AID), a nucleotide-editing enzyme that triggers DNA alterations and double-strand DNA breaks in the immunoglobulin gene, has been identified in activated B lymphocytes. Recent studies revealed that AID-mediated genotoxic effects target not only immunoglobulin genes but also a variety of other genes in both B lymphocytes and non-lymphoid cells. Consistent with the finding that several transcription factors including nuclear factor-κB (NF-κB) mediate AID expression in B cells, proinflammatory cytokine stimulation of several types of gastrointestinal epithelial cells, such as gastric, colonic, hepatic, and biliary epithelium, induces aberrant AID expression through the NF-κB signaling pathway. In vivo studies revealed that constitutive AID expression promotes the tumorigenic pathway by enhancing the susceptibility to mutagenesis in a variety of epithelial organs. The activity of AID as a genome mutator provides a new avenue for studies aimed at understanding mutagenesis mechanisms during carcinogenesis.
Collapse
Affiliation(s)
- Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
6
|
A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol 2009; 10:1147-53. [PMID: 19841648 DOI: 10.1038/ni.1799] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The discovery and characterization of activation-induced cytidine deaminase (AID) 10 years ago provided the basis for a mechanistic understanding of secondary antibody diversification and the subsequent generation and maintenance of cellular memory in B lymphocytes, which signified a major advance in the field of B cell immunology. Here we celebrate and review the triumphs in the mission to understand the mechanisms through which AID influences antibody diversification, as well as the implications of AID function on human physiology. We also take time to point out important ongoing controversies and outstanding questions in the field and highlight key experiments and techniques that hold the potential to elucidate the remaining mysteries surrounding this vital protein.
Collapse
|
7
|
Prochnow C, Bransteitter R, Chen XS. APOBEC deaminases-mutases with defensive roles for immunity. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:893-902. [PMID: 19911124 DOI: 10.1007/s11427-009-0133-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G.
Collapse
Affiliation(s)
- Courtney Prochnow
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
8
|
Basu U, Franklin A, Schwer B, Cheng HL, Chaudhuri J, Alt FW. Regulation of activation-induced cytidine deaminase DNA deamination activity in B-cells by Ser38 phosphorylation. Biochem Soc Trans 2009; 37:561-8. [PMID: 19442251 PMCID: PMC3540414 DOI: 10.1042/bst0370561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human and mouse Ig genes are diversified in mature B-cells by distinct processes known as Ig heavy-chain CSR (class switch recombination) and Ig variable-region exon SHM (somatic hypermutation). These DNA-modification processes are initiated by AID (activation-induced cytidine deaminase), a DNA cytidine deaminase predominantly expressed in activated B-cells. AID is post-transcriptionally regulated via multiple mechanisms, including microRNA regulation, nucleocytoplasmic shuttling, ubiquitination and phosphorylation. Among these regulatory processes, AID phosphorylation at Ser(38) has been a focus of particularly intense study and debate. In the present paper, we discuss recent biochemical and mouse genetic studies that begin to elucidate the functional significance of AID Ser(38) phosphorylation in the context of the evolution of this mode of AID regulation and the potential roles that it may play in activated B-cells during a normal immune response.
Collapse
Affiliation(s)
- Uttiya Basu
- Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
9
|
Chelico L, Pham P, Goodman MF. Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci 2009; 364:583-93. [PMID: 19022738 DOI: 10.1098/rstb.2008.0195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activation-induced (cytidine) deaminase (AID) efficiently introduces multiple and diversified deaminations in immunoglobulin (Ig) variable and switch regions. Here, we review studies of AID, and the APOBEC family member, APOBEC3G, demonstrating that both enzymes introduce multiple deaminations by processive action on single-stranded DNA and that deaminations occur stochastically at hot- and cold-spot targets. In a more detailed analysis of AID, we examine phosphorylation-null mutants, particularly, S38A and S43P. S43P mutant AID has been identified in a patient with hyper-IgM immunodeficiency syndrome. The phosphorylation-null mutants have essentially the same specific activity, processivity and ability to undergo transcription-dependent deamination compared with wild-type (WT) AID. Although the phosphorylation-null mutants still deaminate 5'-WRC hot spots, the mutant deamination spectra differ from WT AID. The mutants strongly prefer two motifs, 5'AGC and 5'GGC, which are disfavoured by WT AID. Differences in deamination specificities can be attributed primarily to the replacement of Ser rather than to the absence of phosphorylation. The 5'GGC motif occurs with exceptionally high frequency on the non-transcribed strand of human switch regions, IgG4 and IgE. The potential for S43P to catalyse large numbers of aberrant deaminations in switch region sequences suggests a possible relationship between non-canonical AID deamination specificity and a loss of antibody diversification.
