1
|
Novel Insights into the Mechanism Underlying High Polysaccharide Yield in Submerged Culture of Ganoderma lucidum Revealed by Transcriptome and Proteome Analyses. Microorganisms 2023; 11:microorganisms11030772. [PMID: 36985345 PMCID: PMC10055881 DOI: 10.3390/microorganisms11030772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Polysaccharides are crucial dietary supplements and traditional pharmacological components of Ganoderma lucidum; however, the mechanisms responsible for high polysaccharide yields in G. lucidum remain unclear. Therefore, we investigated the mechanisms underlying the high yield of polysaccharides in submerged cultures of G. lucidum using transcriptomic and proteomic analyses. Several glycoside hydrolase (GH) genes and proteins, which are associated with the degradation of fungal cell walls, were significantly upregulated under high polysaccharide yield conditions. They mainly belonged to the GH3, GH5, GH16, GH17, GH18, GH55, GH79, GH128, GH152, and GH154 families. Additionally, the results suggested that the cell wall polysaccharide could be degraded by GHs, which is beneficial for extracting more intracellular polysaccharides from cultured mycelia. Furthermore, some of the degraded polysaccharides were released into the culture broth, which is beneficial for obtaining more extracellular polysaccharides. Our findings provide new insights into the mechanisms underlying the roles that GH family genes play to regulate high polysaccharide yields in G. lucidum.
Collapse
|
2
|
UDP-Glycosyltransferases in Edible Fungi: Function, Structure, and Catalytic Mechanism. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
UDP-glycosyltransferases (UGTs) are the most studied glycosyltransferases, and belong to large GT1 family performing the key roles in antibiotic synthesis, the development of bacterial glycosyltransferase inhibitors, and in animal inflammation. They transfer the glycosyl groups from nucleotide UDP-sugars (UDP-glucose, UDP-galactose, UDP-xylose, and UDP-rhamnose) to the acceptors including saccharides, proteins, lipids, and secondary metabolites. The present review summarized the recent of UDP-glycosyltransferases, including their structures, functions, and catalytic mechanism, especially in edible fungi. The future perspectives and new challenges were also summarized to understand of their structure–function relationships in the future. The outputs in this field could provide a reference to recognize function, structure, and catalytic mechanism of UDP-glycosyltransferases for understanding the biosynthesis pathways of secondary metabolites, such as hydrocarbons, monoterpenes, sesquiterpene, and polysaccharides in edible fungi.
Collapse
|
3
|
Hassan BA, Milicaj J, Ramirez-Mondragon CA, Sham YY, Taylor EA. Ligand-Induced Conformational and Dynamical Changes in a GT-B Glycosyltransferase: Molecular Dynamics Simulations of Heptosyltransferase I Complexes. J Chem Inf Model 2022; 62:324-339. [PMID: 34967618 PMCID: PMC8864558 DOI: 10.1021/acs.jcim.1c00868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the dynamical motions and ligand recognition motifs of heptosyltransferase I (HepI) can be critical to discerning the behavior of other glycosyltransferase (GT) enzymes. Prior studies in our lab have demonstrated that GTs in the GT-B structural class, which are characterized by their connection of two Rossman-like domains by a linker region, have conserved structural fold and dynamical motions, despite low sequence homology, therefore making discoveries found in HepI transferable to other GT-B enzymes. Through molecular dynamics simulations and ligand binding free energy analysis of HepI in the apo and bound complexes (for all kinetically relevant combinations of the native substrates/products), we have determined the energetically favored enzymatic pathway for ligand binding and release. Our principal component, dynamic cross correlation, and network analyses of the simulations have revealed correlated motions involving residues within the N-terminal domain communicating with C-terminal domain residues via both proximal amino acid residues and also functional groups of the bound substrates. Analyses of the structural changes, energetics of substrate/product binding, and changes in pKa have elucidated a variety of inter and intradomain interactions that are critical for enzyme catalysis. These data corroborate our experimental observations of protein conformational changes observed in both presteady state kinetic and circular dichroism analyses of HepI. These simulations provided invaluable structural insights into the regions involved in HepI conformational rearrangement upon ligand binding. Understanding the specific interactions governing conformational changes is likely to enhance our efforts to develop novel dynamics disrupting inhibitors against GT-B structural enzymes in the future.
