1
|
Agostini F, Vicinanza C, Lombardi E, Da Ros F, Marangon M, Massarut S, Mazzucato M, Durante C. Ex vivo expansion in a clinical grade medium, containing growth factors from human platelets, enhances migration capacity of adipose stem cells. Front Immunol 2024; 15:1404228. [PMID: 38812519 PMCID: PMC11135042 DOI: 10.3389/fimmu.2024.1404228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Adipose tissue mesenchymal stem/stromal cells (ASC) can be used as advanced therapy medicinal product in regenerative and cancer medicine. We previously demonstrated Supernatant Rich in Growth Factors (SRGF) can replace fetal bovine serum (FBS) to expand ASC by a clinical grade compliant protocol. The therapeutic potential of ASC is based also on their homing capacity toward inflammatory/cancer sites: oriented cell migration is a fundamental process in this scenario. We investigated the impact of SRGF on ASC migration properties. Methods The motility/migration potential of ASC expanded in 5% SRGF was analyzed, in comparison to 10% FBS, by standard wound healing, bidimensional chemotaxis and transwell assays, and by millifluidic transwell tests. Mechanisms involved in the migration process were investigated by transient protein overexpression. Results In comparison to standard 10% FBS, supplementation of the cell culture medium with 5% SRGF, strongly increased migration properties of ASC along the chemotactic gradient and toward cancer cell derived soluble factors, both in static and millifluidic conditions. We showed that, independently from applied migratory stimulus, SRGF expanded ASC were characterized by far lower expression of α-smooth muscle actin (αSMA), a protein involved in the cell migration machinery. Overexpression of αSMA induced a significant and marked decrease in migration capacity of SRGF expanded ASC. Discussion In conclusion, 5% SRGF addition in the cell culture medium increases the migration potential of ASC, reasonably through appropriate downregulation of αSMA. Thus, SRGF could potentially improve the therapeutic impact of ASC, both as modulators of the immune microenviroment or as targeted drug delivery vehicles in oncology.
Collapse
Affiliation(s)
- Francesco Agostini
- Stem Cell Unit, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Carla Vicinanza
- Stem Cell Unit, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | | | - Francesco Da Ros
- Stem Cell Unit, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Miriam Marangon
- Stem Cell Unit, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Samuele Massarut
- Breast Cancer Surgery Unit, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Mario Mazzucato
- Stem Cell Unit, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Cristina Durante
- Stem Cell Unit, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| |
Collapse
|
2
|
Xu L, Xu M, Sun X, Feliu N, Feng L, Parak WJ, Liu S. Quantitative Comparison of Gold Nanoparticle Delivery via the Enhanced Permeation and Retention (EPR) Effect and Mesenchymal Stem Cell (MSC)-Based Targeting. ACS NANO 2023; 17:2039-2052. [PMID: 36717361 DOI: 10.1021/acsnano.2c07295] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
There are still some gaps in existing knowledge in the field of cancer nanotheranostics, e.g., the efficiency of nanoparticle-loaded cells for targeted delivery. In the current study, gold nanoparticles (Au NPs) were delivered to tumors in both subcutaneous tumor and lung metastasis tumor models by intravenous injection of either free Au NPs or of human bone marrow mesenchymal stem cells (MSCs), which were loaded with endocytosed Au NPs. By making injections with the same dose of administrated Au NPs, it was possible to directly compare tumor targeting of both delivery modes. Hereby, the passive targeting of tumor by the plain Au NPs was facilitated by the enhanced permeation and retention (EPR) effect. Au NP retention by tumors, as well as tumor penetration, were found to be improved up to 2.4-to-9.3-fold when comparing the MSC-mediated delivery of Au NPs to the delivery of the plain Au NPs via EPR effect on day 7 post administration. While the absolute retention of Au NPs in the tumor remained low, our data show that, upon injection of the same amount of Au NPs, in fact MSC-mediated delivery is quantitatively higher than EPR-mediated delivery of NPs by half an order of magnitude.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Sun
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Neus Feliu
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146 Hamburg, Germany
| | - Liuxing Feng
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100013, China
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
3
|
Moeinabadi-Bidgoli K, Rezaee M, Rismanchi H, Mohammadi MM, Babajani A. Mesenchymal Stem Cell-Derived Antimicrobial Peptides as Potential Anti-Neoplastic Agents: New Insight into Anticancer Mechanisms of Stem Cells and Exosomes. Front Cell Dev Biol 2022; 10:900418. [PMID: 35874827 PMCID: PMC9298847 DOI: 10.3389/fcell.2022.900418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs), as adult multipotent cells, possess considerable regenerative and anti-neoplastic effects, from inducing apoptosis in the cancer cells to reducing multidrug resistance that bring them up as an appropriate alternative for cancer treatment. These cells can alter the behavior of cancer cells, the condition of the tumor microenvironment, and the activity of immune cells that result in tumor regression. It has been observed that during inflammatory conditions, a well-known feature of the tumor microenvironment, the MSCs produce and release some molecules called "antimicrobial peptides (AMPs)" with demonstrated anti-neoplastic effects. These peptides have remarkable targeted anticancer effects by attaching to the negatively charged membrane of neoplastic cells, disrupting the membrane, and interfering with intracellular pathways. Therefore, AMPs could be considered as a part of the wide-ranging anti-neoplastic effects of MSCs. This review focuses on the possible anti-neoplastic effects of MSCs-derived AMPs and their mechanisms. It also discusses preconditioning approaches and using exosomes to enhance AMP production and delivery from MSCs to cancer cells. Besides, the clinical administration of MSCs-derived AMPs, along with their challenges in clinical practice, were debated.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Bhere D, Choi SH, van de Donk P, Hope D, Gortzak K, Kunnummal A, Khalsa J, Revai Lechtich E, Reinshagen C, Leon V, Nissar N, Bi WL, Feng C, Li H, Zhang YS, Liang SH, Vasdev N, Essayed WI, Quevedo PV, Golby A, Banouni N, Palagina A, Abdi R, Fury B, Smirnakis S, Lowe A, Reeve B, Hiller A, Chiocca EA, Prestwich G, Wakimoto H, Bauer G, Shah K. Target receptor identification and subsequent treatment of resected brain tumors with encapsulated and engineered allogeneic stem cells. Nat Commun 2022; 13:2810. [PMID: 35589724 PMCID: PMC9120173 DOI: 10.1038/s41467-022-30558-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Cellular therapies offer a promising therapeutic strategy for the highly malignant brain tumor, glioblastoma (GBM). However, their clinical translation is limited by the lack of effective target identification and stringent testing in pre-clinical models that replicate standard treatment in GBM patients. In this study, we show the detection of cell surface death receptor (DR) target on CD146-enriched circulating tumor cells (CTC) captured from the blood of mice bearing GBM and patients diagnosed with GBM. Next, we developed allogeneic "off-the-shelf" clinical-grade bifunctional mesenchymal stem cells (MSCBif) expressing DR-targeted ligand and a safety kill switch. We show that biodegradable hydrogel encapsulated MSCBif (EnMSCBif) has a profound therapeutic efficacy in mice bearing patient-derived invasive, primary and recurrent GBM tumors following surgical resection. Activation of the kill switch enhances the efficacy of MSCBif and results in their elimination post-tumor treatment which can be tracked by positron emission tomography (PET) imaging. This study establishes a foundation towards a clinical trial of EnMSCBif in primary and recurrent GBM patients.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29201, USA
