1
|
Horbatok K, Semchuk I, Horbach O, Khranovska N, Kosach V, Borysko P, Koniev S, Ulrich AS, Afonin S, Komarov IV. In vitro evaluation of the immunogenic potential of gramicidin S and its photocontrolled analogues. RSC Med Chem 2025:d5md00075k. [PMID: 40270993 PMCID: PMC12013366 DOI: 10.1039/d5md00075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Three hallmarks of ICD (immunogenic cell death), release of adenosine triphosphate (ATP), release of high mobility group box 1 protein, and calreticulin exposure on the cell surface, were studied upon treatment of mammalian cells with small cyclic peptides, namely, the natural antibiotic gramicidin S (GS) and two photocontrolled GS analogues (LMB002 and LMB033). The analogues contained a photoisomerizable diarylethene fragment, and they exhibited different bioactivities in their "open" and "closed" photoisomeric forms. The data (obtained from cell cultures and spheroids) were collected in a concentration-dependent manner to assess cytotoxicity. Results showed that treatment with all peptides induced ICD at sub-IC50 and higher concentrations, indicating that GS and its derivatives have promising immunogenic potential. The "open" photoisomers of the photoswitchable GS analogues generated using visible light were as efficient as ICD inducers and the parent GS, while the UV-generated "closed" photoforms induced ICD only at higher concentrations. Herein, the cell specificity and time dependency of the observed effects are presented.
Collapse
Affiliation(s)
- Kateryna Horbatok
- Taras Shevchenko National University of Kyiv Volodymyrska street 60 01601 Kyiv Ukraine
- Enamine Ltd. Winston Churchill street 78 02094 Kyiv Ukraine
| | - Iryna Semchuk
- Nonprofit organization "National Cancer Institute" Yulii Zdanovskoi street 33/43 03022 Kyiv Ukraine
| | - Oleksandr Horbach
- Nonprofit organization "National Cancer Institute" Yulii Zdanovskoi street 33/43 03022 Kyiv Ukraine
| | - Natalia Khranovska
- Nonprofit organization "National Cancer Institute" Yulii Zdanovskoi street 33/43 03022 Kyiv Ukraine
| | | | - Petro Borysko
- Enamine Ltd. Winston Churchill street 78 02094 Kyiv Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry Akademician Kukhar street 1 02094 Kyiv Ukraine
| | - Serhii Koniev
- Karlsruhe Institute of Technology POB 3640 76021 Karlsruhe Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology POB 3640 76021 Karlsruhe Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology POB 3640 76021 Karlsruhe Germany
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv Volodymyrska street 60 01601 Kyiv Ukraine
- Enamine Ltd. Winston Churchill street 78 02094 Kyiv Ukraine
- Lumobiotics Auerstraße 2 76227 Karlsruhe Germany
| |
Collapse
|
2
|
Sani MA, Rajput S, Keizer DW, Separovic F. NMR techniques for investigating antimicrobial peptides in model membranes and bacterial cells. Methods 2024; 224:10-20. [PMID: 38295893 DOI: 10.1016/j.ymeth.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
AMPs are short, mainly cationic membrane-active peptides found in all living organism. They perform diverse roles including signaling and acting as a line of defense against bacterial infections. AMPs have been extensively investigated as templates to facilitate the development of novel antimicrobial therapeutics. Understanding the interplay between these membrane-active peptides and the lipid membranes is considered to be a significant step in elucidating the specific mechanism of action of AMPs against prokaryotic and eukaryotic cells to aid the development of new therapeutics. In this review, we have provided a brief overview of various NMR techniques commonly used for studying AMP structure and AMP-membrane interactions in model membranes and whole cells.
Collapse
Affiliation(s)
- Marc-Antoine Sani
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Sunnia Rajput
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - David W Keizer
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia; School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
3
|
Strandberg E, Wadhwani P, Bürck J, Anders P, Mink C, van den Berg J, Ciriello RAM, Melo MN, Castanho MARB, Bardají E, Ulmschneider JP, Ulrich AS. Temperature-Dependent Re-alignment of the Short Multifunctional Peptide BP100 in Membranes Revealed by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. Chembiochem 2023; 24:e202200602. [PMID: 36454659 DOI: 10.1002/cbic.202200602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/02/2022]
Abstract
BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state 19 F, 15 N and 2 H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected. Upon lowering the temperature towards the lipid phase transition, the helix is found to flip into an upright transmembrane orientation. In thin bilayers, this inserted state was stable at low peptide concentration, but thicker membranes required higher peptide concentrations. In the presence of lysolipids, the inserted state prevailed even at high temperature. Molecular dynamics simulations suggest that BP100 monomer insertion can be stabilized by snorkeling lysine side chains. These results demonstrate that even a very short helix like BP100 can span (and thereby penetrate through) a cellular membrane under suitable conditions.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Patrick Anders
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Christian Mink
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Present address: Syngenta Crop Protection AG, 4333, Münchwilen, Switzerland
| | - Jonas van den Berg
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Raffaele A M Ciriello
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Manuel N Melo
- Instituto de Medicina Molecular Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.,Present address: ITQB Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Eduard Bardají
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Jakob P Ulmschneider
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany.,Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Cell-free synthesis of amyloid fibrils with infectious properties and amenable to sub-milligram magic-angle spinning NMR analysis. Commun Biol 2022; 5:1202. [DOI: 10.1038/s42003-022-04175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractStructural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.
Collapse
|
5
|
Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021; 26:7401. [PMID: 34885985 PMCID: PMC8659048 DOI: 10.3390/molecules26237401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, 1, 34125 Trieste, Italy
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Mauro F. A. Adamo
- Department of Chemistry, Centre for Synthesis and Chemical Biology (CSCB), RCSI, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Michele Saviano
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola, 122, 70126 Bari, Italy;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), c/o Area Science Park, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
6
|
Sanchez CA, Gadais C, Chaume G, Girard S, Chelain E, Brigaud T. Enantiopure 5-CF 3-Proline: Synthesis, Incorporation in Peptides, and Tuning of the Peptide Bond Geometry. Org Lett 2021; 23:382-387. [PMID: 33369434 DOI: 10.1021/acs.orglett.0c03880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The straightforward synthesis of enantiopure 5-(R)-and 5-(S)-trifluoromethylproline is reported. The key steps are a Ruppert-Prakash reagent addition on l-pyroglutamic esters followed by an elimination reaction and a selective reduction. The solution-phase and solid-phase incorporation of this unprotected enantiopure fluorinated amino acid in a short peptide chain was demonstrated. Compared to proline, the CF3 group provides a decrease of the trans to cis amide bond isomerization energy and an increase of the cis conformer population.