Collapse
Affiliation(s)
- Bakar A. Hassan
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Jozafina Milicaj
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Carlos Andres Ramirez-Mondragon
- Department of Integrative Biology and Physiology, Medical School and Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuk Yin Sham
- Department of Integrative Biology and Physiology, Medical School and Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erika A. Taylor
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
4
|
Bakli M, Karim L, Mokhtari-Soulimane N, Merzouk H, Vincent F. Biochemical characterization of a glycosyltransferase Gtf3 from Mycobacterium smegmatis: a case study of improved protein solubilization. 3 Biotech 2020; 10:436. [PMID: 32999813 DOI: 10.1007/s13205-020-02431-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Glycosyltransferases (GTs) are widely present in several organisms. These enzymes specifically transfer sugar moieties to a range of substrates. The processes of bacterial glycosylation of the cell wall and their relations with host-pathogen interactions have been studied extensively, yet the majority of mycobacterial GTs involved in the cell wall synthesis remain poorly characterized. Glycopeptidolipids (GPLs) are major class of glycolipids present on the cell wall of various mycobacterial species. They play an important role in drug resistance and host-pathogen interaction virulence. Gtf3 enzyme performs a key step in the biosynthesis of triglycosylated GPLs. Here, we describe a general procedure to achieve expression, purification, and crystallization of recombinant protein Gtf3 from Mycobacterium smegmatis using an E. coli expression system. We reported also a combined bioinformatics and biochemical methods to predict aggregation propensity and improve protein solubilization of recombinant Gtf3. NVoy, a carbohydrate-based polymer reagent, was added to prevent protein aggregation by binding to hydrophobic protein surfaces of Gtf3. Using intrinsic tryptophan fluorescence quenching experiments, we also demonstrated that Gtf3-NVoy enzyme interacted with TDP and UDP nucleotide ligands. This case report proposes useful tools for the study of other glycosyltransferases which are rather difficult to characterize and crystallize.
Collapse
Affiliation(s)
- Mahfoud Bakli
- Department of Science of Nature and Life, Institute of Science, University Center Belhadj Bouchaib of Ain Temouchent, Po Box 284, 46000 Ain Temouchent, Algeria
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, University Abou-Bekr Belkaid of Tlemcen, Tlemcen, Algeria
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Loukmane Karim
- University of Strasbourg, CNRS, Architecture and Reactivity of RNA, UPR9002 Strasbourg, France
| | - Nassima Mokhtari-Soulimane
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, University Abou-Bekr Belkaid of Tlemcen, Tlemcen, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, University Abou-Bekr Belkaid of Tlemcen, Tlemcen, Algeria
| | - Florence Vincent
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
5
|
Krishnamurthy P, Tsukamoto C, Ishimoto M. Reconstruction of the Evolutionary Histories of UGT Gene Superfamily in Legumes Clarifies the Functional Divergence of Duplicates in Specialized Metabolism. Int J Mol Sci 2020; 21:E1855. [PMID: 32182686 PMCID: PMC7084467 DOI: 10.3390/ijms21051855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Plant uridine 5'-diphosphate glycosyltransferases (UGTs) influence the physiochemical properties of several classes of specialized metabolites including triterpenoids via glycosylation. To uncover the evolutionary past of UGTs of soyasaponins (a group of beneficial triterpene glycosides widespread among Leguminosae), the UGT gene superfamily in Medicago truncatula, Glycine max, Phaseolus vulgaris, Lotus japonicus, and Trifolium pratense genomes were systematically mined. A total of 834 nonredundant UGTs were identified and categorized into 98 putative orthologous loci (POLs) using tree-based and graph-based methods. Major key findings in this study were of, (i) 17 POLs represent potential catalysts for triterpene glycosylation in legumes, (ii) UGTs responsible for the addition of second (UGT73P2: galactosyltransferase and UGT73P10: arabinosyltransferase) and third (UGT91H4: rhamnosyltransferase and UGT91H9: glucosyltransferase) sugars of the C-3 sugar chain of soyasaponins were resulted from duplication events occurred before and after the hologalegina-millettoid split, respectively, and followed neofunctionalization in species-/ lineage-specific manner, and (iii) UGTs responsible for the C-22-O glycosylation of group A (arabinosyltransferase) and DDMP saponins (DDMPtransferase) and the second sugar of C-22 sugar chain of group A saponins (UGT73F2: glucosyltransferase) may all share a common ancestor. Our findings showed a way to trace the evolutionary history of UGTs involved in specialized metabolism.