| | - Sung Hugh Choi
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pim van de Donk
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David Hope
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kiki Gortzak
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Amina Kunnummal
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jasneet Khalsa
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Esther Revai Lechtich
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Clemens Reinshagen
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Victoria Leon
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nabil Nissar
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cheng Feng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongbin Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yu Shrike Zhang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven H Liang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Neil Vasdev
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pablo Valdes Quevedo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Naima Banouni
- Department of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Palagina
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Reza Abdi
- Department of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Brian Fury
- UC Davis Institute for Regenerative Cures, Davis, CA, 95817, USA
| | - Stelios Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alarice Lowe
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Arthur Hiller
- Amasa Therapeutics Inc., 1 Harmony Lane, Andover, MA, 01810, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Glenn Prestwich
- Department of Medicinal Chemistry, College of Pharmacy University of Utah, Salt Lake City, UT, 84112, USA
- Washington State University Health Sciences, Spokane, WA, 99202, USA
| | - Hiroaki Wakimoto
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Gerhard Bauer
- UC Davis Institute for Regenerative Cures, Davis, CA, 95817, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Abstract
The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, hampered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed according to published data.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
6
|
Sineh Sepehr K, Razavi A, Hassan ZM, Fazel A, Abdollahpour-Alitappeh M, Mossahebi-Mohammadi M, Yekaninejad MS, Farhadihosseinabadi B, Hashemi SM. Comparative immunomodulatory properties of mesenchymal stem cells derived from human breast tumor and normal breast adipose tissue. Cancer Immunol Immunother 2020; 69:1841-1854. [PMID: 32350594 PMCID: PMC11027656 DOI: 10.1007/s00262-020-02567-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs), one of the most important stromal cells in the tumor microenvironment, play a major role in the immunomodulation and development of tumors. In contrast to immunomodulatory effects of bone marrow-derived MSCs, resident MSCs were not well studied in tumor. The aim of this study was to compare the immunomodulatory properties and protein secretion profiles of MSCs isolated from breast tumor (T-MSC) and normal breast adipose tissue (N-MSC). MATERIALS AND METHODS T-MSCs and N-MSCs were isolated by the explant culture method and characterized, and their immunomodulatory function was assessed on peripheral blood lymphocytes (PBLs) by evaluating the effects of MSC conditioned media on the proliferation and induction of some cytokines and regulatory T cells (Tregs) by BrdU assay, ELISA, and flow cytometry. In addition, we compared the secretion of indoleamine 2,3-dioxygenase (IDO), vascular endothelial growth factor (VEGF), matrix metallopeptidase (MMP)-2, MMP-9, and Galectin-1. RESULTS T-MSCs showed a higher secretion of transforming growth factor beta (TGF-β), prostaglandin E2 (PGE2), IDO, and VEGF and lower secretion of MMP-2 and MMP-9 compared with N-MSCs. However, no significant difference was found in the secretion of interferon gamma (IFN-γ), interleukin 10 (IL10), IL4, IL17, and Galectin-1 in T-MSCs and N-MSCs. The immunomodulatory effect of soluble factors on PBLs showed that T-MSCs, in contrast to N-MSCs, stimulate PBL proliferation. Importantly, the ability of T-MSCs to induce IL10, TGF-β, IFN-γ, and PGE2 was higher than that of N-MSCs. In addition, T-MSCs and N-MSCs exhibited no significant difference in Treg induction. CONCLUSION MSCs educated in stage II breast cancer and normal breast adipose tissue, although sharing a similar morphology and immunophenotype, exhibited a clearly different profile in some immunomodulatory functions and protein secretions.
Collapse
Affiliation(s)
- Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Fazel
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | | | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Babajani A, Soltani P, Jamshidi E, Farjoo MH, Niknejad H. Recent Advances on Drug-Loaded Mesenchymal Stem Cells With Anti-neoplastic Agents for Targeted Treatment of Cancer. Front Bioeng Biotechnol 2020; 8:748. [PMID: 32793565 PMCID: PMC7390947 DOI: 10.3389/fbioe.2020.00748] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), as an undifferentiated group of adult multipotent cells, have remarkable antitumor features that bring them up as a novel choice to treat cancers. MSCs are capable of altering the behavior of cells in the tumor microenvironment, inducing an anti-inflammatory effect in tumor cells, inhibiting tumor angiogenesis, and preventing metastasis. Besides, MSCs can induce apoptosis and inhibit the proliferation of tumor cells. The ability of MSCs to be loaded with chemotherapeutic drugs and release them in the site of primary and metastatic neoplasms makes them a preferable choice as targeted drug delivery procedure. Targeted drug delivery minimizes unexpected side effects of chemotherapeutic drugs and improves clinical outcomes. This review focuses on recent advances on innate antineoplastic features of MSCs and the effect of chemotherapeutic drugs on viability, proliferation, and the regenerative capacity of various kinds of MSCs. It also discusses the efficacy and mechanisms of drug loading and releasing procedures along with in vivo and in vitro preclinical outcomes of antineoplastic effects of primed MSCs for clinical prospection.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Soltani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zhao C, Pu Y, Zhang H, Hu X, Zhang R, He S, Zhao Q, Mu B. IL10-modified Human Mesenchymal Stem Cells inhibit Pancreatic Cancer growth through Angiogenesis Inhibition. J Cancer 2020; 11:5345-5352. [PMID: 32742480 PMCID: PMC7391191 DOI: 10.7150/jca.38062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
In the present study, we constructed the recombinant plasmid IL10-PEGFP-C1 and successfully transfected into human mesenchymal stem cells. After culturing for 72 h, the levels of IL6 and TNF-α in the supernatant of the MSCs-IL10 group were significantly lower than the vector group and the control group (17.6 ± 0.68vs73.8 ± 0.8 and 74.4 ± 1.5) µg/L and (65.05 ± 3.8 vs 203.2 ± 2.4 and 201.3 ± 3.7) µg/L, respectively (p < 0.001) .The animal experiments showed that the volume of subcutaneous tumors in the MSCs-IL10 group in vivo was a significantly less level compared to that in MSC control and the blank control groups (76.84 ± 20.11) mm3 vs (518. 344 ± 48.66) mm3, (576.99± 49.88) mm3, (P < 0. 05) and they have a longer life time. Further we found the mass concentrations of IL6 and TNF-α in the blood serum of MSC-IL10 group were lower than the vector group and the control group (64.42 ± 10.9 vs120.83 ± 15.52 and 122.65 ± 13.71) and (40.05 ± 5.63 vs 126.78 ±1.89 and 105.83 ± 2.16) µg/L respectively (p < 0.001). CD31 immunohistochemistry and alginate encapsulation experiments showed tumor angiogenesis were inhibited in MSCs-IL10 group in comparison to the control and vector group (P < 0.001), FITC-labeled dextran intake was also lower than the other groups (P < 0.01). Collectively, this study suggested IL10 could inhibit the growth of the transplanted tumor in vivo and prolong survival of mice, and the primary mechanism may be the indirect inhibition of pro-inflammatory cytokines IL6 and TNF-α secretion and tumor angiogenesis formation.
