1
|
Abdellatif AAH, Alshubrumi AS, Younis MA. Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer. AAPS PharmSciTech 2024; 25:23. [PMID: 38267656 DOI: 10.1208/s12249-024-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Colorectal cancer (CRC) is a widespread cancer that starts in the digestive tract. It is the third most common cause of cancer deaths around the world. The World Health Organization (WHO) estimates an expected death toll of over 1 million cases annually. The limited therapeutic options as well as the drawbacks of the existing therapies necessitate the development of non-classic treatment approaches. Nanotechnology has led the evolution of valuable drug delivery systems thanks to their ability to control drug release and precisely target a wide variety of cancers. This has also been extended to the treatment of CRC. Herein, we shed light on the pertinent research that has been performed on the potential applications of nanoparticles in the treatment of CRC. The various types of nanoparticles in addition to their properties, applications, targeting approaches, merits, and demerits are discussed. Furthermore, innovative therapies for CRC, including gene therapies and immunotherapies, are also highlighted. Eventually, the research gaps, the clinical potential of such delivery systems, and a future outlook on their development are inspired.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452, Buraydah, Al Qassim, Saudi Arabia.
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | | | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
2
|
Bandiwadekar A, Jose J, Khayatkashani M, Habtemariam S, Khayat Kashani HR, Nabavi SM. Emerging Novel Approaches for the Enhanced Delivery of Natural Products for the Management of Neurodegenerative Diseases. J Mol Neurosci 2021; 72:653-676. [PMID: 34697770 DOI: 10.1007/s12031-021-01922-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington disease, amyotrophic lateral sclerosis, and prion disease affect any part of the brain. The complete mechanism of ND is unknown, but there are some molecular mechanism and chemical process. Natural compounds have better compatibility with the human body along with lesser side effects. Moreover, several studies showed that various natural compounds have significant neuroprotective, potent antioxidant, and anti-inflammatory properties, which are effective for treating the different type of ND. In ND, natural compounds act by various mechanisms such as preventing the generation of reactive oxygen species (ROS), eliminating destructed biomolecules before their accumulation affects cell metabolism, and improving the disease conditions. But due to the presence of the blood-brain barrier (BBB) layer and unfavorable pharmacokinetic properties of natural compounds, their delivery into the brain is limited. To minimize this problem and enhance drug delivery into the brain with an effective therapeutic dose, there is a need to develop a practical novel approach. The various studies showed that nanoformulations and microneedles (MN) containing natural compounds such as quercetin, curcumin, resveratrol, chrysin, piperine, ferulic acid, huperzine A, berberine, baicalein, hesperetin, and retinoic acid effectively improved many ND. In this review, the effect of such natural drug-loaded nanoformulation and MN patches on ND management is discussed, along with their merits and demerits. This review aims to introduce different novel approaches for enhancing natural drug delivery into the brain to manage various neurodegenerative diseases.
Collapse
Affiliation(s)
- Akshay Bandiwadekar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed To Be University), Mangalore, 575018, Karnataka, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed To Be University), Mangalore, 575018, Karnataka, India.
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, UK
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, 1617763141, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Abstract
Nanometer-sized liposomes decorated with macromolecules are increasingly used as drug delivery vehicles due to their long lifetimes and target cell specificity, but surface characterization methods often change their properties, which leads to incorrect results. Ligand binding is commonly applied for characterizing these surface modifications. Here, we use a nanofluidic-based label-free sensor for real-time sensing of ligands binding to liposomes. The liposomes are trapped in a nanochannel with a salt concentration gradient, and as the trapping position depends on the liposomes' zeta potential, it changes when charged ligands bind to the liposomes. Our sensing method does not require immobilization of the liposomes or labeling of the ligands with fluorophores, which may both affect the sensing. The zeta potential sensing is demonstrated by measuring hybridization of DNA targets with complementary DNA probes on liposome surfaces. DNA hybridization is monitored for both ensembles and individual liposomes, the latter allows for analysis of ensemble heterogeneity, and we demonstrate sensitivity to changes in surface charge down to 1.5%. DNA hybridization is used to demonstrate label-free sensing, but the method also has potential applications within exosome characterization, where biorecognition of, e.g., surface DNA, proteins, and antibodies is a promising candidate for early stage cancer diagnostics.