Collapse
Affiliation(s)
- Clément A Sanchez
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Charlène Gadais
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Grégory Chaume
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Sylvaine Girard
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Evelyne Chelain
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Thierry Brigaud
- CNRS, BioCIS, CY Cergy Paris Université, 95000 Cergy Pontoise, France.,CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| |
Collapse
|
7
|
Fluorine-19 NMR spectroscopy of fluorinated analogs of tritrpticin highlights a distinct role for Tyr residues in antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183260. [DOI: 10.1016/j.bbamem.2020.183260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
|
8
|
Drouin M, Wadhwani P, Grage SL, Bürck J, Reichert J, Tremblay S, Mayer MS, Diel C, Staub A, Paquin JF, Ulrich AS. Monofluoroalkene-Isostere as a 19 F NMR Label for the Peptide Backbone: Synthesis and Evaluation in Membrane-Bound PGLa and (KIGAKI) 3. Chemistry 2020; 26:1511-1517. [PMID: 31867761 DOI: 10.1002/chem.201905054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Solid-state 19 F NMR is a powerful method to study the interactions of biologically active peptides with membranes. So far, in labelled peptides, the 19 F-reporter group has always been installed on the side chain of an amino acid. Given the fact that monofluoroalkenes are non-hydrolyzable peptide bond mimics, we have synthesized a monofluoroalkene-based dipeptide isostere, Val-Ψ[(Z)-CF=CH]-Gly, and inserted it in the sequence of two well-studied antimicrobial peptides: PGLa and (KIGAKI)3 are representatives of an α-helix and a β-sheet. The conformations and biological activities of these labeled peptides were studied to assess the suitability of monofluoroalkenes for 19 F NMR structure analysis.
Collapse
Affiliation(s)
- Myriam Drouin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Johannes Reichert
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Sébastien Tremblay
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Marie Sabine Mayer
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Christian Diel
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Alexander Staub
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
9
|
Malquin N, Rahgoshay K, Lensen N, Chaume G, Miclet E, Brigaud T. CF 2H as a hydrogen bond donor group for the fine tuning of peptide bond geometry with difluoromethylated pseudoprolines. Chem Commun (Camb) 2019; 55:12487-12490. [PMID: 31566647 DOI: 10.1039/c9cc05771d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CF2H-Pseudoprolines obtained from difluoroacetaldehyde hemiacetal and serine are stable proline surrogates. The consequence of the incorporation of the CF2H group is an important decrease of the trans to cis amide bond isomerization energy and a remarkable stabilisation of the cis conformer by an hydrogen bond.
Collapse
Affiliation(s)
- N Malquin
- Laboratory of Chemical Biology (LCB, EA 4505), Université de Cergy-Pontoise, 5 Mail Gay-Lussac, 95000 Cergy-Pontoise, France.
| | - K Rahgoshay
- Laboratory of Chemical Biology (LCB, EA 4505), Université de Cergy-Pontoise, 5 Mail Gay-Lussac, 95000 Cergy-Pontoise, France.
| | - N Lensen
- Laboratory of Chemical Biology (LCB, EA 4505), Université de Cergy-Pontoise, 5 Mail Gay-Lussac, 95000 Cergy-Pontoise, France.
| | - G Chaume
- Laboratory of Chemical Biology (LCB, EA 4505), Université de Cergy-Pontoise, 5 Mail Gay-Lussac, 95000 Cergy-Pontoise, France.
| | - E Miclet
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 75005 Paris, France
| | - T Brigaud
- Laboratory of Chemical Biology (LCB, EA 4505), Université de Cergy-Pontoise, 5 Mail Gay-Lussac, 95000 Cergy-Pontoise, France.
| |
Collapse
|
10
|
Lu M, Wang M, Sergeyev IV, Quinn CM, Struppe J, Rosay M, Maas W, Gronenborn AM, Polenova T. 19F Dynamic Nuclear Polarization at Fast Magic Angle Spinning for NMR of HIV-1 Capsid Protein Assemblies. J Am Chem Soc 2019; 141:5681-5691. [PMID: 30871317 PMCID: PMC6521953 DOI: 10.1021/jacs.8b09216] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report remarkably high, up to 100-fold, signal enhancements in 19F dynamic nuclear polarization (DNP) magic angle spinning (MAS) spectra at 14.1 T on HIV-1 capsid protein (CA) assemblies. These enhancements correspond to absolute sensitivity ratios of 12-29 and are of similar magnitude to those seen for 1H signals in the same samples. At MAS frequencies above 20 kHz, it was possible to record 2D 19F-13C HETCOR spectra, which contain long-range intra- and intermolecular correlations. Such correlations provide unique distance restraints, inaccessible in conventional experiments without DNP, for protein structure determination. Furthermore, systematic quantification of the DNP enhancements as a function of biradical concentration, MAS frequency, temperature, and microwave power is reported. Our work establishes the power of DNP-enhanced 19F MAS NMR spectroscopy for structural characterization of HIV-1 CA assemblies, and this approach is anticipated to be applicable to a wide range of large biomolecular systems.