Collapse
Affiliation(s)
| | - Chigen Tsukamoto
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Masao Ishimoto
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba 305-8518, Japan
| |
Collapse
|
6
|
Gagnon SML, Legg MSG, Sindhuwinata N, Letts JA, Johal AR, Schuman B, Borisova SN, Palcic MM, Peters T, Evans SV. High-resolution crystal structures and STD NMR mapping of human ABO(H) blood group glycosyltransferases in complex with trisaccharide reaction products suggest a molecular basis for product release. Glycobiology 2018; 27:966-977. [PMID: 28575295 DOI: 10.1093/glycob/cwx053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/31/2017] [Indexed: 11/12/2022] Open
Abstract
The human ABO(H) blood group A- and B-synthesizing glycosyltransferases GTA and GTB have been structurally characterized to high resolution in complex with their respective trisaccharide antigen products. These findings are particularly timely and relevant given the dearth of glycosyltransferase structures collected in complex with their saccharide reaction products. GTA and GTB utilize the same acceptor substrates, oligosaccharides terminating with α-l-Fucp-(1→2)-β-d-Galp-OR (where R is a glycolipid or glycoprotein), but use distinct UDP donor sugars, UDP-N-acetylgalactosamine and UDP-galactose, to generate the blood group A (α-l-Fucp-(1→2)[α-d-GalNAcp-(1→3)]-β-d-Galp-OR) and blood group B (α-l-Fucp-(1→2)[α-d-Galp-(1→3)]-β-d-Galp-OR) determinant structures, respectively. Structures of GTA and GTB in complex with their respective trisaccharide products reveal a conflict between the transferred sugar monosaccharide and the β-phosphate of the UDP donor. Mapping of the binding epitopes by saturation transfer difference NMR measurements yielded data consistent with the X-ray structural results. Taken together these data suggest a mechanism of product release where monosaccharide transfer to the H-antigen acceptor induces active site disorder and ejection of the UDP leaving group prior to trisaccharide egress.
Collapse
Affiliation(s)
- Susannah M L Gagnon
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | - Max S G Legg
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | - Nora Sindhuwinata
- Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - James A Letts
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | - Asha R Johal
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | - Brock Schuman
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | - Svetlana N Borisova
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | - Monica M Palcic
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6.,Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Thomas Peters
- Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Stephen V Evans
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| |
Collapse
|
7
|
A glycosyltransferase gene responsible for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 2017; 95:539-549. [DOI: 10.1016/j.ijbiomac.2016.11.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/18/2016] [Accepted: 11/20/2016] [Indexed: 11/22/2022]
|
8
|
Tam HK, Härle J, Gerhardt S, Rohr J, Wang G, Thorson JS, Bigot A, Lutterbeck M, Seiche W, Breit B, Bechthold A, Einsle O. Structural characterization of O- and C-glycosylating variants of the landomycin glycosyltransferase LanGT2. Angew Chem Int Ed Engl 2015; 54:2811-5. [PMID: 25581707 PMCID: PMC4376353 DOI: 10.1002/anie.201409792] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/15/2022]
Abstract
The structures of the O-glycosyltransferase LanGT2 and the engineered, C-C bond-forming variant LanGT2S8Ac show how the replacement of a single loop can change the functionality of the enzyme. Crystal structures of the enzymes in complex with a nonhydrolyzable nucleotide-sugar analogue revealed that there is a conformational transition to create the binding sites for the aglycon substrate. This induced-fit transition was explored by molecular docking experiments with various aglycon substrates.
