1
|
Wei G, Song D, He H, Su X, Xia D, Li Y, Qiao Y. Effect of Benzoic Acid on Biogenic Gas Production with Different Rank Coals and the Fluorescence Spectra Characteristic of Produced Organic Products. ACS OMEGA 2025; 10:16169-16183. [PMID: 40321560 PMCID: PMC12044434 DOI: 10.1021/acsomega.4c09883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
Biogas production was conducted using samples from different coal beds and laboratory-domesticated microbes to investigate the effect of the addition of benzoic acid on biogas production. Furthermore, the response properties of produced organic substances at different gas production stages were analyzed with ultraviolet-visible (UV-Vis) spectroscopy and three-dimensional fluorescence spectroscopy. The results showed that adding benzoic acid significantly enhanced the microbial gas production with different rank coals. Obvious spectroscopic differences were observed in the gas production effects and liquid-phase composition across varying rank coals. The UV-vis spectroscopy findings indicated that soluble organic matter gradually increased in molecular weight during gas production, leading to increased aromatization and an increase in aromatic ring substituents with hydrogen and oxygen functional groups. Fluorescence spectroscopy revealed changes in protein-like substances during gas production, indicating the involvement of humic acid-like substances from coal in microbial gas production. The results of the fluorescence index supported the biological origin of humic acid during the gas production process. Benzoic acid augmentation promoted biogas production in different coal grades, and distinct differences were observed in the organic spectral properties during gas production, suggesting that the metabolic pathways of the same microbes acting on different coal grades vary.
Collapse
Affiliation(s)
- Guoqin Wei
- Institute
of Resource and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
- State
Key Laboratory of Coal and CBM Co-Mining, Shanxi Jinneng Group Co., Ltd., Jincheng 048000, China
- Yi’an
Lanyan Coal and Coalbed Methane Co-Mining Technology Co. Ltd., Taiyuan 030031, China
| | - Dangyu Song
- Institute
of Resource and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
| | - Huan He
- Key
Laboratory of Coal Processing and Efficient Utilization of Ministry
of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Xianbo Su
- Institute
of Resource and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
| | - Daping Xia
- Institute
of Resource and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
| | - Yunbo Li
- Institute
of Resource and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
| | - Yu Qiao
- Institute
of Resource and Environment, Henan Polytechnic
University, Jiaozuo 454000, China
| |
Collapse
|
2
|
Otto P, Puchol-Royo R, Ortega-Legarreta A, Tanner K, Tideman J, de Vries SJ, Pascual J, Porcar M, Latorre-Pérez A, Abendroth C. Multivariate comparison of taxonomic, chemical and operational data from 80 different full-scale anaerobic digester-related systems. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:84. [PMID: 38902807 PMCID: PMC11191226 DOI: 10.1186/s13068-024-02525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The holistic characterization of different microbiomes in anaerobic digestion (AD) systems can contribute to a better understanding of these systems and provide starting points for bioengineering. The present study investigates the microbiome of 80 European full-scale AD systems. Operational, chemical and taxonomic data were thoroughly collected, analysed and correlated to identify the main drivers of AD processes. RESULTS The present study describes chemical and operational parameters for a broad spectrum of different AD systems. With this data, Spearman correlation and differential abundance analyses were applied to narrow down the role of the individual microorganisms detected. The authors succeeded in further limiting the number of microorganisms in the core microbiome for a broad range of AD systems. Based on 16S rRNA gene amplicon sequencing, MBA03, Proteiniphilum, a member of the family Dethiobacteraceae, the genus Caldicoprobacter and the methanogen Methanosarcina were the most prevalent and abundant organisms identified in all digesters analysed. High ratios for Methanoculleus are often described for agricultural co-digesters. Therefore, it is remarkable that Methanosarcina was surprisingly high in several digesters reaching ratios up to 47.2%. The various statistical analyses revealed that the microorganisms grouped according to different patterns. A purely taxonomic correlation enabled a distinction between an acetoclastic cluster and a hydrogenotrophic one. However, in the multivariate analysis with chemical parameters, the main clusters corresponded to hydrolytic and acidogenic microorganisms, with SAOB bacteria being particularly important in the second group. Including operational parameters resulted in digester-type specific grouping of microbes. Those with separate acidification stood out among the many reactor types due to their unexpected behaviour. Despite maximizing the organic loading rate in the hydrolytic pretreatments, these stages turned into extremely robust methane production units. CONCLUSIONS From 80 different AD systems, one of the most holistic data sets is provided. A very distinct formation of microbial clusters was discovered, depending on whether taxonomic, chemical or operational parameters were combined. The microorganisms in the individual clusters were strongly dependent on the respective reference parameters.