Collapse
Affiliation(s)
- Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Ivan V. Sergeyev
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Melanie Rosay
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Werner Maas
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
11
|
Reißer S, Strandberg E, Steinbrecher T, Elstner M, Ulrich AS. Best of Two Worlds? How MD Simulations of Amphiphilic Helical Peptides in Membranes Can Complement Data from Oriented Solid-State NMR. J Chem Theory Comput 2018; 14:6002-6014. [PMID: 30289704 DOI: 10.1021/acs.jctc.8b00283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane alignment of helical amphiphilic peptides in oriented phospholipid bilayers can be obtained as ensemble and time averages from solid state 2H NMR by fitting the quadrupolar splittings to ideal α-helices. At the same time, molecular dynamics (MD) simulations can provide atomistic insight into peptide-membrane systems. Here, we evaluate the potential of MD simulations to complement the experimental NMR data that is available on three exemplary systems: the natural antimicrobial peptide PGLa and the two designer-made peptides MSI-103 and KIA14, whose sequences were derived from PGLa. Each peptide was simulated for 1 μs in a DMPC lipid bilayer. We calculated from the MD simulations the local angles which define the side chain geometry with respect to the peptide helix. The peptide orientation was then calculated (i) directly from the simulation, (ii) from back-calculated MD-derived NMR splittings, and (iii) from experimental 2H NMR splittings. Our findings are that (1) the membrane orientation and secondary structure of the peptides found in the NMR analysis are generally well reproduced by the simulations; (2) the geometry of the side chains with respect to the helix backbone can deviate significantly from the ideal structure depending on the specific residue, but on average all side chains have the same orientation; and (3) for all of our peptides, the azimuthal rotation angle found from the MD-derived splittings is about 15° smaller than the experimental value.
Collapse
Affiliation(s)
- Sabine Reißer
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), KIT , P.O. Box 3640, 76012 Karlsruhe , Germany
| | - Thomas Steinbrecher
- Institute of Physical Chemistry, KIT , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, KIT , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Anne S Ulrich
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany.,Institute of Biological Interfaces (IBG-2), KIT , P.O. Box 3640, 76012 Karlsruhe , Germany
| |
Collapse
|
12
|
Michurin OM, Tolmachova K, Afonin S, Babii O, Grage SL, Ulrich AS, Komarov IV, Radchenko DS. Conformationally Constrained Mono-Fluorinated Arginine as a Cationic Label for Solid-State 19
F NMR Analysis of Membrane-Bound Peptides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Kateryna Tolmachova
- Enamine Ltd.; vul. Chervonotkatska 78 02094 Kyiv Ukraine
- Institute of Bioorganic Chemistry and Petrochemistry; National Academy of Sciences of Ukraine; vul. Murmanska 1 02660 Kyiv Ukraine
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
| | - Oleg Babii
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Stephan L. Grage
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv; Taras Shevchenko National University of Kyiv; vul. Volodymyrska 60 01601 Kyiv Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd.; vul. Chervonotkatska 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Taras Shevchenko National University of Kyiv; vul. Volodymyrska 60 01601 Kyiv Ukraine
| |
Collapse
|
13
|
Lu M, Sarkar S, Wang M, Kraus J, Fritz M, Quinn CM, Bai S, Holmes ST, Dybowski C, Yap GPA, Struppe J, Sergeyev IV, Maas W, Gronenborn AM, Polenova T. 19F Magic Angle Spinning NMR Spectroscopy and Density Functional Theory Calculations of Fluorosubstituted Tryptophans: Integrating Experiment and Theory for Accurate Determination of Chemical Shift Tensors. J Phys Chem B 2018; 122:6148-6155. [PMID: 29756776 DOI: 10.1021/acs.jpcb.8b00377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 19F chemical shift is a sensitive NMR probe of structure and electronic environment in organic and biological molecules. In this report, we examine chemical shift parameters of 4F-, 5F-, 6F-, and 7F-substituted crystalline tryptophan by magic angle spinning (MAS) solid-state NMR spectroscopy and density functional theory. Significant narrowing of the 19F lines was observed under fast MAS conditions, at spinning frequencies above 50 kHz. The parameters characterizing the 19F chemical shift tensor are sensitive to the position of the fluorine in the aromatic ring and, to a lesser extent, the chirality of the molecule. Accurate calculations of 19F magnetic shielding tensors require the PBE0 functional with a 50% admixture of a Hartree-Fock exchange term, as well as taking account of the local crystal symmetry. The methodology developed will be beneficial for 19F-based MAS NMR structural analysis of proteins and protein assemblies.
Collapse
Affiliation(s)
- Manman Lu
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Sucharita Sarkar
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Jodi Kraus
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Matthew Fritz
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Shi Bai
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Sean T Holmes
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Werner Maas
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States.,Department of Structural Biology , University of Pittsburgh School of Medicine , 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
14
|
Matlahov I, van der Wel PCA. Hidden motions and motion-induced invisibility: Dynamics-based spectral editing in solid-state NMR. Methods 2018; 148:123-135. [PMID: 29702226 DOI: 10.1016/j.ymeth.2018.04.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables the structural characterization of a diverse array of biological assemblies that include amyloid fibrils, non-amyloid aggregates, membrane-associated proteins and viral capsids. Such biological samples feature functionally relevant molecular dynamics, which often affect different parts of the sample in different ways. Solid-state NMR experiments' sensitivity to dynamics represents a double-edged sword. On the one hand, it offers a chance to measure dynamics in great detail. On the other hand, certain types of motion lead to signal loss and experimental inefficiencies that at first glance interfere with the application of ssNMR to overly dynamic proteins. Dynamics-based spectral editing (DYSE) ssNMR methods leverage motion-dependent signal losses to simplify spectra and enable the study of sub-structures with particular motional properties.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
15
|
Grage SL, Kara S, Bordessa A, Doan V, Rizzolo F, Putzu M, Kubař T, Papini AM, Chaume G, Brigaud T, Afonin S, Ulrich AS. Orthogonal 19 F-Labeling for Solid-State NMR Spectroscopy Reveals the Conformation and Orientation of Short Peptaibols in Membranes. Chemistry 2018; 24:4328-4335. [PMID: 29323432 DOI: 10.1002/chem.201704307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 11/10/2022]
Abstract
Peptaibols are promising drug candidates in view of their interference with cellular membranes. Knowledge of their lipid interactions and membrane-bound structure is needed to understand their activity and should be, in principle, accessible by solid-state NMR spectroscopy. However, their unusual amino acid composition and noncanonical conformations make it very challenging to find suitable labels for NMR spectroscopy. Particularly in the case of short sequences, new strategies are required to maximize the structural information that can be obtained from each label. Herein, l-3-(trifluoromethyl)bicyclopent[1.1.1]-1-ylglycine, (R)- and (S)-trifluoromethylalanine, and 15 N-backbone labels, each probing a different direction in the molecule, have been combined to elucidate the conformation and membrane alignment of harzianin HK-VI. For the short sequence of 11 amino acids, 12 orientational constraints have been obtained by using 19 F and 15 N NMR spectroscopy. This strategy revealed a β-bend ribbon structure, which becomes realigned in the membrane from a surface-parallel state towards a membrane-spanning state, with increasing positive spontaneous curvature of the lipids.