Collapse
Affiliation(s)
- Linda Chelico
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | |
Collapse
|
10
|
Basu U, Franklin A, Alt FW. Post-translational regulation of activation-induced cytidine deaminase. Philos Trans R Soc Lond B Biol Sci 2009; 364:667-73. [PMID: 19010772 DOI: 10.1098/rstb.2008.0194] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The assembled immunoglobulin genes in the B cells of mice and humans are altered by distinct processes known as class switch recombination (CSR) and somatic hypermutation, leading to diversification of the antibody repertoire. These two DNA modification processes are initiated by the B cell-specific protein factor activation-induced cytidine deaminase (AID). AID is post-translationally modified by phosphorylation at multiple sites, although functional significance during CSR has been implicated only for phosphorylation at serine-38 (S38). Although multiple laboratories have demonstrated that AID function is regulated via phosphorylation at S38, the precise biological role of S38 phosphorylation has been a topic of debate. Here, we discuss our interpretation of the significance of AID regulation via phosphorylation and also discuss how this form of AID regulation may have evolved in higher organisms.
Collapse
Affiliation(s)
- Uttiya Basu
- Howard Hughes Medical Institute, The Children's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
11
|
Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc Natl Acad Sci U S A 2009; 106:2717-22. [PMID: 19196992 DOI: 10.1073/pnas.0812304106] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is a single-stranded (ss) DNA-specific cytidine deaminase that initiates Ig heavy chain (IgH) class switch recombination (CSR) and Ig somatic hypermutation (SHM) by deaminating cytidines within, respectively, IgH switch (S) regions and Ig variable region (V) exons. AID that is phosphorylated on serine residue 38 interacts with replication protein A (RPA), a ssDNA binding protein, to promote deamination of transcribed double-stranded DNA in vitro, which, along with other evidence, suggests that AID may similarly gain access to transcribed S regions and V exons in vivo. However, the physiological role of AID phosphorylation at serine residue 38 (S38), and even the requirement for the S38 residue, with respect to CSR or SHM has been debated. To address this issue, we used gene targeting to generate an endogenous mouse AID locus that produces AID in which S38 is substituted with alanine (AID(S38A)), a mutant form of AID that retains similar catalytic activity on ssDNA as WT AID (AID(WT)). B cells homozygous for the AID(S38A) mutation show substantially impaired CSR and SHM, correlating with inability of AID(S38A) to interact with endogenous RPA. Moreover, mice haploinsufficient for AID(S38A) have even more severely impaired CSR when compared with mice haploinsufficient for AID(WT), with CSR levels reduced to nearly background levels. These results unequivocally demonstrate that integrity of the AID S38 phosphorylation site is required for normal CSR and SHM in mice and strongly support a role for AID phosphorylation at S38 and RPA interaction in regulating CSR and SHM.
Collapse
|
12
|
Basu U, Wang Y, Alt FW. Evolution of phosphorylation-dependent regulation of activation-induced cytidine deaminase. Mol Cell 2008; 32:285-91. [PMID: 18951095 PMCID: PMC2597080 DOI: 10.1016/j.molcel.2008.08.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/15/2008] [Accepted: 08/20/2008] [Indexed: 01/23/2023]
Abstract
Interaction of activation-induced cytidine deaminase (AID) with replication protein A (RPA) has been proposed to promote AID access to transcribed double-stranded (ds) DNA during immunoglobulin light chain and heavy chain class switch recombination (CSR). Mouse AID (mAID) interaction with RPA and transcription-dependent dsDNA deamination in vitro requires protein kinase A (PKA) phosphorylation at serine 38 (S38), and normal mAID CSR activity depends on S38. However, zebrafish AID (zAID) catalyzes robust CSR in mouse cells despite lacking an S38-equivalent PKA site. Here, we show that aspartate 44 (D44) in zAID provides similar in vitro and in vivo functionality as mAID S38 phosphorylation. Moreover, introduction of a PKA site into a zAID D44 mutant made it PKA dependent for in vitro activities and restored normal CSR activity. Based on these findings, we generated mAID mutants that similarly function independently of S38 phosphorylation. Comparison of bony fish versus amphibian and mammalian AIDs suggests evolutionary divergence from constitutive to PKA-regulated RPA/AID interaction.