Collapse
Affiliation(s)
- Pascal Otto
- Institute of Waste Management and Circular Economy, Technische Universität Dresden, Pirna, Germany
| | - Roser Puchol-Royo
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Asier Ortega-Legarreta
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Kristie Tanner
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | | | | | - Javier Pascual
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Manuel Porcar
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, (University of Valencia - CSIC), Paterna, Spain
| | - Adriel Latorre-Pérez
- Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Christian Abendroth
- Chair of Circular Economy, Brandenburgische Technische Universität Cottbus-Senftenberg, Lehrgebäude 4A R2.25, Siemens-Halske-Ring 8, 03046, Cottbus, Germany.
| |
Collapse
|
3
|
Issahaku M, Derkyi NSA, Kemausuor F. A systematic review of the design considerations for the operation and maintenance of small-scale biogas digesters. Heliyon 2024; 10:e24019. [PMID: 38230247 PMCID: PMC10789629 DOI: 10.1016/j.heliyon.2024.e24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
This review investigates small-scale biogas digesters' design and construction considerations to address biogas digesters' failures shortly after installation. The frequent failures of small-scale or household biogas digesters negatively affect its adoption as a clean domestic cooking fuel in developing countries, affecting the achievement of Sustainable Development Goal (SDG) 7. The study considered Scopus database-indexed peer-reviewed journals published between 2000 and 2022. Selected papers focussed on real-time monitoring, stirring mechanisms, and temperature control systems based on predefined inclusion and exclusion criteria with initial search results of 4751 documents, narrowing to 55 papers. The PRISMA 2020 statement was adopted to conduct the study. The study highlights the importance of incorporating a real-time monitoring system as a design factor in small-scale biogas digesters for successful operation and maintenance. The study's findings may be helpful to practitioners, policymakers, and researchers promoting sustainable energy and waste management solutions in low-resource settings.
Collapse
Affiliation(s)
- Mubarick Issahaku
- Regional Centre for Energy and Environmental Sustainability, University of Energy and Natural Resources, Sunyani, Ghana
- Energy Technology Centre, School of Engineering, University for Development Studies, P. O. Box TL 1350, Tamale, Ghana
| | - Nana Sarfo Agyemang Derkyi
- Regional Centre for Energy and Environmental Sustainability, University of Energy and Natural Resources, Sunyani, Ghana
| | - Francis Kemausuor
- The Brew-Hammond Energy Center, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
4
|
Jiang F, Li Q, Wang S, Shen T, Wang H, Wang A, Xu D, Yuan L, Lei L, Chen R, Yang B, Deng Y, Fan W. Recovery of metagenome-assembled microbial genomes from a full-scale biogas plant of food waste by pacific biosciences high-fidelity sequencing. Front Microbiol 2023; 13:1095497. [PMID: 36699587 PMCID: PMC9869026 DOI: 10.3389/fmicb.2022.1095497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Background Anaerobic digestion (AD) is important in treating of food waste, and thousands of metagenome-assembled genomes (MAGs) have been constructed for the microbiome in AD. However, due to the limitations of the short-read sequencing and assembly technologies, most of these MAGs are grouped from hundreds of short contigs by binning algorithms, and the errors are easily introduced. Results In this study, we constructed a total of 60 non-redundant microbial genomes from 64.5 Gb of PacBio high-fidelity (HiFi) long reads, generated from the digestate samples of a full-scale biogas plant fed with food waste. Of the 60 microbial genomes, all genomes have at least one copy of rRNA operons (16S, 23S, and 5S rRNA), 54 have ≥18 types of standard tRNA genes, and 39 are circular complete genomes. In comparison with the published short-read derived MAGs for AD, we found 23 genomes with average nucleotide identity less than 95% to any known MAGs. Besides, our HiFi-derived genomes have much higher average contig N50 size, slightly higher average genome size and lower contamination. GTDB-Tk classification of these genomes revealed two genomes belonging to novel genus and four genomes belonging to novel species, since their 16S rRNA genes have identities lower than 95 and 97% to any known 16S rRNA genes, respectively. Microbial community analysis based on the these assembled genomes reveals the most predominant phylum was Thermotogae (70.5%), followed by Euryarchaeota (6.1%), and Bacteroidetes (4.7%), and the most predominant bacterial and archaeal genera were Defluviitoga (69.1%) and Methanothrix (5.4%), respectively. Analysis of the full-length 16S rRNA genes identified from the HiFi reads gave similar microbial compositions to that derived from the 60 assembled genomes. Conclusion High-fidelity sequencing not only generated microbial genomes with obviously improved quality but also recovered a substantial portion of novel genomes missed in previous short-read based studies, and the novel genomes will deepen our understanding of the microbial composition in AD of food waste.