Collapse
Affiliation(s)
- Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - Sezgin Kara
- Institute of Organic Chemistry (IOC), KIT, Fritz-Haber Weg 6, 76131, Karlsruhe, Germany
| | - Andrea Bordessa
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France
| | - Véronique Doan
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France
| | - Fabio Rizzolo
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France.,French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology (PeptLab), Department of Chemistry "Ugo Schiff", CNR-IBB, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Marina Putzu
- Institute of Physical Chemistry (IPC), Center for Functional Nanostructures (CFN), KIT, 76131, Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry (IPC), Center for Functional Nanostructures (CFN), KIT, 76131, Karlsruhe, Germany
| | - Anna Maria Papini
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France.,French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology (PeptLab), Department of Chemistry "Ugo Schiff", CNR-IBB, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Grégory Chaume
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France
| | - Thierry Brigaud
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), KIT, Fritz-Haber Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
16
|
Alapour S, de la Torre BG, Ramjugernath D, Koorbanally NA, Albericio F. Application of Decafluorobiphenyl (DFBP) Moiety as a Linker in Bioconjugation. Bioconjug Chem 2018; 29:225-233. [DOI: 10.1021/acs.bioconjchem.7b00800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saba Alapour
- School
of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Beatriz G. de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - Deresh Ramjugernath
- School
of Chemical Engineering, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Neil A. Koorbanally
- School
of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Fernando Albericio
- School
of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
17
|
Structure analysis of the membrane-bound dermcidin-derived peptide SSL-25 from human sweat. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2308-2318. [DOI: 10.1016/j.bbamem.2017.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022]
|
18
|
Afonin S, Kubyshkin V, Mykhailiuk PK, Komarov IV, Ulrich AS. Conformational Plasticity of the Cell-Penetrating Peptide SAP As Revealed by Solid-State 19F-NMR and Circular Dichroism Spectroscopies. J Phys Chem B 2017; 121:6479-6491. [PMID: 28608690 DOI: 10.1021/acs.jpcb.7b02852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell-penetrating peptide SAP, which was designed as an amphipathic poly-l-proline helix II (PPII), was suggested to self-assemble into regular fibrils that are relevant for its internalization. Herein we have analyzed the structure of SAP in the membrane-bound state by solid-state 19F-NMR, which revealed other structural states, in addition to the expected surface-aligned PPII. Trifluoromethyl-bicyclopentyl-glycine (CF3-Bpg) and two rigid isomers of trifluoromethyl-4,5-methanoprolines (CF3-MePro) were used as labels for 19F-NMR analysis. The equilibria between different conformations of SAP were studied and were found to be shifted by the substituents at Pro-11. Synchrotron-CD results suggested that substituting Pro-11 by CF3-MePro governed the coil-to-PPII equilibrium in solution and in the presence of a lipid bilayer. Using CD and 19F-NMR, we examined the slow kinetics of the association of SAP with membranes and the dependence of the SAP conformational dynamics on the lipid composition. The peptide did not bind to lipids in the solid ordered phase and aggregated only in the liquid ordered "raft"-like bilayers. Self-association could not be detected in solution or in the presence of liquid disordered membranes. Surface-bound amphipathic SAP in a nonaggregated state was structured as a mixture of nonideal extended conformations reflecting the equilibrium already present in solution, i.e., before binding to the membrane.
Collapse
Affiliation(s)
- Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology , P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Vladimir Kubyshkin
- Institute of Organic Chemistry, Karlsruhe Institute of Technology , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Pavel K Mykhailiuk
- Institute of Organic Chemistry, Karlsruhe Institute of Technology , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.,Enamine Ltd. , Vul. Chervonotkatska 78, 02660 Kyiv, Ukraine
| | - Igor V Komarov
- Institute of High Technologies, Taras Shevchenko National University of Kyiv , Prosp. Glushkova 4-g, 02033 Kyiv, Ukraine
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology , P.O.B. 3640, 76021 Karlsruhe, Germany.,Institute of Organic Chemistry, Karlsruhe Institute of Technology , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
19
|
Murayama T, Masuda T, Afonin S, Kawano K, Takatani‐Nakase T, Ida H, Takahashi Y, Fukuma T, Ulrich AS, Futaki S. Loosening of Lipid Packing Promotes Oligoarginine Entry into Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomo Murayama
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Toshihiro Masuda
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) P.O.B. 3640 76021 Karlsruhe Germany
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Tomoka Takatani‐Nakase
- School of Pharmacy and Pharmaceutical Sciences Mukogawa Women's University, Nishinomiya Hyogo 663-8179 Japan
| | - Hiroki Ida
- Graduate School of Environmental Studies Tohoku University Aramaki Aoba Sendai 980-8579 Japan
| | - Yasufumi Takahashi
- Faculty of Electrical and Computer Engineering Institute of Science and Engineering Kanazawa University Kanazawa 920-1192 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) (Japan) Science and Technology Agency (JST) Saitama 332-0012 Japan
| | - Takeshi Fukuma
- Faculty of Electrical and Computer Engineering Institute of Science and Engineering Kanazawa University Kanazawa 920-1192 Japan
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) P.O.B. 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| |
Collapse
|
20
|
Murayama T, Masuda T, Afonin S, Kawano K, Takatani‐Nakase T, Ida H, Takahashi Y, Fukuma T, Ulrich AS, Futaki S. Loosening of Lipid Packing Promotes Oligoarginine Entry into Cells. Angew Chem Int Ed Engl 2017; 56:7644-7647. [DOI: 10.1002/anie.201703578] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Tomo Murayama
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Toshihiro Masuda
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) P.O.B. 3640 76021 Karlsruhe Germany
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Tomoka Takatani‐Nakase
- School of Pharmacy and Pharmaceutical Sciences Mukogawa Women's University, Nishinomiya Hyogo 663-8179 Japan
| | - Hiroki Ida
- Graduate School of Environmental Studies Tohoku University Aramaki Aoba Sendai 980-8579 Japan
| | - Yasufumi Takahashi
- Faculty of Electrical and Computer Engineering Institute of Science and Engineering Kanazawa University Kanazawa 920-1192 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) (Japan) Science and Technology Agency (JST) Saitama 332-0012 Japan