Collapse
Affiliation(s)
- Heng Keat Tam
- Institut für Biochemie, Albert-Ludwigs-Universität
Freiburg Albertstrasse 21, 79104 Freiburg (Germany)
| | - Johannes Härle
- Institut für Pharmazeutische Wissenschaften
Albert-Ludwigs-Universität Freiburg, 79104 Freiburg (Germany)
| | - Stefan Gerhardt
- Institut für Biochemie, Albert-Ludwigs-Universität
Freiburg Albertstrasse 21, 79104 Freiburg (Germany)
| | - Jürgen Rohr
- Center for Pharmaceutical Research and Innovation University of
Kentucky College of Pharmacy, Lexington, KY (USA)
| | - Guojun Wang
- Center for Pharmaceutical Research and Innovation University of
Kentucky College of Pharmacy, Lexington, KY (USA)
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation University of
Kentucky College of Pharmacy, Lexington, KY (USA)
| | - Aurélien Bigot
- Institut für Organische Chemie,
Albert-Ludwigs-Universität Freiburg Albertstrasse 21, 79104 Freiburg
(Germany)
| | - Monika Lutterbeck
- Institut für Organische Chemie,
Albert-Ludwigs-Universität Freiburg Albertstrasse 21, 79104 Freiburg
(Germany)
| | - Wolfgang Seiche
- Institut für Organische Chemie,
Albert-Ludwigs-Universität Freiburg Albertstrasse 21, 79104 Freiburg
(Germany)
| | - Bernhard Breit
- Institut für Organische Chemie,
Albert-Ludwigs-Universität Freiburg Albertstrasse 21, 79104 Freiburg
(Germany)
| | - Andreas Bechthold
- Institut für Pharmazeutische Wissenschaften
Albert-Ludwigs-Universität Freiburg, 79104 Freiburg (Germany)
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität
Freiburg Albertstrasse 21, 79104 Freiburg (Germany). BIOSS Centre for
Biological Signalling Studies Schänzlestrasse 18, 79104 Freiburg
(Germany)
| |
Collapse
|
9
|
Tam HK, Härle J, Gerhardt S, Rohr J, Wang G, Thorson JS, Bigot A, Lutterbeck M, Seiche W, Breit B, Bechthold A, Einsle O. Strukturelle Charakterisierung von O- und C-glycosylierenden Varianten der Landomycin-Glycosyltransferase LanGT2. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Jørgensen R, Batot G, Mannerstedt K, Imberty A, Breton C, Hindsgaul O, Royant A, Palcic MM. Structures of a human blood group glycosyltransferase in complex with a photo-activatable UDP-Gal derivative reveal two different binding conformations. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1015-21. [PMID: 25084373 DOI: 10.1107/s2053230x1401259x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/30/2014] [Indexed: 11/10/2022]
Abstract
Glycosyltransferases (GTs) catalyse the sequential addition of monosaccharides to specific acceptor molecules and play major roles in key biological processes. GTs are classified into two main families depending on the inverted or retained stereochemistry of the glycosidic bond formed during the reaction. While the mechanism of inverting enzymes is well characterized, the precise nature of retaining GTs is still a matter of much debate. In an attempt to clarify this issue, studies were initiated to identify reaction-intermediate states by using a crystallographic approach based on caged substrates. In this paper, two distinct structures of AA(Gly)B, a dual-specificity blood group synthase, are described in complex with a UDP-galactose derivative in which the O6'' atom is protected by a 2-nitrobenzyl group. The distinct conformations of the caged substrate in both structures of the enzyme illustrate the highly dynamic nature of its active site. An attempt was also made to photolyse the caged compound at low temperature, which unfortunately is not possible without damaging the uracil group as well. These results pave the way for kinetic crystallography experiments aiming at trapping and characterizing reaction-intermediate states in the mechanism of enzymatic glycosyl transfer.