Collapse
Affiliation(s)
- Martin K. Rasmussen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jonas N. Pedersen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Norling K, Bernasconi V, Agmo Hernández V, Parveen N, Edwards K, Lycke NY, Höök F, Bally M. Gel Phase 1,2-Distearoyl- sn-glycero-3-phosphocholine-Based Liposomes Are Superior to Fluid Phase Liposomes at Augmenting Both Antigen Presentation on Major Histocompatibility Complex Class II and Costimulatory Molecule Display by Dendritic Cells in Vitro. ACS Infect Dis 2019; 5:1867-1878. [PMID: 31498993 DOI: 10.1021/acsinfecdis.9b00189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipid-based nanoparticles have in recent years attracted increasing attention as pharmaceutical carriers. In particular, reports of them having inherent adjuvant properties combined with their ability to protect antigen from degradation make them suitable as vaccine vectors. However, the physicochemical profile of an ideal nanoparticle for vaccine delivery is still poorly defined. Here, we used an in vitro dendritic cell assay to assess the immunogenicity of a variety of liposome formulations as vaccine carriers and adjuvants. Using flow cytometry, we investigated liposome-assisted antigen presentation as well as the expression of relevant costimulatory molecules on the cell surface. Cytokine secretion was further evaluated with an enzyme-linked immunosorbent assay (ELISA). We show that liposomes can successfully enhance antigen presentation and maturation of dendritic cells, as compared to vaccine fusion protein (CTA1-3Eα-DD) administered alone. In particular, the lipid phase state of the membrane was found to greatly influence the vaccine antigen processing by dendritic cells. As compared to their fluid phase counterparts, gel phase liposomes were more efficient at improving antigen presentation. They were also superior at upregulating the costimulatory molecules CD80 and CD86 as well as increasing the release of the cytokines IL-6 and IL-1β. Taken together, we demonstrate that gel phase liposomes, while nonimmunogenic on their own, significantly enhance the antigen-presenting ability of dendritic cells and appear to be a promising way forward to improve vaccine immunogenicity.
Collapse
Affiliation(s)
- Karin Norling
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Víctor Agmo Hernández
- Department of Chemistry, BMC, Uppsala University, Box 599, 752 37 Uppsala, Sweden
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Nagma Parveen
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Katarina Edwards
- Department of Chemistry, BMC, Uppsala University, Box 599, 752 37 Uppsala, Sweden
| | - Nils Y. Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Fredrik Höök
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marta Bally
- Section of Virology, Department of Clinical Microbiology, Umeå University, 901 85 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85 Umeå, Sweden
| |
Collapse
|
5
|
Bak M, Jølck RI, Eliasen R, Andresen TL. Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry. Bioconjug Chem 2016; 27:1673-80. [PMID: 27269516 DOI: 10.1021/acs.bioconjchem.6b00221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Functionalization of nanoparticles is a key element for improving specificity of drug delivery systems toward diseased tissue or cells. In the current study we report a highly efficient and chemoselective method for post-functionalization of liposomes with biomacromolecules, which equally well can be used for functionalization of other nanoparticles or solid surfaces. The method exploits a synergistic effect of having both affinity and covalent anchoring tags on the surface of the liposome. This was achieved by synthesizing a peptide linker system that uses Cu-free strain-promoted click chemistry in combination with histidine affinity tags. The investigation of post-functionalization of PEGylated liposomes was performed with a cyclic RGDfE peptide. By exploring both affinity and covalent tags a 98 ± 2.0% coupling efficiency was achieved, even a diluted system showed a coupling efficiency of 87 ± 0.2%. The reaction kinetics and overall yield were quantified by HPLC. The results presented here open new possibilities for constructing complex nanostructures and functionalized surfaces.
Collapse
Affiliation(s)
- Martin Bak
- Department of Micro- and Nanotechnology, DTU Nanotech, Center for Nanomedicine and Theranostics, Technical University of Denmark , Building 423, Lyngby DK-2800, Denmark
| | - Rasmus I Jølck
- Department of Micro- and Nanotechnology, DTU Nanotech, Center for Nanomedicine and Theranostics, Technical University of Denmark , Building 423, Lyngby DK-2800, Denmark
| | - Rasmus Eliasen
- Department of Micro- and Nanotechnology, DTU Nanotech, Center for Nanomedicine and Theranostics, Technical University of Denmark , Building 423, Lyngby DK-2800, Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology, DTU Nanotech, Center for Nanomedicine and Theranostics, Technical University of Denmark , Building 423, Lyngby DK-2800, Denmark
| |
Collapse
|
6
|
Herrera VL, Colby AH, Tan GA, Moran AM, O'Brien MJ, Colson YL, Ruiz-Opazo N, Grinstaff MW. Evaluation of expansile nanoparticle tumor localization and efficacy in a cancer stem cell-derived model of pancreatic peritoneal carcinomatosis. Nanomedicine (Lond) 2016; 11:1001-15. [PMID: 27078118 DOI: 10.2217/nnm-2015-0023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM To evaluate the tumor localization and efficacy pH-responsive expansile nanoparticles (eNPs) as a drug delivery system for pancreatic peritoneal carcinomatosis (PPC) modeled in nude rats. METHODS & MATERIALS A Panc-1-cancer stem cell xeno1graft model of PPC was validated in vitro and in vivo. Tumor localization was tracked via in situ imaging of fluorescent eNPs. Survival of animals treated with paclitaxel-loaded eNPs (PTX-eNPs) was evaluated in vivo. RESULTS The Panc-1-cancer stem cell xenograft model recapitulates significant features of PPC. Rhodamine-labeled eNPs demonstrate tumor-specific, dose- and time-dependent localization to macro- and microscopic tumors following intraperitoneal injection. PTX-eNPs are as effective as free PTX in treating established PPC; but, PTX-eNPs result in fewer side effects. CONCLUSION eNPs are a promising tool for the detection and treatment of PPC.