Collapse
Affiliation(s)
- Chunyan Zhao
- Sicuhan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical University 637000, Nanchong, Sichuan Province, China
| | - Yu Pu
- Sicuhan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical University 637000, Nanchong, Sichuan Province, China
| | - Haidi Zhang
- School of Preclinical Medicine, North Sichuan Medical University 637000, Nanchong, Sichuan Province, China
| | - Xianhua Hu
- School of Preclinical Medicine, North Sichuan Medical University 637000, Nanchong, Sichuan Province, China
| | - Rendan Zhang
- School of Preclinical Medicine, North Sichuan Medical University 637000, Nanchong, Sichuan Province, China
| | - Shuai He
- Department of Clinical Medicine, North Sichuan Medical University 637000, Nanchong, Sichuan Province, China
| | - Qi Zhao
- Department of Clinical Medicine, North Sichuan Medical University 637000, Nanchong, Sichuan Province, China
| | - Bo Mu
- Sicuhan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical University 637000, Nanchong, Sichuan Province, China.,School of Preclinical Medicine, North Sichuan Medical University 637000, Nanchong, Sichuan Province, China
| |
Collapse
|
9
|
Owen A, Newsome PN. Mesenchymal Stromal Cells, a New Player in Reducing Complications From Liver Transplantation? Front Immunol 2020; 11:1306. [PMID: 32636850 PMCID: PMC7318292 DOI: 10.3389/fimmu.2020.01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
In response to the global burden of liver disease there has been a commensurate increase in the demand for liver transplantation. However, due to a paucity of donor organs many centers have moved toward the routine use of marginal allografts, which can be associated with a greater risk of complications and poorer clinical outcomes. Mesenchymal stromal cells (MSC) are a multi-potent progenitor cell population that have been utilized to modulate aberrant immune responses in acute and chronic inflammatory conditions. MSC exert an immunomodulatory effect on innate and adaptive immune systems through the release of both paracrine soluble factors and extracellular vesicles. Through these routes MSC can switch the regulatory function of the immune system through effects on macrophages and T regulatory cells enabling a switch of phenotype from injury to restoration. A key benefit seems to be their ability to tailor their response to the inflammatory environment without compromising the host ability to fight infection. With over 200 clinical trials registered to examine MSC therapy in liver disease and an increasing number of trials of MSC therapy in solid organ transplant recipients, there is increasing consideration for their use in liver transplantation. In this review we critically appraise the potential role of MSC therapy in the context of liver transplantation, including their ability to modulate reperfusion injury, their role in the reduction of medium term complications in the biliary tree and their potential to enhance tolerance in transplanted organs.
Collapse
Affiliation(s)
- Andrew Owen
- National Institute for Health Research Birmingham, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Department of Anesthesia and Critical Care, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research Birmingham, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
10
|
The voltage-gated proton channel hHv1 is functionally expressed in human chorion-derived mesenchymal stem cells. Sci Rep 2020; 10:7100. [PMID: 32346069 PMCID: PMC7188850 DOI: 10.1038/s41598-020-63517-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Abstract
The voltage-gated proton channel Hv1 is widely expressed, among others, in immune and cancer cells, it provides an efficient cytosolic H+extrusion mechanism and regulates vital functions such as oxidative burst, migration and proliferation. Here we demonstrate the presence of human Hv1 (hHv1) in the placenta/chorion-derived mesenchymal stem cells (cMSCs) using RT-PCR. The voltage- and pH-dependent gating of the current is similar to that of hHv1 expressed in cell lines and that the current is blocked by 5-chloro-2-guanidinobenzimidazole (ClGBI) and activated by arachidonic acid (AA). Inhibition of hHv1 by ClGBI significantly decreases mineral matrix production of cMSCs induced by conditions mimicking physiological or pathological (inorganic phosphate, Pi) induction of osteogenesis. Wound healing assay and single cell motility analysis show that ClGBI significantly inhibits the migration of cMSCs. Thus, seminal functions of cMSCs are modulated by hHv1 which makes this channel as an attractive target for controlling advantages/disadvantages of MSCs therapy.
Collapse
|
11
|
Agostini F, Vicinanza C, Di Cintio F, Battiston M, Lombardi E, Golinelli G, Durante C, Toffoli G, Dominici M, Mazzucato M. Adipose mesenchymal stromal/stem cells expanded by a GMP compatible protocol displayed improved adhesion on cancer cells in flow conditions. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:533. [PMID: 32411756 PMCID: PMC7214883 DOI: 10.21037/atm.2020.04.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Adipose tissue derived mesenchymal stromal/stem cells (ASC) can be expanded using supernatant rich in growth factors (SRGF) as Good Manufacturing Practice compatible additive, instead of fetal bovine serum (FBS). After transendothelial migration, ASC can migrate to cancer masses where they can release active substances. Due to their homing and secretion properties ASC can be used as targeted drug delivery vehicles. Nevertheless, the fraction of ASC actually reaching the tumor target is limited. The impact of culture conditions on ASC homing potential on cancer cells is unknown. Methods In dynamic in vitro conditions, we perfused FBS or SRGF ASC in flow chambers coated with collagen type I and fibronectin or seeded with endothelial cells or with HT1080, T98G and Huh7 cancer cells. Expression of selected adhesion molecules was evaluated by standard cytofluorimetry. Dynamic intracellular calcium concentration changes were evaluated in microfluidic and static conditions. Results When compared to FBS ASC, not specific adhesion of SRGF ASC on collagen type I and fibronectin was lower (−33.9%±12.2% and −45.3%±16.9%), while on-target binding on HT1080 and T98G was enhanced (+147%±8% and 120.5%±5.2%). Adhesion of both FBS and SRGF ASC on Huh7 cells was negligible. As confirmed by citofluorimetry and by function-blocking antibody, SRGF mediated decrease of CD49a expression accounted for lower SRGF-ASC avidity for matrix proteins. Upon stimulation with calcium ionophore in static conditions, mobilization of intracellular calcium in SRGF ASC was greater than in FBS ASC. In dynamic conditions, upon adhesion on matrix proteins and HT1080 cells, SRGF ASC showed marked oscillatory calcium concentration changes. Conclusions SRGF can enhance specific ASC binding capacity on selected cancer cells as HT1080 (fibrosarcoma) and T98G (glioblastoma) cells. Upon cell-cell adhesion, SRGF ASC activate intracellular responses potentially improving cell secretion functions. SRGF ASC could be considered as suitable drug delivery vehicle for cancer therapy.
Collapse
Affiliation(s)
- Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Carla Vicinanza
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Battiston
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Elisabetta Lombardi
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Giulia Golinelli
- Division of Medical Oncology, Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Massimo Dominici
- Division of Medical Oncology, Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| |
Collapse
|
12
|
Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, Veronesi E, Horwitz EM, Dominici M. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl Med 2019; 8:1135-1148. [PMID: 31313507 PMCID: PMC6811694 DOI: 10.1002/sctm.19-0044] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Identified 50 years ago, mesenchymal stromal/stem cells (MSCs) immediately generated a substantial interest among the scientific community because of their differentiation plasticity and hematopoietic supportive function. Early investigations provided evidence of a relatively low engraftment rate and a transient benefit for challenging congenital and acquired diseases. The reasons for these poor therapeutic benefits forced the entire field to reconsider MSC mechanisms of action together with their ex vivo manipulation procedures. This phase resulted in advances in MSCs processing and the hypothesis that MSC‐tissue supportive functions may be prevailing their differentiation plasticity, broadening the spectrum of MSCs therapeutic potential far beyond their lineage‐restricted commitments. Consequently, an increasing number of studies have been conducted for a variety of clinical indications, revealing additional challenges and suggesting that MSCs are still lagging behind for a solid clinical translation. For this reason, our aim was to dissect the current challenges in the development of still promising cell types that, after more than half a century, still need to reach their maturity. stem cells translational medicine2019;8:1135–1148
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Manuela Foppiani
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia, USA
| | - Alba Murgia
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Anna Valeria Samarelli
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Elena Veronesi
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Technopole of Mirandola TPM, Mirandola, Modena, Italy
| | - Edwin M Horwitz
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia, USA
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Medolla, Modena, Italy.,Technopole of Mirandola TPM, Mirandola, Modena, Italy
| |
Collapse
|
13
|
Dissecting the Pharmacodynamics and Pharmacokinetics of MSCs to Overcome Limitations in Their Clinical Translation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:1-15. [PMID: 31236426 PMCID: PMC6581775 DOI: 10.1016/j.omtm.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, mesenchymal stromal stem cells (MSCs) have been proposed as therapeutic agents because of their promising preclinical features and good safety profile. However, their introduction into clinical practice has been associated with a suboptimal therapeutic profile. In this review, we address the biodistribution of MSCs in preclinical studies with a focus on the current understanding of the pharmacodynamics (PD) and pharmacokinetics (PK) of MSCs as key aspects to overcome unsatisfactory clinical benefits of MSC application. Beginning with evidence of MSC biodistribution and highlighting PK and PD factors, a new PK-PD model is also proposed. According to this theory, MSCs and their released factors are key players in PK, and the efficacy biomarkers are considered relevant for PD in more predictive preclinical investigations. Accounting for the PK-PD relationship in MSC translational research and proposing new models combined with better biodistribution studies could allow realization of the promise of more robust MSC clinical translation.