| | - Takeshi Fukuma
- Faculty of Electrical and Computer Engineering Institute of Science and Engineering Kanazawa University Kanazawa 920-1192 Japan
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) P.O.B. 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Shiroh Futaki
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| |
Collapse
|
21
|
Applications of NMR to membrane proteins. Arch Biochem Biophys 2017; 628:92-101. [PMID: 28529197 DOI: 10.1016/j.abb.2017.05.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/14/2023]
Abstract
Membrane proteins present a challenge for structural biology. In this article, we review some of the recent developments that advance the application of NMR to membrane proteins, with emphasis on structural studies in detergent-free, lipid bilayer samples that resemble the native environment. NMR spectroscopy is not only ideally suited for structure determination of membrane proteins in hydrated lipid bilayer membranes, but also highly complementary to the other principal techniques based on X-ray and electron diffraction. Recent advances in NMR instrumentation, spectroscopic methods, computational methods, and sample preparations are driving exciting new efforts in membrane protein structural biology.
Collapse
|
22
|
Michurin OM, Afonin S, Berditsch M, Daniliuc CG, Ulrich AS, Komarov IV, Radchenko DS. Delivering Structural Information on the Polar Face of Membrane‐Active Peptides:
19
F‐NMR Labels with a Cationic Side Chain. Angew Chem Int Ed Engl 2016; 55:14595-14599. [DOI: 10.1002/anie.201607161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
| | - Marina Berditsch
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Constantin G. Daniliuc
- Institute of Organic Chemistry Westfalische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Igor V. Komarov
- Institute of High Technologies Taras Shevchenko National University of Kyiv vul. Volodymyrska 60 01601 Kyiv Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd. vul. Chervonotkatska 78 02094 Kyiv Ukraine
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
23
|
Michurin OM, Afonin S, Berditsch M, Daniliuc CG, Ulrich AS, Komarov IV, Radchenko DS. Delivering Structural Information on the Polar Face of Membrane-Active Peptides: 19
F-NMR Labels with a Cationic Side Chain. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
| | - Marina Berditsch
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Constantin G. Daniliuc
- Institute of Organic Chemistry; Westfalische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Igor V. Komarov
- Institute of High Technologies; Taras Shevchenko National University of Kyiv; vul. Volodymyrska 60 01601 Kyiv Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd.; vul. Chervonotkatska 78 02094 Kyiv Ukraine
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
24
|
Kokhan SO, Tymtsunik AV, Grage SL, Afonin S, Babii O, Berditsch M, Strizhak AV, Bandak D, Platonov MO, Komarov IV, Ulrich AS, Mykhailiuk PK. Design, Synthesis, and Application of an Optimized Monofluorinated Aliphatic Label for Peptide Studies by Solid-State 19
F NMR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Serhii O. Kokhan
- Enamine Ltd; Chervonotkatska 78 02094 Kyiv Ukraine
- Institute of High Technologies; Taras Shevchenko National University of Kyiv; Volodymyrska 60 01601 Kyiv Ukraine
| | - Andriy V. Tymtsunik
- Enamine Ltd; Chervonotkatska 78 02094 Kyiv Ukraine
- Institute of High Technologies; Taras Shevchenko National University of Kyiv; Volodymyrska 60 01601 Kyiv Ukraine
| | - Stephan L. Grage
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
| | - Oleg Babii
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Marina Berditsch
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | | | | | | | - Igor V. Komarov
- Institute of High Technologies; Taras Shevchenko National University of Kyiv; Volodymyrska 60 01601 Kyiv Ukraine
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2); Karlsruhe Institute of Technology (KIT); POB 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC); KIT; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Pavel K. Mykhailiuk
- Enamine Ltd; Chervonotkatska 78 02094 Kyiv Ukraine
- Chemistry Department; Taras Shevchenko National University of Kyiv; Volodymyrska 64 01601 Kyiv Ukraine
| |
Collapse
|
25
|
Kokhan SO, Tymtsunik AV, Grage SL, Afonin S, Babii O, Berditsch M, Strizhak AV, Bandak D, Platonov MO, Komarov IV, Ulrich AS, Mykhailiuk PK. Design, Synthesis, and Application of an Optimized Monofluorinated Aliphatic Label for Peptide Studies by Solid‐State
19
F NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:14788-14792. [DOI: 10.1002/anie.201608116] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Serhii O. Kokhan
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv Volodymyrska 60 01601 Kyiv Ukraine
| | - Andriy V. Tymtsunik
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine
- Institute of High Technologies Taras Shevchenko National University of Kyiv Volodymyrska 60 01601 Kyiv Ukraine
| | - Stephan L. Grage
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
| | - Oleg Babii
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Marina Berditsch
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | | | | | | | - Igor V. Komarov
- Institute of High Technologies Taras Shevchenko National University of Kyiv Volodymyrska 60 01601 Kyiv Ukraine
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Pavel K. Mykhailiuk
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine
- Chemistry Department Taras Shevchenko National University of Kyiv Volodymyrska 64 01601 Kyiv Ukraine
| |
Collapse
|
26
|
Radchenko DS, Kattge S, Kara S, Ulrich AS, Afonin S. Does a methionine-to-norleucine substitution in PGLa influence peptide-membrane interactions? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2019-2027. [DOI: 10.1016/j.bbamem.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/13/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022]
|
27
|
Arias M, Hoffarth ER, Ishida H, Aramini JM, Vogel HJ. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1012-23. [PMID: 26724205 DOI: 10.1016/j.bbamem.2015.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/19/2015] [Accepted: 12/20/2015] [Indexed: 11/16/2022]
Abstract