Collapse
Affiliation(s)
- Uttiya Basu
- Howard Hughes Medical Institute, The Children's Hospital, Harvard Medical School, and the Immune Disease Institute, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Pham P, Smolka MB, Calabrese P, Landolph A, Zhang K, Zhou H, Goodman MF. Impact of phosphorylation and phosphorylation-null mutants on the activity and deamination specificity of activation-induced cytidine deaminase. J Biol Chem 2008; 283:17428-39. [PMID: 18417471 PMCID: PMC2427360 DOI: 10.1074/jbc.m802121200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Indexed: 11/06/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation and class switch recombination in B cells by deaminating C --> U on transcribed DNA. Here we analyze the role of phosphorylation and phosphorylation-null mutants on the biochemical behavior of AID, including enzyme specific activity, processivity, deamination spectra, deamination motif specificity, and transcription-dependent deamination in the presence and absence of RPA. We show that a small fraction of recombinant human AID expressed in Sf9 insect cells is phosphorylated at previously identified residues Ser(38) and Thr(27) and also at Ser(41) and Ser(43). S43P AID has been identified in a patient with hyper-IgM immunodeficiency syndrome. Ser-substituted phosphorylation-null mutants (S38A, S41A, S43A, and S43P) exhibit wild type (WT) activity on single-stranded DNA. Deamination of transcribed double-stranded DNA is similar for WT and mutant AID and occurs with or without RPA. Although WT and AID mutants catalyze processive deamination favoring canonical WRC hot spot motifs (where W represents A/T and R is A/G), their deamination spectra differ significantly. The differences between the WT and AID mutants appear to be caused by the replacement of Ser as opposed to an absence of phosphorylation. The spectral differences reflect a marked change in deamination efficiencies in two motifs, GGC and AGC, which are preferred by mutant AID but disfavored by WT AID. Both motifs occur with exceptionally high frequency in human switch regions, suggesting a possible relationship between AID deamination specificity and a loss of antibody diversification.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R, Papavasiliou FN. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 2008; 28:621-9. [PMID: 18450484 PMCID: PMC2430982 DOI: 10.1016/j.immuni.2008.03.015] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 02/06/2008] [Accepted: 03/04/2008] [Indexed: 12/18/2022]
Abstract
B lymphocytes perform somatic hypermutation and class-switch recombination (CSR) of the immunoglobulin locus to generate an antibody repertoire diverse in both affinity and function. These somatic diversification processes are catalyzed by activation-induced cytidine deaminase (AID), a potent DNA mutator whose expression and function are highly regulated. Here we show that AID was regulated posttranscriptionally by a lymphocyte-specific microRNA, miR-155. We found that miR-155 was upregulated in murine B lymphocytes undergoing CSR and that it targeted a conserved site in the 3'-untranslated region of the mRNA encoding AID. Disruption of this target site in vivo resulted in quantitative and temporal deregulation of AID expression, along with functional consequences for CSR and affinity maturation. Thus, miR-155, which has recently been shown to play important roles in regulating the germinal-center reaction, does so in part by directly downmodulating AID expression.
Collapse
Affiliation(s)
- Grace Teng
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Paul Hakimpour
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Pablo Landgraf
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Amanda Rice
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rafael Casellas
- Genomic Integrity and Immunity, NIAMS, National Institutes of Health, 10 Center Drive MSC 1820, Bethesda, MD, 20892, USA
| | - F. Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
15
|
Chatterji M, Unniraman S, McBride KM, Schatz DG. Role of activation-induced deaminase protein kinase A phosphorylation sites in Ig gene conversion and somatic hypermutation. THE JOURNAL OF IMMUNOLOGY 2007; 179:5274-80. [PMID: 17911613 DOI: 10.4049/jimmunol.179.8.5274] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation-induced deaminase (AID) is thought to initiate somatic hypermutation (SHM), gene conversion (GCV), and class switch recombination (CSR) by the transcription-coupled deamination of cytosine residues in Ig genes. Phosphorylation of AID by protein kinase A (PKA) and subsequent interaction of AID with replication protein A (RPA) have been proposed to play important roles in allowing AID to deaminate DNA during transcription. Serine 38 (S38) of mouse AID is phosphorylated in vivo and lies in a consensus target site for PKA, and mutation of this residue interferes with CSR and SHM. In this study, we demonstrate that S38 in mouse and chicken AID is phosphorylated in chicken DT40 cells and is required for efficient GCV and SHM in these cells. Paradoxically, zebra fish AID, which lacks a serine at the position corresponding to S38, has previously been shown to be active for CSR and we demonstrate that it is active for GCV/SHM. Aspartate 44 (D44) of zebra fish AID has been proposed to compensate for the absence of the S38 phosphorylation site but we demonstrate that mutation of D44 has no effect on GCV/SHM. Some features of zebra fish AID other than D44 might compensate for the absence of S38. Alternatively, the zebra fish protein might function in a manner that is independent of PKA and RPA in DT40 cells, raising the possibility that, under some circumstances, AID mediates efficient Ig gene diversification without the assistance of RPA.