Collapse
Affiliation(s)
- Victoria Lm Herrera
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aaron H Colby
- Departments of Biomedical Engineering & Chemistry, Boston University, Boston, MA 02215, USA
| | - Glaiza Al Tan
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ann M Moran
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael J O'Brien
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Nelson Ruiz-Opazo
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark W Grinstaff
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.,Departments of Biomedical Engineering & Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|
7
|
Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles. Sci Rep 2016; 6:18720. [PMID: 26740245 PMCID: PMC4703988 DOI: 10.1038/srep18720] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a “two-step” nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional “drug-alone” administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues.
Collapse
|
8
|
Schuster L, Seifert O, Vollmer S, Kontermann RE, Schlosshauer B, Hartmann H. Immunoliposomes for Targeted Delivery of an Antifibrotic Drug. Mol Pharm 2015; 12:3146-57. [DOI: 10.1021/acs.molpharmaceut.5b00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Liane Schuster
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Stefanie Vollmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Burkhard Schlosshauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Hanna Hartmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| |
Collapse
|
9
|
Kumar EKP, Jølck RI, Andresen TL. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors: An Investigation of Design Flexibility. Macromol Rapid Commun 2015; 36:1598-604. [DOI: 10.1002/marc.201500236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/22/2015] [Indexed: 11/08/2022]
Affiliation(s)
- E. K. Pramod Kumar
- DTU Nanotech Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| | - Rasmus I. Jølck
- DTU Nanotech Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| | - Thomas L. Andresen
- DTU Nanotech Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| |
Collapse
|
10
|
Marqués-Gallego P, de Kroon AIPM. Ligation strategies for targeting liposomal nanocarriers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:129458. [PMID: 25126543 PMCID: PMC4122157 DOI: 10.1155/2014/129458] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 11/17/2022]
Abstract
Liposomes have been exploited for pharmaceutical purposes, including diagnostic imaging and drug and gene delivery. The versatility of liposomes as drug carriers has been demonstrated by a variety of clinically approved formulations. Since liposomes were first reported, research of liposomal formulations has progressed to produce improved delivery systems. One example of this progress is stealth liposomes, so called because they are equipped with a PEGylated coating of the liposome bilayer, leading to prolonged blood circulation and improved biodistribution of the liposomal carrier. A growing research area focuses on the preparation of liposomes with the ability of targeting specific tissues. Several strategies to prepare liposomes with active targeting ligands have been developed over the last decades. Herein, several strategies for the functionalization of liposomes are concisely summarized, with emphasis on recently developed technologies for the covalent conjugation of targeting ligands to liposomes.
Collapse
Affiliation(s)
- Patricia Marqués-Gallego
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, Padualaan 8, H.R. Kruyt Building, 3584 CH Utrecht, The Netherlands
| | - Anton I. P. M. de Kroon
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, Padualaan 8, H.R. Kruyt Building, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
11
|
Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem 2014; 80:175-83. [PMID: 24780594 DOI: 10.1016/j.ejmech.2014.04.050] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
With the objective to formulate multifunctional nanosized liposomes to target amyloid deposits in Alzheimer Disease (AD) brains, a lipid-PEG-curcumin derivative was synthesized and characterized. Multifunctional liposomes incorporating the curcumin derivative and additionally decorated with a Blood Brain Barrier (BBB) transport mediator (anti-Transferin antibody) were prepared and characterized. The fluorescence intensity of curcumin derivative was found to increase notably when the curcumin moiety was in the form of a diisopropylethylamine (DIPEA) salt. Both curcumin-derivative liposomes and curcumin-derivative Anti-TrF liposomes showed a high affinity for the amyloid deposits, on post-mortem brains samples of AD patients. The ability of both liposomes to delay Aβ1-42 peptide aggregation was confirmed by Thioflavin assay. However, the decoration of the curcumin-derivative liposomes with the Anti-TrF improved significantly the intake by the BBB cellular model. Results verify that the attachment of an antibody on the curcumin-liposome surface does not block deposit staining or prevention of Aβ aggregation, while the presence of the curcumin-PEG-lipid conjugate does not reduce their brain-targeting capability substantially, proving the potential of such multifunctional NLs for application in Alzheimer disease treatment and diagnosis.