The increase in antibiotic-resistant bacterial infections has prompted significant academic research into new therapeutic agents targeted against these pathogens. Antimicrobial peptides (AMPs) appear as promising candidates, due their potent antimicrobial activity and their ubiquitous presence in almost all organisms. Tritrpticin is a member of this family of peptides and has been shown to exert a strong antimicrobial activity against several bacterial strains. Tritrpticin's main structural characteristic is the presence of three consecutive Trp residues at the center of the peptide. These residues play an important role in the activity of tritrpticin against Escherichia coli. In this work, a recombinant version of tritrpticin was produced in E. coli using calmodulin as a fusion protein expression tag to overcome the toxicity of the peptide. When used in combination with glyphosate, an inhibitor of the endogenous synthesis of aromatic amino acids, this expression system allowed for the incorporation of fluorinated Trp analogs at very high levels (>90%). The antimicrobial activity of the 4-, 5- and 6-fluoro-Trp-containing tritrpticins against E. coli was as strong as the activity of the native peptide. Similarly, the tritrpticin analogs exhibited comparable abilities to perturb and permeabilize synthetic lipid bilayers as well as the outer and inner membrane of E. coli. Furthermore, the use of 19F NMR spectroscopy established that each individual fluoro-Trp residue interacts differently with SDS micelles, supporting the idea that each Trp in the original tritrpticin plays a different role in the perturbing/permeabilizing activity of the peptide. Moreover, our work demonstrates that the use of fluoro-Trp in solvent perturbation 19F NMR experiments provides detailed site-specific information on the insertion of the Trp residues in biological membrane mimetics. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Elesha R Hoffarth
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - James M Aramini
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
28
|
De Poli M, Zawodny W, Quinonero O, Lorch M, Webb SJ, Clayden J. Conformational photoswitching of a synthetic peptide foldamer bound within a phospholipid bilayer. Science 2016; 352:575-80. [PMID: 27033546 DOI: 10.1126/science.aad8352] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
The dynamic properties of foldamers, synthetic molecules that mimic folded biomolecules, have mainly been explored in free solution. We report on the design, synthesis, and conformational behavior of photoresponsive foldamers bound in a phospholipid bilayer akin to a biological membrane phase. These molecules contain a chromophore, which can be switched between two configurations by different wavelengths of light, attached to a helical synthetic peptide that both promotes membrane insertion and communicates conformational change along its length. Light-induced structural changes in the chromophore are translated into global conformational changes, which are detected by monitoring the solid-state (19)F nuclear magnetic resonance signals of a remote fluorine-containing residue located 1 to 2 nanometers away. The behavior of the foldamers in the membrane phase is similar to that of analogous compounds in organic solvents.
Collapse
Affiliation(s)
- Matteo De Poli
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Wojciech Zawodny
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Ophélie Quinonero
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Mark Lorch
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Simon J Webb
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK. Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
29
|
Zhu C, Li J, Chen P, Wu W, Ren Y, Jiang H. Transition-Metal-Free Cyclopropanation of 2-Aminoacrylates with N-Tosylhydrazones: A General Route to Cyclopropane α-Amino Acid with Contiguous Quaternary Carbon Centers. Org Lett 2016; 18:1470-3. [DOI: 10.1021/acs.orglett.6b00416] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chuanle Zhu
- School
of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiawei Li
- School
of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pengquan Chen
- School
of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- School
of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanwei Ren
- School
of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- School
of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Kubyshkin V, Afonin S, Kara S, Budisa N, Mykhailiuk PK, Ulrich AS. γ-(S)-Trifluoromethyl proline: evaluation as a structural substitute of proline for solid state (19)F-NMR peptide studies. Org Biomol Chem 2015; 13:3171-3181. [PMID: 25703116 DOI: 10.1039/c5ob00034c] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-(4S)-Trifluoromethyl proline was synthesised according to a modified literature protocol with improved yield on a multigram scale. Conformational properties of the amide bond formed by the amino acid were characterised using N-acetyl methyl ester model. The amide populations (s-trans vs. s-cis) and thermodynamic parameters of the isomerization were found to be similar to the corresponding values for intact proline. Therefore, the γ-trifluoromethyl proline was suggested as a structurally low-disturbing proline substitution in peptides for their structural studies by (19)F-NMR. Indeed, the exchange of native proline for γ-trifluoromethyl proline in the peptide antibiotic gramicidin S was shown to preserve the overall amphipathic peptide structure. The utility of the amino acid as a selective (19)F-NMR label was demonstrated by observing the re-alignment of the labelled gramicidin S in oriented lipid bilayers.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. and Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021 Karlsruhe, Germany
| | - Sezgin Kara
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Pavel K Mykhailiuk
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, vul. Volodymyrska 62a, 01601 Kyiv, Ukraine. and Enamine Ltd., vyl. Chervonotkatska 78, 02660 Kyiv, Ukraine
| | - Anne S Ulrich
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. and Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
31
|
Fillion M, Auger M. Oriented samples: a tool for determining the membrane topology and the mechanism of action of cationic antimicrobial peptides by solid-state NMR. Biophys Rev 2015; 7:311-320. [PMID: 28510228 PMCID: PMC5425733 DOI: 10.1007/s12551-015-0167-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/05/2015] [Indexed: 01/12/2023] Open
Abstract
Overuse and misuse of antibiotics have led bacteria to acquire several mechanisms of resistance. In response to this, researchers have identified natural antimicrobial peptides as promising candidates to fight against multiresistant bacteria. However, their mode of action is still unclear, and a better understanding of the mode of action of these peptides is of primary importance to develop new peptides displaying high antibacterial activity and low hemolytic activity. One of the main features that defines the mechanism of action is the membrane topology of the peptide. Among the spectroscopic techniques, solid-state NMR is the technique of choice for determining the location of the peptide within the membrane. It can be achieved by performing experiments with oriented samples. In the literature, the two most common types of oriented samples are bicelles and phospholipids mechanically oriented between glass plates. The mode of perturbation of the membrane-active peptide can be studied by phosphorus-31 and deuterium NMR. On the other hand, several experiments such as nitrogen-15 and fluorine solid-state NMR, that require labeled peptides, can give valuable information on the membrane topology of the peptide. The combination of the latter techniques allows the determination of a precise topology, thus a better knowledge of the molecular determinants involved in the membrane interactions of antimicrobial peptides.