Collapse
Affiliation(s)
- Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Qiang Li
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Ting Shen
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lihua Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lihong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Rong Chen
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Boyuan Yang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yu Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China,*Correspondence: Yu Deng, ; Wei Fan,
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China,*Correspondence: Yu Deng, ; Wei Fan,
| |
Collapse
|
5
|
Köller N, Hahnke S, Zverlov V, Wibberg D, Klingl A, Busche T, Klocke M, Pühler A, Schlüter A, Liebl W, Maus I. Anaeropeptidivorans aminofermentans gen. nov., sp. nov., a mesophilic proteolytic salt-tolerant bacterium isolated from a laboratory-scale biogas fermenter, and emended description of Clostridium colinum. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748496 DOI: 10.1099/ijsem.0.005668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An anaerobic bacterial strain, designated strain M3/9T, was isolated from a laboratory-scale biogas fermenter fed with maize silage supplemented with 5 % wheat straw. Cells were straight, non-motile rods, which stained Gram-negative. Optimal growth occurred between 30 and 40°C, at pH 7.5-8.5, and up to 3.9 % (w/v) NaCl was tolerated. When grown on peptone from casein and soymeal, strain M3/9T produced mainly acetic acid, ethanol, and isobutyric acid. The major cellular fatty acids of the novel strain were C16 : 0 and C16 : 0 DMA. The genome of strain M3/9T is 3757 330 bp in size with a G+C content of 38.45 mol%. Phylogenetic analysis allocated strain M3/9T within the family Lachnospiraceae with Clostridium colinum DSM 6011T and Anaerotignum lactatifermentans DSM 14214T being the most closely related species sharing 57.86 and 56.99% average amino acid identity and 16S rRNA gene sequence similarities of 91.58 and 91.26 %, respectively. Based on physiological, chemotaxonomic and genetic data, we propose the description of a novel species and genus Anaeropeptidivorans aminofermentans gen. nov., sp. nov., represented by the type strain M3/9T (=DSM 100058T=LMG 29527T). In addition, an emended description of Clostridium colinum is provided.
Collapse
Affiliation(s)
- Nora Köller
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Sarah Hahnke
- Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Vladimir Zverlov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.,Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Andreas Klingl
- Plant Development, Department Biology I - Botany, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Tobias Busche
- Medical Faculty OWL & Centrum für Biotechnologie (CeBiTec), Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Michael Klocke
- Institute of Agricultural and Urban Ecological Projects affiliated to Berlin Humboldt University (IASP), Philippstraße 13, 10115 Berlin, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.,Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
6
|
Absence of oxygen effect on microbial structure and methane production during drying and rewetting events. Sci Rep 2022; 12:16570. [PMID: 36195651 PMCID: PMC9532411 DOI: 10.1038/s41598-022-20448-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Natural environments with frequent drainage experience drying and rewetting events that impose fluctuations in water availability and oxygen exposure. These relatively dramatic cycles profoundly impact microbial activity in the environment and subsequent emissions of methane and carbon dioxide. In this study, we mimicked drying and rewetting events by submitting methanogenic communities from strictly anaerobic environments (anaerobic digestors) with different phylogenetic structures to consecutive desiccation events under aerobic (air) and anaerobic (nitrogen) conditions followed by rewetting. We showed that methane production quickly recovered after each rewetting, and surprisingly, no significant difference was observed between the effects of the aerobic or anaerobic desiccation events. There was a slight change in the microbial community structure and a decrease in methane production rates after consecutive drying and rewetting, which can be attributed to a depletion of the pool of available organic matter or the inhibition of the methanogenic communities. These observations indicate that in comparison to the drying and rewetting events or oxygen exposure, the initial phylogenetic structure and the organic matter quantity and quality exhibited a stronger influence on the methanogenic communities and overall microbial community responses. These results change the current paradigm of the sensitivity of strict anaerobic microorganisms to oxygen exposure.
Collapse
|
7
|
Ekstrand EM, Björn A, Karlsson A, Schnürer A, Kanders L, Yekta SS, Karlsson M, Moestedt J. Identifying targets for increased biogas production through chemical and organic matter characterization of digestate from full-scale biogas plants: what remains and why? BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:16. [PMID: 35418216 PMCID: PMC8830174 DOI: 10.1186/s13068-022-02103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/01/2022] [Indexed: 11/10/2022]
Abstract
Background This study examines the destiny of macromolecules in different full-scale biogas processes. From previous studies it is clear that the residual organic matter in outgoing digestates can have significant biogas potential, but the factors dictating the size and composition of this residual fraction and how they correlate with the residual methane potential (RMP) are not fully understood. The aim of this study was to generate additional knowledge of the composition of residual digestate fractions and to understand how they correlate with various operational and chemical parameters. The organic composition of both the substrates and digestates from nine biogas plants operating on food waste, sewage sludge, or agricultural waste was characterized and the residual organic fractions were linked to substrate type, trace metal content, ammonia concentration, operational parameters, RMP, and enzyme activity. Results Carbohydrates represented the largest fraction of the total VS (32–68%) in most substrates. However, in the digestates protein was instead the most abundant residual macromolecule in almost all plants (3–21 g/kg). The degradation efficiency of proteins generally lower (28–79%) compared to carbohydrates (67–94%) and fats (86–91%). High residual protein content was coupled to recalcitrant protein fractions and microbial biomass, either from the substrate or formed in the degradation process. Co-digesting sewage sludge with fat increased the protein degradation efficiency with 18%, possibly through a priming mechanism where addition of easily degradable substrates also triggers the degradation of more complex fractions. In this study, high residual methane production (> 140 L CH4/kg VS) was firstly coupled to operation at unstable process conditions caused mainly by ammonia inhibition (0.74 mg NH3-N/kg) and/or trace element deficiency and, secondly, to short hydraulic retention time (HRT) (55 days) relative to the slow digestion of agricultural waste and manure. Conclusions Operation at unstable conditions was one reason for the high residual macromolecule content and high RMP. The outgoing protein content was relatively high in all digesters and improving the degradation of proteins represents one important way to increase the VS reduction and methane production in biogas plants. Post-treatment or post-digestion of digestates, targeting microbial biomass or recalcitrant protein fractions, is a potential way to achieve increased protein degradation. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02103-3.