Collapse
Affiliation(s)
- Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26510, Greece
| | - Adina N Lazar
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Salpêtrière, AP-HP, 47 Bd de l'hôpital 75013 Paris, France; Centre de recherche de l'ICM, (UPMC, INSERM UMR S 975, CNRS UMR 7225), 47 Bd de l'hôpital, 75013 Paris, France
| | - Eleni Markoutsa
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26510, Greece
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Salpêtrière, AP-HP, 47 Bd de l'hôpital 75013 Paris, France; Centre de recherche de l'ICM, (UPMC, INSERM UMR S 975, CNRS UMR 7225), 47 Bd de l'hôpital, 75013 Paris, France
| | - Sophia G Antimisiaris
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26510, Greece; Institute of Chemical Engineering Sciences, FORTH/ICES, Rio, 26504 Patras, Greece.
| |
Collapse
|
12
|
Guo P, You JO, Yang J, Jia D, Moses MA, Auguste DT. Inhibiting metastatic breast cancer cell migration via the synergy of targeted, pH-triggered siRNA delivery and chemokine axis blockade. Mol Pharm 2014; 11:755-65. [PMID: 24467226 PMCID: PMC3993942 DOI: 10.1021/mp4004699] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Because breast cancer patient survival inversely correlates with metastasis, we engineered vehicles to inhibit both the C-X-C chemokine receptor type 4 (CXCR4) and lipocalin-2 (Lcn2) mediated migratory pathways. pH-responsive liposomes were designed to protect and trigger the release of Lcn2 siRNA. Liposomes were modified with anti-CXCR4 antibodies to target metastatic breast cancer (MBC) cells and block migration along the CXCR4-CXCL12 axis. This synergistic approach--coupling the CXCR4 axis blockade with Lcn2 silencing--significantly reduced migration in triple-negative human breast cancer cells (88% for MDA-MB-436 and 92% for MDA-MB-231). The results suggested that drug delivery vehicles engineered to attack multiple migratory pathways may effectively slow progression of MBC.
Collapse
Affiliation(s)
- Peng Guo
- Department of Biomedical Engineering, The City College of New York , 160 Convent Avenue, New York, New York 10031, United States
| | | | | | | | | | | |
Collapse
|
13
|
Moghimi SM, Rahbarizadeh F, Ahmadvand D, Parhamifar L. Heavy Chain Only Antibodies: A New Paradigm in Personalized HER2+ Breast Cancer Therapy. BIOIMPACTS : BI 2013; 3:1-4. [PMID: 23678463 DOI: 10.5681/bi.2013.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 01/25/2013] [Indexed: 11/17/2022]
Abstract
Unlike conventional antibodies, heavy chain only antibodies derived from camel contain a single variable domain (VHH) and two constant domains (CH2 and CH3). Cloned and isolated VHHs possess unique properties that enable them to excel conventional therapeutic antibodies and their smaller antigen-binding fragments in cancer targeting and therapy. VHHs express low immunogenicity, are highly robust and easy to manufacture and have the ability to recognize hidden or uncommon epitopes. We highlight the utility of VHH in design of new molecular, multifunctional particulate and immune cell-based systems for combating HER2+ breast cancer.
Collapse
Affiliation(s)
- Seyed Moein Moghimi
- Nanomedicine Research Group, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark ; NanoScience Centre, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|
14
|
Lockner JW, Ho SO, McCague KC, Chiang SM, Do TQ, Fujii G, Janda KD. Enhancing nicotine vaccine immunogenicity with liposomes. Bioorg Med Chem Lett 2012; 23:975-8. [PMID: 23313243 DOI: 10.1016/j.bmcl.2012.12.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 11/30/2022]
Abstract
A major liability of existing nicotine vaccine candidates is the wide variation in anti-nicotine immune responses among clinical trial participants. In order to address this liability, significant emphasis has been directed at evaluating adjuvants and delivery systems that confer more robust potentiation of the anti-nicotine immune response. Toward that end, we have initiated work that seeks to exploit the adjuvant effect of liposomes, with or without Toll-like receptor agonist(s). The results of the murine immunization study described herein support the hypothesis that a liposomal nicotine vaccine formulation may provide a means for addressing the immunogenicity challenge.