Collapse
|
14
|
Kalamegam G, Sait KHW, Anfinan N, Kadam R, Ahmed F, Rasool M, Naseer MI, Pushparaj PN, Al-Qahtani M. Cytokines secreted by human Wharton's jelly stem cells inhibit the proliferation of ovarian cancer (OVCAR3) cells in vitro. Oncol Lett 2019; 17:4521-4531. [PMID: 30944641 PMCID: PMC6444458 DOI: 10.3892/ol.2019.10094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Cytokines enhance tumour cell recognition via cytotoxic effector cells and are therefore effectively used in cancer immunotherapy. Mesenchymal stem cells have efficient homing potential and have been used to target and inhibit various types of cancer mediated by the release of soluble/bioactive factors. Initial evaluation of the human Wharton's jelly stem cell conditioned medium (hWJSC-CM) and cell lysate (hWJSC-CL) against an ovarian cancer cell line (OVCAR3) demonstrated their inhibitory effect in vitro. The secreted cytokine profile was then studied to understand whether the OVCAR3 inhibitory effect was mediated by the cytokines. Expression of cytokines in OVCAR3 following 48 h treatment with hWJSC extracts, namely the hWJSC-CM (50%) and hWJSC-CL (10 µg/ml), was evaluated using multiplex cytokine assay. Paclitaxel (5 nM) was used as a positive control. Cytokines tumour necrosis factor α, interleukin (IL)-4, IL-6, IL-8, IL-10, IL-13, IL-17, IL-1β and granulocyte colony-stimulating factor, reported to be involved in tumour growth, invasion and migration, were significantly decreased. Cytokines with antitumour effects, namely IL-1 receptor antagonist (IL-1RA), IL-2, IL-2 receptor, IL-5, IL-7, IL-12, IL-15, interferon (IFN)-α and IFN-γ, were mildly increased or decreased. Only the increases in IL-1RA (with paclitaxel, hWJSC-CM and hWJSC-CL) and granulocyte-macrophage colony-stimulating factor (with hWJSC-CL) were statistically significant. The chemokines monocyte chemoattractant protein 1, macrophage inflammatory protein (MIP)-1α, MIP-1β and Regulated Upon Activation, Normally T-Expressed, and Secreted were significantly decreased while monokine induced by IFN-γ, IFN-γ induced protein 10 and Eotaxin demonstrated mild decreases. The growth factors basic fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor were significantly decreased. Heatmaps demonstrated differential fold changes in cytokines and hierarchical cluster analysis revealed 3 major and 7 minor sub-clusters of associated cytokines, chemokines and growth factors. In conclusion, the hWJSC extracts decreased the expression of oncogenic cytokines, chemokines and growth factors, which mediated the inhibition of OVCAR3 cells in vitro.
Collapse
Affiliation(s)
- Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.,Faculty of Medicine, AIMST University, Bedong, Kedah 08100, Malaysia
| | - Khalid Hussein Wali Sait
- Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 22252, Kingdom of Saudi Arabia
| | - Nisreen Anfinan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 22252, Kingdom of Saudi Arabia
| | - Roaa Kadam
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad Imran Naseer
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
The Role of Tumor Microenvironment and Impact of Cancer Stem Cells on Breast Cancer Progression and Growth. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Breast cancer is not only a mass of genetically abnormal tissue in the breast. This is a well-organized system of a complex heterogeneous tissue. Cancer cells produce regulatory signals that stimulate stromal cells to proliferate and migrate; then, stromal elements respond to these signals by releasing components necessary for tumor development that provide structural support, vasculature, and extracellular matrices. Developing tumors can mobilize a variety of cell types from both local and distant niches via secret chemical factors derived from cancer cells themselves or neighboring cells disrupted by growing neoplasm, such as fibroblasts, immune inflammatory cells, and endothelial cells. CSCs are a group of very few cells that are tumorigenic (able to form tumors) and are defined as those cells within a tumor that can self-renew and lead to tumorigenesis. BCSCs represent a small population of cells that have stem cell characteristics and are related to breast cancer. There are different theories about the origin of BCSCs. BCSCs are responsible for breast carcinoma metastasis. Usually, there is a metastatic spread to the bones, and rarely to the lungs and liver. A phenomenon that allows BCSCs to make the transition from epithelial to mesenchymal expression and thus avoid the effect of cytotoxic agents is the epithelial-mesenchymal transition (EMT). During this process, cells change their molecular characteristics in terms of loss of epithelial characteristics taking the mesenchymal phenotype. This process plays a key role in the progression, invasion, and metastasis of breast tumors.
Collapse
|
16
|
Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther 2018; 27:558-570. [PMID: 30464207 PMCID: PMC7445885 DOI: 10.1038/s41417-018-0062-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/06/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022]
Abstract
Tumor targeting by genetically modified mesenchymal stromal/stem cells (MSCs) carrying anti-cancer molecules represents a promising cell-based strategy. We previously showed that the pro-apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can be successfully delivered by MSCs to cancer sites. While the interaction between TRAIL and its receptors is clear, more obscure is the way in which MSCs can selectively target tumors and their antigens. Several neuroectoderm-derived neoplasms, including glioblastoma (GBM), sarcomas, and neuroblastoma, express high levels of the tumor-associated antigen GD2. We have already challenged this cell surface disialoganglioside by a chimeric antigen receptor (CAR)-T cell approach against neuroblastoma. With the intent to maximize the therapeutic profile of MSCs delivering TRAIL, we here originally developed a bi-functional strategy where TRAIL is delivered by MSCs that are also gene modified with the truncated form of the anti-GD2 CAR (GD2 tCAR) to mediate an immunoselective recognition of GD2-positive tumors. These bi-functional MSCs expressed high levels of TRAIL and GD2 tCAR associated with a robust anti-tumor activity against GD2-positive GBM cells. Most importantly, the anti-cancer action was reinforced by the enhanced targeting potential of such bi-functional cells. Collectively, our results suggest that a truncated anti-GD2 CAR might be a powerful new tool to redirect MSCs carrying TRAIL against GD2-expressing tumors. This affinity-based dual targeting holds the promise to combine site-specific and prolonged retention of MSCs in GD2-expressing tumors, thereby providing a more effective delivery of TRAIL for still incurable cancers.
Collapse
|
17
|
Ma T, Wang X, Jiao Y, Wang H, Qi Y, Gong H, Zhang L, Jiang D. Interleukin 17 (IL-17)-Induced Mesenchymal Stem Cells Prolong the Survival of Allogeneic Skin Grafts. Ann Transplant 2018; 23:615-621. [PMID: 30166501 PMCID: PMC6248056 DOI: 10.12659/aot.909381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have the potential of self-renewal and multi-differentiation and have a wide application prospect in organ transplantation for the effect of inducing immune tolerance. It has found that interleukin 17 (IL-17) could enhance the inhibition effect of MSCs on T cell proliferation and increase the immunosuppressive effect of MSCs. In this study, we aimed to investigate the effect of IL-17-induced MSCs on allograft survival time after transplantation. MATERIAL AND METHODS BMSCs were characterized by differential staining. The allogenic skin transplantations were performed and the BMSCs pre-treated by IL-17 were injected. To assess the immunosuppressive function of IL-17-induced BMSCs, the morphology of the grafts, the homing ability of the BMSCs, and the survival time of the grafts were analyzed. RESULTS BMSCs from BALB/c have multidirectional differentiation potential to differentiate into osteogenic, chondrogenic, and adipogenic lineage cells. IL-17-induced BMSCs prolonged the survival time of allogeneic skin grafts dramatically. We found that there were more labeled MSCs in the skin grafts, and the Treg subpopulations percentage, IL-10, and TGF-β were significantly increased, while the IFN-γ level was decreased compared to the control group and MSCs group. In conclusion, IL-17 can enhance the homing ability of MSCs and regulate the immunosuppressive function of MSC. CONCLUSIONS Our data demonstrate that IL-17 plays the crucial role in MSC homing behaviors and promotes immunosuppression of MSCs during transplantation procedures, suggesting that IL-17-pre-treated MSCs have potential to prolong graft survival and reduce transplant rejection.