Collapse
Affiliation(s)
- Eva-Maria Ekstrand
- Department of Thematic Studies - Environmental Change, Linköping University, 58183, Linköping, Sweden.,Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Annika Björn
- Department of Thematic Studies - Environmental Change, Linköping University, 58183, Linköping, Sweden.,Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Anna Karlsson
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden.,Scandinavian Biogas Fuels AB, Holländargatan 21A, 111 60, Stockholm, Sweden
| | - Anna Schnürer
- Department of Thematic Studies - Environmental Change, Linköping University, 58183, Linköping, Sweden.,Biogas Research Center, Linköping University, 58183, Linköping, Sweden.,Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, 750 07, Uppsala, Sweden
| | - Linda Kanders
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden.,Purac AB, Box 1146, 221 05, Lund, Sweden
| | - Sepehr Shakeri Yekta
- Department of Thematic Studies - Environmental Change, Linköping University, 58183, Linköping, Sweden.,Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Martin Karlsson
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden.,Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Jan Moestedt
- Department of Thematic Studies - Environmental Change, Linköping University, 58183, Linköping, Sweden. .,Biogas Research Center, Linköping University, 58183, Linköping, Sweden. .,Department of Biogas R&D, Tekniska verken i Linköping AB, Box 1500, 581 15, Linköping, Sweden.
| |
Collapse
|
8
|
Banu JR, Kumar G, Chattopadhyay I. Management of microbial enzymes for biofuels and biogas production by using metagenomic and genome editing approaches. 3 Biotech 2021; 11:429. [PMID: 34603908 DOI: 10.1007/s13205-021-02962-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Non-renewable fossil fuels such as bitumen, coal, natural gas, oil shale, and petroleum are depleting over the world owing to unrestricted consumption. Biofuels such as biodiesel, biobutanol, bioethanol, and biogas are considered an eco-friendly and cost-effective alternatives of fossil fuels. For energy sustainability, the production of advanced biofuels is required. The advancement of genetic and metabolic engineering in microbial cells played a significant contribution to biofuels overproduction. Essential approaches such as next-generation sequencing technologies and CRISPR/Cas9-mediated genome editing of microbial cells are required for the mass manufacture of biofuels globally. Advanced "omics" approaches are used to construct effective microorganisms for biofuels manufacturing. A new investigation is required to augment the production of lignocellulosic-based biofuels with minimal use of energy. Advanced areas of metabolic engineering are introduced in the manufacture of biofuels by the use of engineered microbial strains. Genetically modified microorganisms are used for the production of biofuels in large quantities at a low-cost.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamilnadu India
| | - Gopalakrishnan Kumar
- Faculty of Science and Technology, Institute of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Forus, Box 8600, 4036 Stavanger, Norway
| | - Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamilnadu India
| |
Collapse
|
9
|
Hassa J, Klang J, Benndorf D, Pohl M, Hülsemann B, Mächtig T, Effenberger M, Pühler A, Schlüter A, Theuerl S. Indicative Marker Microbiome Structures Deduced from the Taxonomic Inventory of 67 Full-Scale Anaerobic Digesters of 49 Agricultural Biogas Plants. Microorganisms 2021; 9:1457. [PMID: 34361893 PMCID: PMC8307424 DOI: 10.3390/microorganisms9071457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/24/2022] Open
Abstract
There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.
Collapse
Affiliation(s)
- Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.); (A.P.); (A.S.)
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| | - Johanna Klang
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany;
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- Microbiology, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
| | - Marcel Pohl
- Biochemical Conversion Department, DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany;
| | - Benedikt Hülsemann
- The State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany;
| | - Torsten Mächtig
- Institute of Agricultural Engineering, Kiel University, Max-Eyth-Str. 6, 24118 Kiel, Germany;
| | - Mathias Effenberger
- Institute for Agricultural Engineering and Animal Husbandry, Bavarian State Research Center for Agriculture, Vöttinger Str. 36, 85354 Freising, Germany;
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.); (A.P.); (A.S.)