Collapse
Affiliation(s)
- Matthieu Fillion
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
32
|
Zhu CL, Yang LJ, Li S, Zheng Y, Ma JA. Brine-Stabilized 2,2,2-Trifluorodiazoethane and Its Application in the Synthesis of CF3–Substituted Cyclopropane α-Amino Acids. Org Lett 2015; 17:3442-5. [DOI: 10.1021/acs.orglett.5b01450] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chuan-Le Zhu
- Department of Chemistry, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Li-Jun Yang
- Department of Chemistry, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Shen Li
- Department of Chemistry, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Yan Zheng
- Department of Chemistry, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
33
|
Misiewicz J, Afonin S, Grage SL, van den Berg J, Strandberg E, Wadhwani P, Ulrich AS. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2015; 61:287-98. [PMID: 25616492 DOI: 10.1007/s10858-015-9897-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/10/2015] [Indexed: 05/22/2023]
Abstract
Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. (19)F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively (19)F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. (31)P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, (2)H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.
Collapse
Affiliation(s)
- Julia Misiewicz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Sci Rep 2015; 5:9388. [PMID: 25807192 PMCID: PMC5224518 DOI: 10.1038/srep09388] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/20/2015] [Indexed: 11/16/2022] Open
Abstract
Hydrophobic mismatch is a well-recognized principle in the interaction of transmembrane proteins with lipid bilayers. This concept was extended here to amphipathic membranolytic α-helices. Nine peptides with lengths between 14 and 28 amino acids were designed from repeated KIAGKIA motifs, and their helical nature was confirmed by circular dichroism spectroscopy. Biological assays for antimicrobial activity and hemolysis, as well as fluorescence vesicle leakage and solid-state NMR spectroscopy, were used to correlate peptide length with membranolytic activity. These data show that the formation of transmembrane pores is only possible under the condition of hydrophobic matching: the peptides have to be long enough to span the hydrophobic bilayer core to be able to induce vesicle leakage, kill bacteria, and cause hemolysis. By correlating the threshold lengths for biological activity with the biophysical results on model vesicles, the peptides could be utilized as molecular rulers to measure the membrane thickness in different cells.
Collapse
|
35
|
Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis. Appl Environ Microbiol 2015; 81:3593-603. [PMID: 25795666 DOI: 10.1128/aem.00229-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/04/2015] [Indexed: 11/20/2022] Open
Abstract
Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly (13)C/(15)N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive (13)C/(15)N-labeled amino acids. The most cost-effective production of (13)C/(15)N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% (13)C-glycerol and 0.5% (15)N-ammonium sulfate, supplemented with only 0.025% of (13)C/(15)N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state.
Collapse
|
36
|
Control and role of pH in peptide–lipid interactions in oriented membrane samples. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:833-41. [DOI: 10.1016/j.bbamem.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022]
|
37
|
Strandberg E, Ulrich AS. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1944-54. [PMID: 25726906 DOI: 10.1016/j.bbamem.2015.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 11/24/2022]
Abstract
The folding and function of membrane proteins is controlled not only by specific but also by unspecific interactions with the constituent lipids. In this review, we focus on the influence of the spontaneous lipid curvature on the folding and insertion of peptides and proteins in membranes. Amphiphilic α-helical peptides, as represented by various antimicrobial sequences, are compared with β-barrel proteins, which are found in the outer membrane of Gram-negative bacteria. It has been shown that cationic amphiphilic peptides are always surface-bound in lipids with a negative spontaneous curvature like POPC, i.e. they are oriented parallel to the membrane plane. On the other hand, in lipids like DMPC with a positive curvature, these peptides can get tilted or completely inserted in a transmembrane state. Remarkably, the folding and spontaneous membrane insertion of β-barrel outer membrane proteins also proceeds more easily in lipids with a positive intrinsic curvature, while it is hampered by negative curvature. We therefore propose that a positive spontaneous curvature of the lipids promotes the ability of a surface-bound molecule to insert more deeply into the bilayer core, irrespective of the conformation, size, or shape of the peptide, protein, or folding intermediate. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
38
|
3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides. Biophys J 2015; 106:2385-94. [PMID: 24896117 DOI: 10.1016/j.bpj.2014.04.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 11/22/2022] Open
Abstract
The interaction of membranes with peptides and proteins is largely determined by their amphiphilic character. Hydrophobic moments of helical segments are commonly derived from their two-dimensional helical wheel projections, and the same is true for β-sheets. However, to the best of our knowledge, there exists no method to describe structures in three dimensions or molecules with irregular shape. Here, we define the hydrophobic moment of a molecule as a vector in three dimensions by evaluating the surface distribution of all hydrophilic and lipophilic regions over any given shape. The electrostatic potential on the molecular surface is calculated based on the atomic point charges. The resulting hydrophobic moment vector is specific for the instantaneous conformation, and it takes into account all structural characteristics of the molecule, e.g., partial unfolding, bending, and side-chain torsion angles. Extended all-atom molecular dynamics simulations are then used to calculate the equilibrium hydrophobic moments for two antimicrobial peptides, gramicidin S and PGLa, under different conditions. We show that their effective hydrophobic moment vectors reflect the distribution of polar and nonpolar patches on the molecular surface and the calculated electrostatic surface potential. A comparison of simulations in solution and in lipid membranes shows how the peptides undergo internal conformational rearrangement upon binding to the bilayer surface. A good correlation with solid-state NMR data indicates that the hydrophobic moment vector can be used to predict the membrane binding geometry of peptides. This method is available as a web application on http://www.ibg.kit.edu/HM/.