Collapse
Affiliation(s)
- Tengxiao Ma
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland).,Department of Plastic Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, China (mainland)
| | - Xiao Wang
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Ya Jiao
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Haitao Wang
- School of Medicine, Shandong University, Jinan, Shandong, China (mainland).,Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Yongjun Qi
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Hongmin Gong
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Longxiao Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Duyin Jiang
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
18
|
Fakiruddin KS, Ghazalli N, Lim MN, Zakaria Z, Abdullah S. Mesenchymal Stem Cell Expressing TRAIL as Targeted Therapy against Sensitised Tumour. Int J Mol Sci 2018; 19:ijms19082188. [PMID: 30060445 PMCID: PMC6121609 DOI: 10.3390/ijms19082188] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Tapping into the ability of engineered mesenchymal stem cells (MSCs) to mobilise into the tumour has expanded the scope of cancer treatment. Engineered MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) could serve as a platform for an efficient and targeted form of therapy. However, the presence of cancer stem cells (CSCs) that are resistant to TRAIL and apoptosis may represent a challenge for effective treatment. Nonetheless, with the discovery of small molecular inhibitors that could target CSCs and tumour signalling pathways, a higher efficacy of MSC-TRAIL mediated tumour inhibition can be achieved. This might pave the way for a more effective form of combined therapy, which leads to a better treatment outcome. In this review, we first discuss the tumour-homing capacity of MSCs, its effect in tumour tropism, the different approach behind genetically-engineered MSCs, and the efficacy and safety of each agent delivered by these MSCs. Then, we focus on how sensitisation of CSCs and tumours using small molecular inhibitors can increase the effect of these cells to either TRAIL or MSC-TRAIL mediated inhibition. In the conclusion, we address a few questions and safety concerns regarding the utilization of engineered MSCs for future treatment in patients.
Collapse
Affiliation(s)
- Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nadiah Ghazalli
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Moon Nian Lim
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
| | - Zubaidah Zakaria
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
19
|
Yuan Z, Lourenco SDS, Sage EK, Kolluri KK, Lowdell MW, Janes SM. Cryopreservation of human mesenchymal stromal cells expressing TRAIL for human anti-cancer therapy. Cytotherapy 2017; 18:860-9. [PMID: 27260207 PMCID: PMC4906234 DOI: 10.1016/j.jcyt.2016.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/04/2016] [Accepted: 04/17/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are being extensively researched for cell therapy and tissue engineering. We have engineered MSCs to express the pro-apoptotic protein tumor necrosis factor-related apoptosis inducing ligand (TRAIL) and are currently preparing this genetically modified cell therapy for a phase 1/2a clinical trial in patients with metastatic lung cancer. To do this, we need to prepare a cryopreserved allogeneic MSCTRAIL cell bank for further expansion before patient delivery. The effects of cryopreservation on a genetically modified cell therapy product have not been clearly determined. METHODS We tested different concentrations of dimethyl sulfoxide (DMSO) added to the human serum albumin ZENALB 4.5 and measured post-thaw cell viability, proliferation ability and differentiation characteristics. In addition, we examined the homing ability, TRAIL expression and cancer cell-killing capacities of cryopreserved genetically modified MSCs compared with fresh, continually cultured cells. RESULTS We demonstrated that the post-thaw viability of MSCs in 5% DMSO (v/v) with 95% ZENALB 4.5 (v/v) is 85.7 ± 0.4%, which is comparable to that in conventional freezing media. We show that cryopreservation does not affect the long-term expression of TRAIL and that cryopreserved TRAIL-expressing MSCs exhibit similar levels of homing and, importantly, retain their potency in triggering cancer cell death. CONCLUSIONS This study shows that cryopreservation is unlikely to affect the therapeutic properties of MSCTRAIL and supports the generation of a cryopreserved master cell bank.
Collapse
Affiliation(s)
- Zhengqiang Yuan
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Sofia Da Silva Lourenco
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Mark W Lowdell
- Centre for Cell, Gene & Tissue Therapy, Royal Free London National Health Services Foundation Trust & University College London, London, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom.
| |
Collapse
|
20
|
Sage EK, Thakrar RM, Janes SM. Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy 2017; 18:1435-1445. [PMID: 27745603 PMCID: PMC5082580 DOI: 10.1016/j.jcyt.2016.09.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
The cell therapy industry has grown rapidly over the past 3 decades, and multiple clinical trials have been performed to date covering a wide range of diseases. The most frequently used cell is mesenchymal stromal cells (MSCs), which have been used largely for their anti-inflammatory actions and in situations of tissue repair and although they have demonstrated a good safety profile, their therapeutic efficacy has been limited. In addition to these characteristics MSCs are being used for their homing and engraftment properties and have been genetically modified to enable targeted delivery of a variety of therapeutic agents in both malignant and nonmalignant conditions. This review discusses the science and technology behind genetically modified MSC therapy in malignant disease and how potential problems have been overcome to enable their use in two novel clinical trials in metastatic gastrointestinal and lung cancer.
Collapse
Affiliation(s)
- Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Rayne Institute, University College London, London, United Kingdom
| | - Ricky M Thakrar
- Lungs for Living Research Centre, UCL Respiratory, Rayne Institute, University College London, London, United Kingdom; Department of Thoracic Medicine, University College London Hospital, London, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Rayne Institute, University College London, London, United Kingdom; Department of Thoracic Medicine, University College London Hospital, London, United Kingdom.
| |
Collapse
|
21
|
Selaginella bryopteris Aqueous Extract Improves Stability and Function of Cryopreserved Human Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8530656. [PMID: 28811868 PMCID: PMC5546052 DOI: 10.1155/2017/8530656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/02/2017] [Accepted: 06/15/2017] [Indexed: 02/07/2023]
Abstract
The effective long-term cryopreservation of human mesenchymal stem cells (MSCs) is an essential prerequisite step and represents a critical approach for their sustained supply in basic research, regenerative medicine, and tissue engineering applications. Therefore, attempts have been made in the present investigation to formulate a freezing solution consisting of a combination of Selaginella bryopteris water-soluble extract with and without dimethyl sulfoxide (Me2SO) for the efficient long-term storage of human umbilical cord blood- (hUCB-) derived MSCs. The cryopreservation experiment using the formulated freezing solution was further performed with hUCB MSCs in a controlled rate freezer. A significant increase in postthaw cell viability and cell attachment of MSCs was achieved with freezing medium containing Selaginella bryopteris water extract along with 10% Me2SO as compared to the freezing medium containing Me2SO (10% v/v) alone. Furthermore, the decreasing apoptotic events and reactive oxygen species production along with increasing expression of heat shock proteins also confirmed the beneficial effect of Selaginella bryopteris water extract. The beneficial effect of Selaginella bryopteris water extract was validated by its ability to render postpreservation high cell viability. In conclusion, the formulated freezing solution has been demonstrated to be effective for the standardization of cryopreservation protocol for hMSCs.