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.); (A.P.); (A.S.)
| | - Susanne Theuerl
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| |
Collapse
|
10
|
Singh A, Müller B, Schnürer A. Profiling temporal dynamics of acetogenic communities in anaerobic digesters using next-generation sequencing and T-RFLP. Sci Rep 2021; 11:13298. [PMID: 34168213 PMCID: PMC8225771 DOI: 10.1038/s41598-021-92658-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Acetogens play a key role in anaerobic degradation of organic material and in maintaining biogas process efficiency. Profiling this community and its temporal changes can help evaluate process stability and function, especially under disturbance/stress conditions, and avoid complete process failure. The formyltetrahydrofolate synthetase (FTHFS) gene can be used as a marker for acetogenic community profiling in diverse environments. In this study, we developed a new high-throughput FTHFS gene sequencing method for acetogenic community profiling and compared it with conventional terminal restriction fragment length polymorphism of the FTHFS gene, 16S rRNA gene-based profiling of the whole bacterial community, and indirect analysis via 16S rRNA profiling of the FTHFS gene-harbouring community. Analyses and method comparisons were made using samples from two laboratory-scale biogas processes, one operated under stable control and one exposed to controlled overloading disturbance. Comparative analysis revealed satisfactory detection of the bacterial community and its changes for all methods, but with some differences in resolution and taxonomic identification. FTHFS gene sequencing was found to be the most suitable and reliable method to study acetogenic communities. These results pave the way for community profiling in various biogas processes and in other environments where the dynamics of acetogenic bacteria have not been well studied.
Collapse
Affiliation(s)
- Abhijeet Singh
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| | - Bettina Müller
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| | - Anna Schnürer
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| |
Collapse
|
11
|
Fernandes TM, Morgado L, Turner DL, Salgueiro CA. Protein Engineering of Electron Transfer Components from Electroactive Geobacter Bacteria. Antioxidants (Basel) 2021; 10:844. [PMID: 34070486 PMCID: PMC8227773 DOI: 10.3390/antiox10060844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023] Open
Abstract
Electrogenic microorganisms possess unique redox biological features, being capable of transferring electrons to the cell exterior and converting highly toxic compounds into nonhazardous forms. These microorganisms have led to the development of Microbial Electrochemical Technologies (METs), which include applications in the fields of bioremediation and bioenergy production. The optimization of these technologies involves efforts from several different disciplines, ranging from microbiology to materials science. Geobacter bacteria have served as a model for understanding the mechanisms underlying the phenomenon of extracellular electron transfer, which is highly dependent on a multitude of multiheme cytochromes (MCs). MCs are, therefore, logical targets for rational protein engineering to improve the extracellular electron transfer rates of these bacteria. However, the presence of several heme groups complicates the detailed redox characterization of MCs. In this Review, the main characteristics of electroactive Geobacter bacteria, their potential to develop microbial electrochemical technologies and the main features of MCs are initially highlighted. This is followed by a detailed description of the current methodologies that assist the characterization of the functional redox networks in MCs. Finally, it is discussed how this information can be explored to design optimal Geobacter-mutated strains with improved capabilities in METs.
Collapse
Affiliation(s)
- Tomás M. Fernandes
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (T.M.F.); (L.M.)
| | - Leonor Morgado
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (T.M.F.); (L.M.)
| | - David L. Turner
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal;
| | - Carlos A. Salgueiro
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (T.M.F.); (L.M.)
| |
Collapse
|
12
|
Ma S, Jiang F, Huang Y, Zhang Y, Wang S, Fan H, Liu B, Li Q, Yin L, Wang H, Liu H, Ren Y, Li S, Cheng L, Fan W, Deng Y. A microbial gene catalog of anaerobic digestion from full-scale biogas plants. Gigascience 2021; 10:giaa164. [PMID: 33506264 PMCID: PMC7842101 DOI: 10.1093/gigascience/giaa164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/10/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Biogas production with anaerobic digestion (AD) is one of the most promising solutions for both renewable energy production and resolving the environmental problem caused by the worldwide increase in organic waste. However, the complex structure of the microbiome in AD is poorly understood. FINDINGS In this study, we constructed a microbial gene catalog of AD (22,840,185 genes) based on 1,817 Gb metagenomic data derived from digestate samples of 56 full-scale biogas plants fed with diverse feedstocks. Among the gene catalog, 73.63% and 2.32% of genes were taxonomically annotated to Bacteria and Archaea, respectively, and 57.07% of genes were functionally annotated with KEGG orthologous groups. Our results confirmed the existence of core microbiome in AD and showed that the type of feedstock (cattle, chicken, and pig manure) has a great influence on carbohydrate hydrolysis and methanogenesis. In addition, 2,426 metagenome-assembled genomes were recovered from all digestate samples, and all genomes were estimated to be ≥80% complete with ≤10% contamination. CONCLUSIONS This study deepens our understanding of the microbial composition and function in the AD process and also provides a huge number of reference genome and gene resources for analysis of anaerobic microbiota.