Collapse
Affiliation(s)
- René Jørgensen
- Department of Microbiology and Infection Control, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen S, Denmark
| | - Gaëlle Batot
- Structural Biology Group, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble, France
| | - Karin Mannerstedt
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-1799 Copenhagen V, Denmark
| | - Anne Imberty
- CERMAV-CNRS-Université Grenoble Alpes, BP 53, F-38041 Grenoble CEDEX 9, France
| | - Christelle Breton
- CERMAV-CNRS-Université Grenoble Alpes, BP 53, F-38041 Grenoble CEDEX 9, France
| | - Ole Hindsgaul
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-1799 Copenhagen V, Denmark
| | - Antoine Royant
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble CEDEX 9, France
| | - Monica M Palcic
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-1799 Copenhagen V, Denmark
| |
Collapse
|
11
|
Molecular identification of potential Th1/Th2 responses-modulating bacterial genes using suppression subtractive DNA hybridization. Immunobiology 2014; 219:208-17. [DOI: 10.1016/j.imbio.2013.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 12/27/2022]
|
12
|
Tedaldi L, Wagner GK. Beyond substrate analogues: new inhibitor chemotypes for glycosyltransferases. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00086b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
New inhibitor chemotypes for glycosyltransferases, which are not structurally derived from either donor or acceptor substrate, are being reviewed.
Collapse
Affiliation(s)
- Lauren Tedaldi
- Institute of Pharmaceutical Science
- School of Biomedical Sciences
- King's College London
- London
- UK
| | - Gerd K. Wagner
- Institute of Pharmaceutical Science
- School of Biomedical Sciences
- King's College London
- London
- UK
| |
Collapse
|
13
|
Tedaldi L, Evitt A, Göös N, Jiang J, Wagner GK. A practical glycosyltransferase assay for the identification of new inhibitor chemotypes. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00077c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An operationally simple, colorimetric assay protocol for the identification and evaluation of galactosyltransferase inhibitors is described.
Collapse
Affiliation(s)
- Lauren Tedaldi
- Institute of Pharmaceutical Science
- School of Biomedical Sciences
| | - Andrew Evitt
- Institute of Pharmaceutical Science
- School of Biomedical Sciences
| | - Niina Göös
- Institute of Pharmaceutical Science
- School of Biomedical Sciences
| | - Jingqian Jiang
- Institute of Pharmaceutical Science
- School of Biomedical Sciences
| | - Gerd K. Wagner
- Institute of Pharmaceutical Science
- School of Biomedical Sciences
- Department of Chemistry
- School of Natural & Mathematical Sciences
- King's College London
| |
Collapse
|
14
|
Affiliation(s)
- Ryan M Schmaltz
- The Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
15
|
Gantt RW, Peltier-Pain P, Thorson JS. Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. Nat Prod Rep 2011; 28:1811-53. [DOI: 10.1039/c1np00045d] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Pesnot T, Palcic MM, Wagner GK. A novel fluorescent probe for retaining galactosyltransferases. Chembiochem 2010; 11:1392-8. [PMID: 20533489 DOI: 10.1002/cbic.201000013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosyltransferases (GTs) are a large class of carbohydrate-active enzymes that are involved, in both pro- and eukaryotic organisms, in numerous important biological processes, from cellular adhesion to carcinogenesis. GTs have enormous potential as molecular targets for chemical biology and drug discovery. For the full realisation of this potential, operationally simple and generally applicable GT bioassays, especially for inhibitor screening, are indispensable tools. In order to facilitate the development of GT high-throughput screening assays for the identification of GT inhibitors, we have developed novel, fluorescent derivatives of UDP-galactose (UDP-Gal) that are recognised as donor analogues by several different retaining galactosyltransferases (GalTs). We demonstrate for one of these derivatives that fluorescence emission is quenched upon specific binding to individual GalTs, and that this effect can be used as the read-out in ligand-displacement experiments. The novel fluorophore acts as an excellent sensor for several different enzymes and is suitable for the development of a new type of GalT bioassay, whose modular nature and operational simplicity will significantly facilitate inhibitor screening. Importantly, the structural differences between the natural donor UDP-Gal and the new fluorescent derivatives are minimal, and the general assay principle described herein may therefore also be applicable to other GalTs and/or proteins that use nucleotides or nucleotide conjugates as their cofactor.