Collapse
|
22
|
Role of Mesenchymal Stem Cells in Cancer Development and Their Use in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:45-62. [DOI: 10.1007/5584_2017_64] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Avnet S, Di Pompo G, Chano T, Errani C, Ibrahim-Hashim A, Gillies RJ, Donati DM, Baldini N. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-κB activation. Int J Cancer 2017; 140:1331-1345. [PMID: 27888521 DOI: 10.1002/ijc.30540] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/09/2016] [Indexed: 12/12/2022]
Abstract
The role of mesenchymal stem cells (MSC) in osteosarcoma (OS), the most common primary tumor of bone, has not been extensively elucidated. We have recently shown that OS is characterized by interstitial acidosis, a microenvironmental condition that is similar to a wound setting, in which mesenchymal reactive cells are activated to release mitogenic and chemotactic factors. We therefore intended to test the hypothesis that, in OS, acid-activated MSC influence tumor cell behavior. Conditioned media or co-culture with normal MSC previously incubated with short-term acidosis (pH 6.8 for 10 hr, H+ -MSC) enhanced OS clonogenicity and invasion. This effect was mediated by NF-κB pathway activation. In fact, deep-sequencing analysis, confirmed by Real-Time PCR and ELISA, demonstrated that H+ -MSC differentially induced a tissue remodeling phenotype with increased expression of RelA, RelB and NF-κB1, and downstream, of CSF2/GM-CSF, CSF3/G-CSF and BMP2 colony-promoting factors, and of chemokines (CCL5, CXCL5 and CXCL1), and cytokines (IL6 and IL8), with an increased expression of CXCR4. An increased expression of IL6 and IL8 were found only in normal stromal cells, but not in OS cells, and this was confirmed in tumor-associated stromal cells isolated from OS tissue. Finally, H+ -MSC conditioned medium differentially promoted OS stemness (sarcosphere number, stem-associated gene expression), and chemoresistance also via IL6 secretion. Our data support the hypothesis that the acidic OS microenvironment is a key factor for MSC activation, in turn promoting the secretion of paracrine factors that influence tumor behavior, a mechanism that holds the potential for future therapeutic interventions aimed to target OS.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Arig Ibrahim-Hashim
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Robert J Gillies
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Davide Maria Donati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 2016; 7:7. [PMID: 26753925 PMCID: PMC4709937 DOI: 10.1186/s13287-015-0271-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are increasingly used as an intravenously applied cellular therapeutic. They were found to be potent in situations such as tissue repair or severe inflammation. Still, data are lacking with regard to the biodistribution of MSCs, their cellular or molecular target structures, and the mechanisms by which MSCs reach these targets. This review discusses current hypotheses for how MSCs can reach tissue sites. Both preclinical and clinical studies using MSCs applied intravenously or intra-arterially are discussed in the context of our current understanding of how MSCs might work in physiological and pathological situations.
Collapse
Affiliation(s)
- Johannes Leibacher
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, Frankfurt, Germany
| | - Reinhard Henschler
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, Frankfurt, Germany. .,Blood Donor Center Zürich, Swiss Red Cross, Zürich, Switzerland.
| |
Collapse
|
25
|
The Effect of Human Mesenchymal Stem Cells-Conditioned Media on Glioblastoma Cells Viability In Vitro. CURRENT HEALTH SCIENCES JOURNAL 2015; 41:339-344. [PMID: 30538840 PMCID: PMC6243521 DOI: 10.12865/chsj.41.04.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022]
Abstract
A novel target for cancer treatment is based on the effects of non-tumor cells, including hMSCs on tumor growth. However, the results are controversial: some studies showed that hMSCs inhibit tumor progression, while others found they promote tumor cell proliferation. In this study, we analyse the effect of human mesenchymal cells derived from umbilical cord tissue (hUC-MSCs) and bone-marrow- mesenchymal stem cells (hBM-MSCs) on glioblastoma cells viability in vitro. GB cell cultures were established from fresh sample tissues provided by "Bagdasar-Arseni" Hospital, Bucharest, from consented GB patients. hUC-MSCs, HUC-1 and HUC-2 cell lines, were established from human umbilical cord tissue collected after delivery from natural term births at the Emergency Hospital of Craiova, Romania. hBM-MSCs cell line was purchased from Life Technologies. Conditioned media (CM) from MSCs was used to treat GB cells for 24, 48, 72 and 96 hours. To determine GB cell viability was used MTT cell proliferation assay. Statistical analyses were performed using Students t-test. hUC-MSCs CM displayed the potential to be cytotoxic to GB cells, while the treatment with hBM-MSCs CM significantly stimulated GB cell growth 24 hours after the treatment and showed minor growth cell inhibition 48, 72 and 96 hours after the treatment. This report proved that hUC-MSCsCM inhibited GB cell proliferation, while little inhibitory effect was exerted by hBM-MSCs CM.
Collapse
|
26
|
Physical Intimacy of Breast Cancer Cells with Mesenchymal Stem Cells Elicits Trastuzumab Resistance through Src Activation. Sci Rep 2015; 5:13744. [PMID: 26345302 PMCID: PMC4561910 DOI: 10.1038/srep13744] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/17/2015] [Indexed: 12/27/2022] Open
Abstract
The development of resistance to trastuzumab is a major obstacle for lasting effective treatment of patients with ErbB2-overexpressing tumors. Here, we demonstrate that the physical contact of breast cancer cells with mesenchymal stem cells (MSCs) is a potential modulator of trastuzumab response by activation of nonreceptor tyrosine kinase c-Src and down regulation of phosphatase and tensin homolog (PTEN). Using an in vitro patterned breast cancer/MSC co-culture model, we find that the presence of MSCs results in Src activation that is missing in cancer cells monoculture, transwell co-culture, and cells treated with MSCs conditioned media. Interestingly, the co-culture model also results in PTEN loss and activation of PI3K/AKT pathway that has been demonstrated as fundamental proliferative and survival pathways in clinical settings. To our knowledge, this is the first report that showed PTEN loss without the use of chemical inhibitors, matrix stiffness, or silencing RNAs. In addition, breast cancer cells in co-culture with MSCs conferred trastuzumab resistance in vitro as observed in the lack of inhibition of proliferative and migrative properties of the cancer cells. Our findings show that MSCs are potent mediators of resistance to trastuzumab and might reveal targets to enhance trastuzumab efficacy in patients.
Collapse
|
27
|
Multipotent Mesenchymal Stromal Cells: Possible Culprits in Solid Tumors? Stem Cells Int 2015; 2015:914632. [PMID: 26273308 PMCID: PMC4530290 DOI: 10.1155/2015/914632] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/29/2015] [Accepted: 04/08/2015] [Indexed: 12/23/2022] Open
Abstract
The clinical use of bone marrow derived multipotent mesenchymal stromal cells (BM-MSCs) in different settings ranging from tissue engineering to immunotherapies has prompted investigations on the properties of these cells in a variety of other tissues. Particularly the role of MSCs in solid tumors has been the subject of many experimental approaches. While a clear phenotypical distinction of tumor associated fibroblasts (TAFs) and MSCs within the tumor microenvironment is still missing, the homing of bone marrow MSCs in tumor sites has been extensively studied. Both, tumor-promoting and tumor-inhibiting effects of BM-MSCs have been described in this context. This ambiguity requires a reappraisal of the different studies and experimental methods employed. Here, we review the current literature on tumor-promoting and tumor-inhibiting effects of BM-MSCs with a particular emphasis on their interplay with components of the immune system and also highlight a potential role of MSCs as cell of origin for certain mesenchymal tumors.
Collapse
|
28
|
Adjei IM, Blanka S. Modulation of the tumor microenvironment for cancer treatment: a biomaterials approach. J Funct Biomater 2015; 6:81-103. [PMID: 25695337 PMCID: PMC4384103 DOI: 10.3390/jfb6010081] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/07/2014] [Accepted: 02/12/2015] [Indexed: 12/26/2022] Open
Abstract
Tumors are complex tissues that consist of stromal cells, such as fibroblasts, immune cells and mesenchymal stem cells, as well as non-cellular components, in addition to neoplastic cells. Increasingly, there is evidence to suggest that these non-neoplastic cell components support cancer initiation, progression and metastasis and that their ablation or reprogramming can inhibit tumor growth. Our understanding of the activities of different parts of the tumor stroma in advancing cancer has been improved by the use of scaffold and matrix-based 3D systems originally developed for regenerative medicine. Additionally, drug delivery systems made from synthetic and natural biomaterials deliver drugs to kill stromal cells or reprogram the microenvironment for tumor inhibition. In this article, we review the impact of 3D tumor models in increasing our understanding of tumorigenesis. We also discuss how different drug delivery systems aid in the reprogramming of tumor stroma for cancer treatment.