Collapse
Affiliation(s)
- Shichun Ma
- Biogas Institute of Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
- Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfai Road, Shenzhen 518120,China
| | - Yan Huang
- Biogas Institute of Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
- Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
| | - Yan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfai Road, Shenzhen 518120, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfai Road, Shenzhen 518120, China
| | - Hui Fan
- Biogas Institute of Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
- Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
| | - Bo Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfai Road, Shenzhen 518120, China
| | - Qiang Li
- Biogas Institute of Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
- Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
| | - Lijuan Yin
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfai Road, Shenzhen 518120, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfai Road, Shenzhen 518120, China
| | - Hangwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfai Road, Shenzhen 518120, China
| | - Yuwei Ren
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfai Road, Shenzhen 518120, China
| | - Shuqu Li
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfai Road, Shenzhen 518120, China
| | - Lei Cheng
- Biogas Institute of Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
- Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfai Road, Shenzhen 518120, China
| | - Yu Deng
- Biogas Institute of Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
- Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agricultural and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, China
| |
Collapse
|
13
|
Application of Polyacrylamide Flocculant for Stabilization of Anaerobic Digestion under Conditions of Excessive Accumulation of Volatile Fatty Acids. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Excessive accumulation of volatile fatty acids (VFA) is one of the major factors destabilizing methanogenic digestion of organic wastes in anaerobic bioreactors. Existing methods of stabilization of this process are mostly expensive and labor-intensive, often requiring removal of a considerable portion of acidified biomass from the bioreactor. We propose a method for methanogenesis restoration in such soured reactors by the addition of a cationic polyacrylamide flocculant (PAM) at 20 mg/g total solids. After flocculant addition, mixing should be minimized to prolong the existence of the floccules formed in the presence of the flocculant. While partial microbial degradation of the polyacrylamide flocculant was observed during the thermophilic anaerobic process, complete PAM mineralization did not occur. Significant inhibition of anaerobic processes, primarily in the activity of syntrophic propionate-oxidizing bacteria, was observed at PAM concentrations above 40 mg/g total solids.
Collapse
|
14
|
Maus I, Tubbesing T, Wibberg D, Heyer R, Hassa J, Tomazetto G, Huang L, Bunk B, Spröer C, Benndorf D, Zverlov V, Pühler A, Klocke M, Sczyrba A, Schlüter A. The Role of Petrimonas mucosa ING2-E5A T in Mesophilic Biogas Reactor Systems as Deduced from Multiomics Analyses. Microorganisms 2020; 8:E2024. [PMID: 33348776 PMCID: PMC7768429 DOI: 10.3390/microorganisms8122024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Members of the genera Proteiniphilum and Petrimonas were speculated to represent indicators reflecting process instability within anaerobic digestion (AD) microbiomes. Therefore, Petrimonas mucosa ING2-E5AT was isolated from a biogas reactor sample and sequenced on the PacBio RSII and Illumina MiSeq sequencers. Phylogenetic classification positioned the strain ING2-E5AT in close proximity to Fermentimonas and Proteiniphilum species (family Dysgonomonadaceae). ING2-E5AT encodes a number of genes for glycosyl-hydrolyses (GH) which are organized in Polysaccharide Utilization Loci (PUL) comprising tandem susCD-like genes for a TonB-dependent outer-membrane transporter and a cell surface glycan-binding protein. Different GHs encoded in PUL are involved in pectin degradation, reflecting a pronounced specialization of the ING2-E5AT PUL systems regarding the decomposition of this polysaccharide. Genes encoding enzymes participating in amino acids fermentation were also identified. Fragment recruitments with the ING2-E5AT genome as a template and publicly available metagenomes of AD microbiomes revealed that Petrimonas species are present in 146 out of 257 datasets supporting their importance in AD microbiomes. Metatranscriptome analyses of AD microbiomes uncovered active sugar and amino acid fermentation pathways for Petrimonas species. Likewise, screening of metaproteome datasets demonstrated expression of the Petrimonas PUL-specific component SusC providing further evidence that PUL play a central role for the lifestyle of Petrimonas species.
Collapse
Affiliation(s)
- Irena Maus
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (I.M.); (D.W.); (J.H.); (A.P.)
| | - Tom Tubbesing
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (T.T.); (L.H.); (A.S.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (I.M.); (D.W.); (J.H.); (A.P.)
| | - Robert Heyer
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätspl. 2, 39106 Magdeburg, Germany; (R.H.); (D.B.)
- Database and Software Engineering Group, Department of Computer Science, Institute for Technical and Business Information Systems, Otto von Guericke University Magdeburg, Universitätspl. 2, 39106 Magdeburg, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (I.M.); (D.W.); (J.H.); (A.P.)
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Geizecler Tomazetto
- Biological and Chemical Engineering Section (BCE), Department of Engineering, Aarhus University, 8000 Aarhus, Denmark;
| | - Liren Huang
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (T.T.); (L.H.); (A.S.)
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (B.B.); (C.S.)
| | - Cathrin Spröer
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (B.B.); (C.S.)
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätspl. 2, 39106 Magdeburg, Germany; (R.H.); (D.B.)
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
- Microbiology, Anhalt University of Applied Sciences, Bernburger Straße 55, 06354 Köthen, Germany
| | - Vladimir Zverlov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany;
- Institute of Molecular Genetics, National Research Centre «Kurchatov Institute», Kurchatov Sq. 2, 123128 Moscow, Russia
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (I.M.); (D.W.); (J.H.); (A.P.)
| | - Michael Klocke
- Institute of Agricultural and Urban Ecological Projects Affiliated to Berlin Humboldt University (IASP), Philippstraße 13, 10115 Berlin, Germany;
| | - Alexander Sczyrba
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (T.T.); (L.H.); (A.S.)