Collapse
Affiliation(s)
- Thomas Pesnot
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ UK
| | | | | |
Collapse
|
17
|
Sasaki E, Ogasawara Y, Liu HW. A biosynthetic pathway for BE-7585A, a 2-thiosugar-containing angucycline-type natural product. J Am Chem Soc 2010; 132:7405-17. [PMID: 20443562 DOI: 10.1021/ja1014037] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur is an essential element found ubiquitously in living systems. However, there exist only a few sulfur-containing sugars in nature and their biosyntheses have not been studied. BE-7585A produced by Amycolatopsis orientalis subsp. vinearia BA-07585 has a 2-thiosugar and is a member of the angucycline class of compounds. We report herein the results of our initial efforts to study the biosynthesis of BE-7585A. Spectroscopic analyses verified the structure of BE-7585A, which is closely related to rhodonocardin A. Feeding experiments using (13)C-labeled acetate were carried out to confirm that the angucycline core is indeed polyketide-derived. The results indicated an unusual manner of angular tetracyclic ring construction, perhaps via a Baeyer-Villiger type rearrangement. Subsequent cloning and sequencing led to the identification of the bex gene cluster spanning approximately 30 kbp. A total of 28 open reading frames, which are likely involved in BE-7585A formation, were identified in the cluster. In view of the presence of a homologue of a thiazole synthase gene (thiG), bexX, in the bex cluster, the mechanism of sulfur incorporation into the 2-thiosugar moiety could resemble that found in thiamin biosynthesis. A glycosyltransferase homologue, BexG2, was heterologously expressed in Escherichia coli. The purified enzyme successfully catalyzed the coupling of 2-thioglucose 6-phosphate and UDP-glucose to produce 2-thiotrehalose 6-phosphate, which is the precursor of the disaccharide unit in BE-7585A. On the basis of these genetic and biochemical experiments, a biosynthetic pathway for BE-7585A can now be proposed. The combined results set the stage for future biochemical studies of 2-thiosugar biosynthesis and BE-7585A assembly.
Collapse
Affiliation(s)
- Eita Sasaki
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
18
|
|
19
|
Niewiadomski S, Beebeejaun Z, Denton H, Smith TK, Morris RJ, Wagner GK. Rationally designed squaryldiamides - a novel class of sugar-nucleotide mimics? Org Biomol Chem 2010; 8:3488-99. [PMID: 20532300 DOI: 10.1039/c004165c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sugar-nucleotides such as GDP-mannose, GDP-fucose and UDP-glucose are important biomolecules with a central role in carbohydrate and glycoconjugate biosynthesis, metabolism and cell signalling. Analogues and mimics of naturally occurring sugar-nucleotides are sought after as chemical tools and inhibitor candidates for sugar-nucleotide-dependent enzymes including glycosyltransferases. Many sugar-nucleotides bind to their target glycosyltransferases via coordination of the diphosphate group to a divalent metal cofactor in the active site. The identification of uncharged, chemically stable surrogates for the diphosphate group, with the ability to coordinate to a divalent metal, is therefore an important design criteria for the development of sugar-nucleotide mimics. Here, we describe the rational design and synthesis of a novel class of sugar-nucleotide mimics based on a squaryldiamide scaffold, an uncharged phosphate isostere. We demonstrate by comprehensive NMR titration experiments that the new sugar-nucleotide mimics coordinate efficiently to Mg(2+), and provide results from biological studies with a therapeutically relevant mannosyltransferase from Trypanosoma brucei. Our findings suggest that squaryldiamides are a promising template for the development of sugar-nucleotide mimics, and illustrate the considerable potential of the squarylamide group as a fragment for inhibitor design.
Collapse
|
20
|
Pesnot T, Jørgensen R, Palcic MM, Wagner GK. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Nat Chem Biol 2010; 6:321-3. [PMID: 20364127 PMCID: PMC2883747 DOI: 10.1038/nchembio.343] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/26/2010] [Indexed: 12/24/2022]
Abstract
Glycosyltransferases are carbohydrate-active enzymes with essential roles in numerous important biological processes. We have developed a new donor analog for galactosyltransferases that locks a representative target enzyme in a catalytically inactive conformation, thus almost completely abolishing sugar transfer. Results with other galactosyltransferases suggest that this unique mode of glycosyltransferase inhibition may also be generally applicable to other members of this important enzyme family.