Collapse
Affiliation(s)
- Jonathan W Lockner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Moghimi SM, Parhamifar L, Ahmadvand D, Wibroe PP, Andresen TL, Farhangrazi ZS, Hunter AC. Particulate systems for targeting of macrophages: basic and therapeutic concepts. J Innate Immun 2012; 4:509-28. [PMID: 22722900 DOI: 10.1159/000339153] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/30/2012] [Indexed: 12/22/2022] Open
Abstract
Particulate systems in the form of liposomes, polymeric micelles, polymeric nano- and microparticles, and many others offer a rational approach for selective delivery of therapeutic agents to the macrophage from different physiological portals of entry. Particulate targeting of macrophages and intracellular drug release processes can be optimized through modifications of the drug carrier physicochemical properties, which include hydrodynamic size, shape, composition and surface characteristics. Through such modifications together with understanding of macrophage cell biology, targeting may be aimed at a particular subset of macrophages. Advances in basic and therapeutic concepts of particulate targeting of macrophages and related nanotechnology approaches for immune cell modifications are discussed.
Collapse
Affiliation(s)
- S M Moghimi
- Nanomedicine Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kiparissides C, Kammona O. Nanoscale carriers for targeted delivery of drugs and therapeutic biomolecules. CAN J CHEM ENG 2012. [DOI: 10.1002/cjce.21685] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Vitiello M, Galdiero M, Finamore E, Galdiero S, Galdiero M. NF-κB as a potential therapeutic target in microbial diseases. MOLECULAR BIOSYSTEMS 2012; 8:1108-20. [DOI: 10.1039/c2mb05335g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Pramod Kumar EK, Almdal K, Andresen TL. Synthesis and characterization of ratiometric nanosensors for pH quantification: a mixed micelle approach. Chem Commun (Camb) 2012; 48:4776-8. [DOI: 10.1039/c2cc17213e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Benjaminsen RV, Sun H, Henriksen JR, Christensen NM, Almdal K, Andresen TL. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS NANO 2011; 5:5864-5873. [PMID: 21707035 DOI: 10.1021/nn201643f] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.
Collapse
Affiliation(s)
- Rikke V Benjaminsen
- DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Building 423, 2800 Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
20
|
Maynard AD, Warheit DB, Philbert MA. The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 2011; 120 Suppl 1:S109-29. [PMID: 21177774 PMCID: PMC3145386 DOI: 10.1093/toxsci/kfq372] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/01/2010] [Indexed: 01/28/2023] Open
Abstract
It has long been recognized that the physical form of materials can mediate their toxicity--the health impacts of asbestiform materials, industrial aerosols, and ambient particulate matter are prime examples. Yet over the past 20 years, toxicology research has suggested complex and previously unrecognized associations between material physicochemistry at the nanoscale and biological interactions. With the rapid rise of the field of nanotechnology and the design and production of increasingly complex nanoscale materials, it has become ever more important to understand how the physical form and chemical composition of these materials interact synergistically to determine toxicity. As a result, a new field of research has emerged--nanotoxicology. Research within this field is highlighting the importance of material physicochemical properties in how dose is understood, how materials are characterized in a manner that enables quantitative data interpretation and comparison, and how materials move within, interact with, and are transformed by biological systems. Yet many of the substances that are the focus of current nanotoxicology studies are relatively simple materials that are at the vanguard of a new era of complex materials. Over the next 50 years, there will be a need to understand the toxicology of increasingly sophisticated materials that exhibit novel, dynamic and multifaceted functionality. If the toxicology community is to meet the challenge of ensuring the safe use of this new generation of substances, it will need to move beyond "nano" toxicology and toward a new toxicology of sophisticated materials. Here, we present a brief overview of the current state of the science on the toxicology of nanoscale materials and focus on three emerging toxicology-based challenges presented by sophisticated materials that will become increasingly important over the next 50 years: identifying relevant materials for study, physicochemical characterization, and biointeractions.
Collapse
Affiliation(s)
- Andrew D. Maynard
- Risk Science Center, University of Michigan School of Public Health, Ann Arbor Michigan 48019
| | - David B. Warheit
- DuPont Haskell Laboratory for Health and Environmental Sciences, Newark, Delaware 19714-0050
| | - Martin A. Philbert
- Toxicology Program, University of Michigan School of Public Health, Ann Arbor, Michigan 48019
| |
Collapse
|