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (I.M.); (D.W.); (J.H.); (A.P.)
| |
Collapse
|
15
|
Effect of a Profound Feedstock Change on the Structure and Performance of Biogas Microbiomes. Microorganisms 2020; 8:microorganisms8020169. [PMID: 31991721 PMCID: PMC7074709 DOI: 10.3390/microorganisms8020169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
In this study the response of biogas-producing microbiomes to a profound feedstock change was investigated. The microbiomes were adapted to the digestion of either 100% sugar beet, maize silage, or of the silages with elevated amounts of total ammonium nitrogen (TAN) by adding ammonium carbonate or animal manure. The feedstock exchange resulted in a short-range decrease or increase in the biogas yields according to the level of chemical feedstock complexity. Fifteen taxa were found in all reactors and can be considered as generalists. Thirteen taxa were detected in the reactors operated with low TAN and six in the reactors with high TAN concentration. Taxa assigned to the phylum Bacteroidetes and to the order Spirochaetales increased with the exchange to sugar beet silage, indicating an affinity to easily degradable compounds. The recorded TAN-sensitive taxa (phylum Cloacimonetes) showed no specific affinity to maize or sugar beet silage. The archaeal community remained unchanged. The reported findings showed a smooth adaptation of the microbial communities, without a profound negative impact on the overall biogas production indicating that the two feedstocks, sugar beet and maize silage, potentially do not contain chemical compounds that are difficult to handle during anaerobic digestion.
Collapse
|
16
|
Owusu-Agyeman I, Eyice Ö, Cetecioglu Z, Plaza E. The study of structure of anaerobic granules and methane producing pathways of pilot-scale UASB reactors treating municipal wastewater under sub-mesophilic conditions. BIORESOURCE TECHNOLOGY 2019; 290:121733. [PMID: 31301569 DOI: 10.1016/j.biortech.2019.121733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
This study was carried out to investigate the relationship between the methane producing pathways and the characteristics of anaerobic granules treating municipal wastewater. For this purpose, two pilot scale upflow anaerobic sludge blanket reactors with different granule size distribution (1-2 mm and 3-4 mm) were investigated at operating temperatures of 20 °C and 28 °C for 239 days. There was an increased and stable biogas production when temperature was elevated to 28 °C likely due to reduction in methane solubility. Larger granules had multi-layered internal microstructures with higher acetoclastic methanogenic activities (250-437 mL CH4 g-1 VS d-1) than smaller granules (150-260 mL CH4 g-1 VS d-1). The relative abundance of acetoclastic methanogens of larger granules was higher, confirming acetoclastic methane producing pathway was more prominent. However, there was no significant difference in the performance of the two reactors because they were operating below their capacities in terms of organic loading rate to volatile solids ratio.
Collapse
Affiliation(s)
- Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Özge Eyice
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
17
|
Passoth V, Sandgren M. Biofuel production from straw hydrolysates: current achievements and perspectives. Appl Microbiol Biotechnol 2019; 103:5105-5116. [PMID: 31081521 PMCID: PMC6570699 DOI: 10.1007/s00253-019-09863-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022]
Abstract
Straw is an agricultural residue of the production of e.g. cereals, rapeseed or sunflowers. It includes dried stalks, leaves, and empty ears and corncobs, which are separated from the grains during harvest. Straw is a promising lignocellulosic feedstock with a beneficial greenhouse gas balance for the production of biofuels and chemicals. Like all lignocellulosic materials, straw is recalcitrant and requires thermochemical and enzymatic pretreatment to enable access to the three major biopolymers of straw-the polysaccharides cellulose and hemicellulose and the polyaromatic compound lignin. Straw is used for commercial ethanol and biogas production. Considerable research has also been conducted to produce biobutanol, biodiesel and biochemicals from this raw material, but more research is required to establish them on a commercial scale. The major hindrance for launching industrial biofuel and chemicals' production from straw is the high cost necessitated by pretreatment of the material. Improvements of microbial strains, production and extraction technologies, as well as co-production of high-value compounds represent ways of establishing straw as feedstock for the production of biofuels, chemicals and food.
Collapse
Affiliation(s)
- Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-75007, Uppsala, Sweden.
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-75007, Uppsala, Sweden
| |
Collapse
|
18
|
Abstract
After nearly two decades of subsidized and energy crop-oriented development, agricultural biogas production in Germany is standing at a crossroads. Fundamental challenges need to be met. In this article we sketch a vision of a future agricultural biogas plant that is an integral part of the circular bioeconomy and works mainly on the base of residues. It is flexible with regard to feedstocks, digester operation, microbial communities and biogas output. It is modular in design and its operation is knowledge-based, information-driven and largely automated. It will be competitive with fossil energies and other renewable energies, profitable for farmers and plant operators and favorable for the national economy. In this paper we discuss the required contribution of research to achieve these aims.