Collapse
Affiliation(s)
- Monalisa Chatterji
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
16
|
Abstract
R-loops have been described in vivo at the immunoglobulin class switch sequences and at prokaryotic and mitochondrial origins of replication. However, the biochemical mechanism and determinants of R-loop formation are unclear. We find that R-loop formation is nearly eliminated when RNase T(1) is added during transcription but not when it is added afterward. Hence, rather than forming simply as an extension of the RNA-DNA hybrid of normal transcription, the RNA must exit the RNA polymerase and compete with the nontemplate DNA strand for an R-loop to form. R-loops persist even when transcription is done in Li(+) or Cs(+), which do not support G-quartet formation. Hence, R-loop formation does not rely on G-quartet formation. R-loop formation efficiency decreases as the number of switch repeats is decreased, although a very low level of R-loop formation occurs at even one 49-bp switch repeat. R-loop formation decreases sharply as G clustering is reduced, even when G density is kept constant. The critical level for R-loop formation is approximately the same point to which evolution drove the G clustering and G density on the nontemplate strand of mammalian switch regions. This provides an independent basis for concluding that the primary function of G clustering, in the context of high G density, is R-loop formation.
Collapse
|
17
|
High rate of starvation-associated mutagenesis in Ung(-) yeast caused by the overproduction of human activation-induced deaminase. Curr Genet 2007; 52:239-45. [PMID: 17934734 DOI: 10.1007/s00294-007-0159-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 12/22/2022]
Abstract
We examined the role of Saccharomyces cerevisiae uracil DNA glycosylase in the suppression of mutagenesis in non-dividing, adenine-starved cells expressing human activation-induced deaminase (AID) gene. Our aim was to further understand the mechanisms preventing starvation-associated mutagenesis in yeast and to explore the consequences of AID gene expression in non-proliferating eukaryotic cells. Genetic control of starvation-induced mutagenesis in many aspects is similar to the control of spontaneous logarithmic phase mutagenesis. Low DNA polymerase fidelity, defects of mismatch repair or post-replication repair lead to the elevation of mutagenesis. Less is known about the role of uracil in DNA. In yeast, the UNG1 gene codes for a uracil DNA glycosylase, which removes uracil from DNA, thus preventing an accumulation of mutations. The UNG1 gene is constitutively expressed at low levels throughout the cell cycle and peaks in late G1/early S phase. We have shown that the wild-type UNG1 allele protects from AID-induced mutations in starved cells to the same extent as it does in logarithmic growth phase cells. This finding implies that the first step in uracil removal by base excision repair (BER) is similar in these two conditions and provides the first data for understanding the role of BER in starvation-associated mutagenesis.
Collapse
|
18
|
Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW. Evolution of the Immunoglobulin Heavy Chain Class Switch Recombination Mechanism. Adv Immunol 2007; 94:157-214. [PMID: 17560275 DOI: 10.1016/s0065-2776(06)94006-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To mount an optimum immune response, mature B lymphocytes can change the class of expressed antibody from IgM to IgG, IgA, or IgE through a recombination/deletion process termed immunoglobulin heavy chain (IgH) class switch recombination (CSR). CSR requires the activation-induced cytidine deaminase (AID), which has been shown to employ single-stranded DNA as a substrate in vitro. IgH CSR occurs within and requires large, repetitive sequences, termed S regions, which are parts of germ line transcription units (termed "C(H) genes") that are composed of promoters, S regions, and individual IgH constant region exons. CSR requires and is directed by germ line transcription of participating C(H) genes prior to CSR. AID deamination of cytidines in S regions appears to lead to S region double-stranded breaks (DSBs) required to initiate CSR. Joining of two broken S regions to complete CSR exploits the activities of general DNA DSB repair mechanisms. In this chapter, we discuss our current knowledge of the function of S regions, germ line transcription, AID, and DNA repair in CSR. We present a model for CSR in which transcription through S regions provides DNA substrates on which AID can generate DSB-inducing lesions. We also discuss how phosphorylation of AID may mediate interactions with cofactors that facilitate access to transcribed S regions during CSR and transcribed variable regions during the related process of somatic hypermutation (SHM). Finally, in the context of this CSR model, we further discuss current findings that suggest synapsis and joining of S region DSBs during CSR have evolved to exploit general mechanisms that function to join widely separated chromosomal DSBs.
Collapse
Affiliation(s)
- Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|