Collapse
Affiliation(s)
- Isaac M Adjei
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Sharma Blanka
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
29
|
Fakiruddin KS, Baharuddin P, Lim MN, Fakharuzi NA, Yusof NANM, Zakaria Z. Nucleofection optimization and in vitro anti-tumourigenic effect of TRAIL-expressing human adipose-derived mesenchymal stromal cells. Cancer Cell Int 2014; 14:122. [PMID: 25469108 PMCID: PMC4247692 DOI: 10.1186/s12935-014-0122-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022] Open
Abstract
Background Tumour homing capacity of engineered human adipose-derived mesenchymal stromal cells (ADMSCs) expressing anti-tumour agents might be the key for a much safer and yet efficient targeted tumour therapy. However, ADMSCs exhibit resistant to most gene transfection techniques and the use of highly efficient viral vectors has several disadvantages primarily concerning safety risk. Here, we optimized the use of highly efficient and safe nucleofection-based transfection using plasmid encoded for TNF-Related Apoptosis Inducing Ligand (TRAIL) into ADMSCs and investigated the potential anti-tumourigenic of TRAIL-expressing ADMSCs (ADMSCs-TRAIL) on selected cancer models in vitro. Methods Different concentration of TRAIL-encoded plasmid and ADMSCs were nucleofected and the percentage of fluorescence cells were analyzed to determine the optimal condition. TRAIL protein and mRNA were validated in nucloeofected ADMSCs using ELISA and RT-PCR respectively. Evaluation of TRAIL specific death receptors were performed on both tumours (A549/lung tumour, LN18/glioblastoma and HepG2/hepatocellular carcinoma) and haematological malignant lines (REH/acute lymphocytic leukaemia, K562/chronic myelogenous leukaemia and KMS-28BM/multiple myeloma) using flow cytometry. ADMSCs-TRAIL was subsequently assessed for anti-tumourigenic properties using both proliferation assay (MTS assay) and apoptosis assay (Annexin-V / Propidium Iodide staining). Results Nucleofection showed increased total plasmid concentration (2 μg to 8 μg) resulted in significantly higher reporter expression (11.33% to 39.7%) with slight reduction on cells viability (~10%). ADMSCs-TRAIL significantly inhibited ~50% of cell proliferation in LN18, signifying sensitivity of the cell to ADMSCs-TRAIL mediated inhibition. Inhibition of both tumour and malignant lines proliferation by ADMSCs-TRAIL conditioned medium noticed in HepG2, A549 and REH respectively, whereas K562 and KMS-28BM malignant lines exhibit resistant to ADMSCs-TRAIL mediated inhibition. Moreover, we found that native ADMSCs alone were capable of inducing apoptosis in both LN18 and HepG2 tumour lines, despite substantial increased on the percentage of apoptosis by ADMSCs-TRAIL. Conclusion ADMSCs-TRAIL selectively inhibit cancer model and markedly induces apoptosis. Through investigation of the specific TRAIL death receptors expression, we saw that the receptors expression did influence the sensitivity of some but not all cancer lines to TRAIL-mediated inhibition. This study provides further insight into the anti-tumourigenic potential of ADMSCs-TRAIL on different cancer models.
Collapse
Affiliation(s)
- Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Puteri Baharuddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Moon Nian Lim
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Noor Atiqah Fakharuzi
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Nurul Ain Nasim M Yusof
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Zubaidah Zakaria
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Bahrambeigi V, Ahmadi N, Moisyadi S, Urschitz J, Salehi R, Haghjooy Javanmard S. PhiC31/PiggyBac modified stromal stem cells: effect of interferon γ and/or tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on murine melanoma. Mol Cancer 2014; 13:255. [PMID: 25428727 PMCID: PMC4258801 DOI: 10.1186/1476-4598-13-255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/14/2014] [Indexed: 01/13/2023] Open
Abstract
Background TRAIL and IFNγ are promising anti-cancer cytokines and it has been shown that IFNγ may sensitize cancer cells to TRAIL. Adipose derived mesenchymal stem cells (ADSCs) are attractive vehicles for delivering anti-cancer agents. In this study, we evaluated the therapeutic potential of PhiC31 (φC31) recombinase and/or piggyBac transposase (pBt) modified ADSCs expressing either TRAIL, IFNγ, or co-expressing TRAIL/IFNγ in mouse models of melanoma. Methods The expression and bioactivity of mouse IFNγ and TRAIL in φC31 and pBt modified cells were confirmed. We examined the effects of modified ADSCs on signal intensity of red fluorescence protein expressed by melanoma cells in subcutaneous tumors or established lung metastases and on survival (6 mice per group). We also conducted a flow cytometric analysis of systemic CD4+CD25+FOXP3+ T regulatory cells (Tregs) and histological analysis of melanoma tumors. Data were analyzed by Student t test, ANOVA, and log-rank tests. All statistical tests were two-sided. Results We demonstrated non-viral DNA-integrating vectors can be used for stable transgene expression. IFNγ inhibited melanoma cell growth in vitro probably via IFNγ-induced JAK/STAT1 signaling pathway activation. Murine TRAIL induced apoptosis in the human cell lines CAOV-4 and Ej-138, while MCF7 and B16F10 cells appeared to be insensitive to TRAIL. Treatment of melanoma cells with IFNγ did not influence their response to TRAIL. In contrast, results from in vivo studies showed that IFNγ-expressing ADSCs, engrafted into tumor stroma, inhibited tumor growth and angiogenesis, prevented systemic increase of Tregs, increased PD-L1 expression and CD8+ infiltration (but not interleukin-2+ cells), and prolonged the survival of mice (68 days, 95% confidence interval [CI] =52 to 86 days compared to 36 days, 95% CI =29 to 39 days for control, P < .001). Conclusions For the first time, we employed DNA integrating vectors for safe and stable modification of MSCs. Our data indicate potential of non-virally modified IFNγ-expressing ADSCs for treatment of melanoma through direct effects of IFNγ. This study may have a significant role in the management of cancer in the future. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-255) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Sun Z, Wang S, Zhao RC. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J Hematol Oncol 2014; 7:14. [PMID: 24502410 PMCID: PMC3943443 DOI: 10.1186/1756-8722-7-14] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/31/2013] [Indexed: 12/16/2022] Open
Abstract
Tumor behavior is not entirely determined by tumor cells. Studies have demonstrated that a variety of non-tumor cells in the tumor microenvironment affect tumor behavior; thus, a new focus of cancer research has been the development of novel cancer treatment ideas and therapeutic targets based on the effects of these cells. Mesenchymal stem cells (MSCs) are an important component of the tumor microenvironment; however, previous studies have produced controversial results regarding whether MSCs promote or inhibit tumor growth and progression. In particular, Naïve MSCs and tumor-derived MSCs (T-MSCs) have different functions. Naïve MSCs could exert bidirectional effects on tumors because these cells can both promote and inhibit tumor progression while T-MSCs promote tumor progression due to influences from the tumor itself and from the inflammatory tumor microenvironment. As an unhealed wound, tumor produces a continuous source of inflammatory mediators and causes aggregation of numerous inflammatory cells, which constitute an inflammatory microenvironment. Inflammatory factors can induce homing of circulating MSCs and MSCs in adjacent tissues into tumors, which are then being “educated” by the tumor microenvironment to support tumor growth. T-MSCs could recruit more immune cells into the tumor microenvironment, increase the proportion of cancer stem cells and promote tumor angiogenesis, further supporting tumor progression. However, as plasticity is a fundamental feature of MSCs, MSCs can also inhibit tumors by activating various MSC-based signaling pathways. Studies of the mechanisms by which interactions among tumors, MSCs, and the inflammatory microenvironment occur and methods to disrupt these interactions will likely reveal new targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
32
|
Otte A, Bucan V, Reimers K, Hass R. Mesenchymal stem cells maintain long-term in vitro stemness during explant culture. Tissue Eng Part C Methods 2013; 19:937-948. [PMID: 23560527 DOI: 10.1089/ten.tec.2013.0007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The advantage of mesenchymal stem cells (MSC) in view of cell and/or tissue replacement after transplantation and their prolonged clinical use raises heavy debates not only in the fields of tissue engineering and regenerative medicine to date. Explant culture of umbilical cord (UC) tissue pieces for more than 190 days demonstrated a similar morphology and proliferation rate of outgrowing MSC as compared to UC tissue cultured for 15 days. Flow cytometric analysis revealed the expression of the typical UC-MSC markers CD73, CD90, and CD105 with concomitant absence of CD14, CD31, CD34, and CD45 in all MSC populations. Moreover, subculture of these long-term tissue-derived MSC exhibited nearly identical population doublings and cell cycle distributions and demonstrated the typical MSC surface markers expression until passage 10 in all different explant cultures. Stem cell-like characteristics were also maintained throughout the long term MSC explant cultures, including telomerase activity and the potential to differentiate along the adipogenic, chondrogenic and osteogenic lineage. In contrast, subculture of MSC for more than 10 passages in the absence of the UC tissue microenvironment was uniformly associated with significantly reduced population doublings, cell cycle accumulation in G0/G1, increased senescence and a diminished expression of MCS markers indicating a progressive loss of stemness in all cultures. Together, these findings demonstrated that the stem cell characteristics of MSC can be maintained during long term in vitro culture in the presence of the originating tissue pieces suggesting that the corresponding tissue provides a microenvironment which is essential for keeping MSC in a stem cell-like state.