Collapse
Affiliation(s)
- Thomas Pesnot
- School of Pharmacy, University of East Anglia, Norwich, UK
| | | | | | | |
Collapse
|
21
|
King JD, Kocíncová D, Westman EL, Lam JS. Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 2009; 15:261-312. [PMID: 19710102 DOI: 10.1177/1753425909106436] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa causes serious nosocomial infections, and an important virulence factor produced by this organism is lipopolysaccharide (LPS). This review summarizes knowledge about biosynthesis of all three structural domains of LPS - lipid A, core oligosaccharide, and O polysaccharides. In addition, based on similarities with other bacterial species, this review proposes new hypothetical pathways for unstudied steps in the biosynthesis of P. aeruginosa LPS. Lipid A biosynthesis is discussed in relation to Escherichia coli and Salmonella, and the biosyntheses of core sugar precursors and core oligosaccharide are summarised. Pseudomonas aeruginosa attaches a Common Polysaccharide Antigen and O-Specific Antigen polysaccharides to lipid A-core. Both forms of O polysaccharide are discussed with respect to their independent synthesis mechanisms. Recent advances in understanding O-polysaccharide biosynthesis since the last major review on this subject, published nearly a decade ago, are highlighted. Since P. aeruginosa O polysaccharides contain unusual sugars, sugar-nucleotide biosynthesis pathways are reviewed in detail. Knowledge derived from detailed studies in the O5, O6 and O11 serotypes is applied to predict biosynthesis pathways of sugars in poorly-studied serotypes, especially O1, O4, and O13/O14. Although further work is required, a full understanding of LPS biosynthesis in P. aeruginosa is almost within reach.
Collapse
Affiliation(s)
- Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Shoemaker GK, Soya N, Palcic MM, Klassen JS. Temperature-dependent cooperativity in donor-acceptor substrate binding to the human blood group glycosyltransferases. Glycobiology 2008; 18:587-92. [PMID: 18509110 DOI: 10.1093/glycob/cwn043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Affinities of the human blood group glycosyltransferases, alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and alpha-(1-->3)-galactosyltransferase (GTB) for their common acceptor substrate alpha-l-Fucp-(1-->2)-beta-d-Galp-O(CH2)(7)CH3 (1), in the absence and presence of bound uridine 5'-diphosphate (UDP) and Mn2+ were determined using temperature-controlled electrospray ionization mass spectrometry. The presence of bound UDP and Mn(2+) in the donor binding site has a marked influence on the thermodynamic parameters for the association of 1 with GTA and GTB. Both the enthalpy and entropy of association (DeltaH(a), DeltaS(a)) decrease significantly. However, the free energy of association (DeltaG(a)) is unchanged at physiological temperature. The differences in the DeltaH(a) and DeltaS(a) values determined in the presence and absence of bound UDP are attributed to structural changes in the glycosyltransferases induced by the simultaneous binding of 1 and UDP.
Collapse
Affiliation(s)
- Glen K Shoemaker
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | | | | | | |
Collapse
|
23
|
Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 2008; 26:436-56. [PMID: 18565714 DOI: 10.1016/j.biotechadv.2008.05.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/14/2008] [Accepted: 05/09/2008] [Indexed: 02/07/2023]
Abstract
Mammalian cell surfaces are all covered with bioactive oligosaccharides which play an important role in molecular recognition events such as immune recognition, cell-cell communication and initiation of microbial pathogenesis. Consequently, bioactive oligosaccharides have been recognized as a medicinally relevant class of biomolecules for which the interest is growing. For the preparation of complex and highly pure oligosaccharides, methods based on the application of glycosyltransferases are currently recognized as being the most effective. The present paper reviews the potential of glycosyltransferases as synthetic tools in oligosaccharide synthesis. Reaction mechanisms and selected characteristics of these enzymes are described in relation to the stereochemistry of the transfer reaction and the requirements of sugar nucleotide donors. For the application of glycosyltransferases, accepted substrate profiles are summarized and the whole-cell approach versus isolated enzyme methodology is compared. Sialyltransferase-catalyzed syntheses of gangliosides and other sialylated oligosaccharides are described in more detail in view of the prominent role of these compounds in biological recognition.
Collapse
|