Collapse
|
19
|
Šafarič L, Shakeri Yekta S, Liu T, Svensson BH, Schnürer A, Bastviken D, Björn A. Dynamics of a Perturbed Microbial Community during Thermophilic Anaerobic Digestion of Chemically Defined Soluble Organic Compounds. Microorganisms 2018; 6:microorganisms6040105. [PMID: 30314333 PMCID: PMC6313639 DOI: 10.3390/microorganisms6040105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 11/22/2022] Open
Abstract
Knowledge of microbial community dynamics in relation to process perturbations is fundamental to understand and deal with the instability of anaerobic digestion (AD) processes. This study aims to investigate the microbial community structure and function of a thermophilic AD process, fed with a chemically defined substrate, and its association with process performance stability. Next generation amplicon sequencing of 16S ribosomal RNA (rRNA) genes revealed that variations in relative abundances of the predominant bacterial species, Defluviitoga tunisiensis and Anaerobaculum hydrogeniformans, were not linked to the process performance stability, while dynamics of bacterial genera of low abundance, Coprothermobacter and Defluviitoga (other than D. tunisiensis), were associated with microbial community function and process stability. A decrease in the diversity of the archaeal community was observed in conjunction with process recovery and stable performance, implying that the high abundance of specific archaeal group(s) contributed to the stable AD. Dominance of hydrogenotrophic Methanoculleus particularly corresponded to an enhanced microbial acetate and propionate turnover capacity, whereas the prevalence of hydrogenotrophic Methanothermobacter and acetoclastic Methanosaeta was associated with instable AD. Acetate oxidation via syntrophic interactions between Coprothermobacter and Methanoculleus was potentially the main methane-formation pathway during the stable process. We observed that supplementation of Se and W to the medium improved the propionate turnover by the thermophilic consortium. The outcomes of our study provided insights into the community dynamics and trace element requirements in relation to the process performance stability of thermophilic AD.
Collapse
Affiliation(s)
- Luka Šafarič
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
- Biogas Research Center, Linköping University, 581 83 Linköping, Sweden.
| | - Sepehr Shakeri Yekta
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
- Biogas Research Center, Linköping University, 581 83 Linköping, Sweden.
| | - Tong Liu
- Department of Molecular Science, Swedish University of Agricultural Science, Uppsala BioCenter, 75007 Uppsala, Sweden.
| | - Bo H Svensson
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
- Biogas Research Center, Linköping University, 581 83 Linköping, Sweden.
| | - Anna Schnürer
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
- Biogas Research Center, Linköping University, 581 83 Linköping, Sweden.
- Department of Molecular Science, Swedish University of Agricultural Science, Uppsala BioCenter, 75007 Uppsala, Sweden.
| | - David Bastviken
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
| | - Annika Björn
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
- Biogas Research Center, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
20
|
Substrate-Induced Response in Biogas Process Performance and Microbial Community Relates Back to Inoculum Source. Microorganisms 2018; 6:microorganisms6030080. [PMID: 30081593 PMCID: PMC6163493 DOI: 10.3390/microorganisms6030080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
This study investigated whether biogas reactor performance, including microbial community development, in response to a change in substrate composition is influenced by initial inoculum source. For the study, reactors previously operated with the same grass–manure mixture for more than 120 days and started with two different inocula were used. These reactors initially showed great differences depending on inoculum source, but eventually showed similar performance and overall microbial community structure. At the start of the present experiment, the substrate was complemented with milled feed wheat, added all at once or divided into two portions. The starting hypothesis was that process performance depends on initial inoculum source and microbial diversity, and thus that reactor performance is influenced by the feeding regime. In response to the substrate change, all reactors showed increases and decreases in volumetric and specific methane production, respectively. However, specific methane yield and development of the microbial community showed differences related to the initial inoculum source, confirming the hypothesis. However, the different feeding regimes had only minor effects on process performance and overall community structure, but still induced differences in the cellulose-degrading community and in cellulose degradation.
Collapse
|
21
|
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 2018; 102:5045-5063. [PMID: 29713790 PMCID: PMC5959977 DOI: 10.1007/s00253-018-8976-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism's genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets.
Collapse
Affiliation(s)
- Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Sandra Off
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Paul Scherer
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Michael Klocke
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
22
|
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 2018. [PMID: 29713790 DOI: 10.1007/s00253-018-8976-7)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism's genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets.
Collapse
Affiliation(s)
- Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Sandra Off
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Paul Scherer
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Michael Klocke
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
23
|
Abstract
Biogas production represents a fascinating process for the recovery of nutrients and renewable energy from various organic waste streams. The process is of interest for the production of value-added chemicals by mixed cultures and can also be applied in combined bioenergy production systems. Strategies and opportunities for optimization of biogas quality and quantity are presented.
Collapse
Affiliation(s)
- Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| |
Collapse
|
24
|
Anaerobes in Industrial- and Environmental Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:1-33. [DOI: 10.1007/10_2016_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|