Collapse
Affiliation(s)
- Anna Otte
- 1 Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology, Medical University Hannover , Hannover, Germany
| | | | | | | |
Collapse
|
33
|
Trivanović D, Nikolić S, Krstić J, Jauković A, Mojsilović S, Ilić V, Okić-Djordjević I, Santibanez JF, Jovčić G, Bugarski D. Characteristics of human adipose mesenchymal stem cells isolated from healthy and cancer affected people and their interactions with human breast cancer cell line MCF-7 in vitro. Cell Biol Int 2013; 38:254-65. [PMID: 24155046 DOI: 10.1002/cbin.10198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023]
Abstract
Adipose tissue is an attractive source of mesenchymal stem/stromal cells (MSCs) with potential applications in reconstructive plastic surgery and regenerative medicine. The aim of this study was to characterise human adipose tissue MSCs (ASCs) derived from healthy individuals and cancer patients and to compare their interactions with tumour cells. ASCs were isolated from adipose tissue of healthy donors, breast cancer-adjacent adipose tissue of breast cancer patients and tumour-adjacent adipose tissue of non-breast cancer patients. Their proliferation, differentiation, immunophenotype and gene expression were assessed and effects on the proliferation of human breast cancer cell line MCF-7 compared. ASCs from all sources exhibited similar morphology, proliferative and differentiation potential, showing the characteristic pattern of mesenchymal surface markers expression (CD90, CD105, CD44H, CD73) and the lack of HLA-DR and hematopoietic markers (CD11a, CD33, CD45, Glycophorin-CD235a), but uneven expression of CD34. ASCs also shared a common positive gene expression of HLA-DR, HLA-A, IL-6, TGF-β and HIF-1, but were negative for HLA-G, while the expression levels of Cox-2 and IDO-1 varied. All ASCs significantly stimulated the proliferation of MCF-7 tumour cells in direct mixed co-cultures and transwell system, although their conditioned media displayed antiproliferative activity. Data obtained showed that ASCs with similar characteristics are easily isolated from various donors and sites of origin, although ASCs could both suppress and favour tumour cells growth, emphasising the importance of cellular context within the microenvironment and pointing to the significance of safety studies to exclude any potential clinical risk of their application in regenerative medicine.
Collapse
Affiliation(s)
- Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hernanda PY, Pedroza-Gonzalez A, van der Laan LJW, Bröker MEE, Hoogduijn MJ, Ijzermans JNM, Bruno MJ, Janssen HLA, Peppelenbosch MP, Pan Q. Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma. Carcinogenesis 2013; 34:2330-40. [PMID: 23740837 PMCID: PMC3786382 DOI: 10.1093/carcin/bgt210] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although the infiltration of mesenchymal stem (stromal) cells (MSCs) into different tumors is widely recognized in animal models, the question whether these MSCs have a positive or negative effect on disease progression remains unanswered. The aim of this study is to investigate whether human hepatocellular carcinoma (HCC) harbors MSCs and whether these MSCs affect tumor growth. We observed that cells capable of differentiation into both adipocyte and osteocyte lineages and expressing MSC markers can be cultured from surgically resected HCC tissues. In situ staining of human HCC tissues with a STRO-1 antibody showed that the tumor and tumor-stromal region are significantly enriched with candidate MSCs compared with adjacent tissue (n = 12, P < 0.01). In mice, coengraftment of a human HCC cell line (Huh7) with MSCs resulted in substantially larger tumors compared with paired engraftment of Huh7 alone (n = 8, P < 0.01). Consistently, coculturing Huh7 with irradiated MSCs significantly increased the number and the size of colonies formed. This enhancement of Huh7 colony formation was also observed by treatment of MSC-conditioned medium (MSC-CM), suggesting that secreted trophic factors contribute to the growth-promoting effects. Genome-wide gene expression array and pathway analysis confirmed the upregulation of cell growth and proliferation-related processes and downregulation of cell death-related pathways by treatment of MSC-CM in Huh7 cells. In conclusion, these results show that MSCs are enriched in human HCC tumor compartment and could exert trophic effects on tumor cells. Thus, targeting of HCC tumor MSCs may represent a new avenue for therapeutic intervention.
Collapse
|
35
|
Isolation, characterization, and transduction of endometrial decidual tissue multipotent mesenchymal stromal/stem cells from menstrual blood. BIOMED RESEARCH INTERNATIONAL 2013; 2013:901821. [PMID: 23607099 PMCID: PMC3626323 DOI: 10.1155/2013/901821] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) reveal progenitor cells-like features including proliferation and differentiation capacities. One of the most historically recognized sources of MSC has been the bone marrow, while other sources recently include adipose tissue, teeth, bone, muscle, placenta, liver, pancreas, umbilical cord, and cord blood. Frequently, progenitor isolation requires traumatic procedures that are poorly feasible and associated with patient discomfort. In the attempt to identify a more approachable MSC source, we focused on endometrial decidual tissue (EDT) found within menstrual blood. Based also on recent literature findings, we hypothesized that EDT may contain heterogeneous populations including some having MSC-like features. Thus, we here sought to isolate EDT-MSC processing menstrual samples from multiple donors. Cytofluorimetric analyses revealed that resulting adherent cells were expressing mesenchymal surface markers, including CD56, CD73, CD90, CD105 and CD146, and pluripotency markers such as SSEA-4. Moreover, EDT-MSC showed a robust clonogenic potential and could be largely expanded in vitro as fibroblastoid elements. In addition, differentiation assays drove these cells towards osteogenic, adipogenic, and chondrogenic lineages. Finally, for the first time, we were able to gene modify these progenitors by a retroviral vector carrying the green fluorescent protein. From these data, we suggest that EDT-MSC could represent a new promising tool having potential within cell and gene therapy applications.
Collapse
|