Collapse
|
39
|
Marsh ENG, Suzuki Y. Using (19)F NMR to probe biological interactions of proteins and peptides. ACS Chem Biol 2014; 9:1242-50. [PMID: 24762032 DOI: 10.1021/cb500111u] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorine is a valuable probe for investigating the interactions of biological molecules because of its favorable NMR characteristics, its small size, and its near total absence from biology. Advances in biosynthetic methods allow fluorine to be introduced into peptides and proteins with high precision, and the increasing sensitivity of NMR spectrometers has facilitated the use of (19)F NMR to obtain molecular-level insights into a wide range of often-complex biological interactions. Here, we summarize the advantages of solution-state (19)F NMR for studying the interactions of peptides and proteins with other biological molecules, review methods for the production of fluorine-labeled materials, and describe some representative recent examples in which (19)F NMR has been used to study conformational changes in peptides and proteins and their interactions with other biological molecules.
Collapse
Affiliation(s)
- E. Neil G. Marsh
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuta Suzuki
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Tkachenko AN, Mykhailiuk PK, Radchenko DS, Babii O, Afonin S, Ulrich AS, Komarov IV. Design and Synthesis of a Monofluoro-Substituted Aromatic Amino Acid as a Conformationally Restricted19F NMR Label for Membrane-Bound Peptides. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Afonin S, Glaser RW, Sachse C, Salgado J, Wadhwani P, Ulrich AS. (19)F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2260-8. [PMID: 24699372 DOI: 10.1016/j.bbamem.2014.03.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Many amphiphilic antimicrobial peptides permeabilize bacterial membranes via successive steps of binding, re-alignment and/or oligomerization. Here, we have systematically compared the lipid interactions of two structurally unrelated peptides: the cyclic β-pleated gramicidin S (GS), and the α-helical PGLa. (19)F NMR was used to screen their molecular alignment in various model membranes over a wide range of temperatures. Both peptides were found to respond to the phase state and composition of these different samples in a similar way. In phosphatidylcholines, both peptides first bind to the bilayer surface. Above a certain threshold concentration they can re-align and immerse more deeply into the hydrophobic core, which presumably involves oligomerization. Re-alignment is most favorable around the lipid chain melting temperature, and also promoted by decreasing bilayer thickness. The presence of anionic lipids has no influence in fluid membranes, but in the gel phase the alignment states are more complex. Unsaturated acyl chains and other lipids with intrinsic negative curvature prevent re-alignment, hence GS and PGLa do not insert into mixtures resembling bacterial membranes, nor into bacterial lipid extracts. Cholesterol, which is present in high concentrations in animal membranes, even leads to an expulsion of the peptides from the bilayer and prevents their binding altogether. However, a very low cholesterol content of 10% was found to promote binding and re-alignment of both peptides. Overall, these findings show that the ability of amphiphilic peptides to re-align and immerse into a membrane is determined by the physico-chemical properties of the lipids, such as spontaneous curvature. This idea is reinforced by the remarkably similar behavior observed here for two structurally unrelated molecules (with different conformation, size, shape, charge), which further suggests that their activity at the membrane level is largely governed by the properties of the constituent lipids, while the selectivity towards different cell types is additionally ruled by electrostatic attraction between peptide and cell surface. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Ralf W Glaser
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Carsten Sachse
- EMBL - European Molecular Biology Laboratory, Structural and Computational Biology, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Jesús Salgado
- Institute of Molecular Science (ICMol), University of Valencia, C/Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
42
|
Wadhwani P, Strandberg E, van den Berg J, Mink C, Bürck J, Ciriello RA, Ulrich AS. Dynamical structure of the short multifunctional peptide BP100 in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:940-9. [DOI: 10.1016/j.bbamem.2013.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/25/2013] [Accepted: 11/01/2013] [Indexed: 11/26/2022]
|
43
|
Cohen M, Varki A. Modulation of glycan recognition by clustered saccharide patches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:75-125. [PMID: 24411170 DOI: 10.1016/b978-0-12-800097-7.00003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All cells in nature are covered with a dense and complex array of glycan chains. Specific recognition and binding of glycans is a critical aspect of cellular interactions, both within and between species. Glycan-protein interactions tend to be of low affinity but high specificity, typically utilizing multivalency to generate the affinity required for biologically relevant binding. This review focuses on a higher level of glycan organization, the formation of clustered saccharide patches (CSPs), which can constitute unique ligands for highly specific interactions. Due to technical challenges, this aspect of glycan recognition remains poorly understood. We present a wealth of evidence for CSPs-mediated interactions, and discuss recent advances in experimental tools that are beginning to provide new insights into the composition and organization of CSPs. The examples presented here are likely the tip of the iceberg, and much further work is needed to elucidate fully this higher level of glycan organization.
Collapse
Affiliation(s)
- Miriam Cohen
- Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California, USA; Department Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, USA.
| |
Collapse
|
44
|
Ding Y, Yao Y, Marassi FM. Membrane protein structure determination in membrana. Acc Chem Res 2013; 46:2182-90. [PMID: 24041243 DOI: 10.1021/ar400041a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two principal components of biological membranes, the lipid bilayer and the proteins integrated within it, have coevolved for specific functions that mediate the interactions of cells with their environment. Molecular structures can provide very significant insights about protein function. In the case of membrane proteins, the physical and chemical properties of lipids and proteins are highly interdependent; therefore structure determination should include the membrane environment. Considering the membrane alongside the protein eliminates the possibility that crystal contacts or detergent molecules could distort protein structure, dynamics, and function and enables ligand binding studies to be performed in a natural setting. Solid-state NMR spectroscopy is compatible with three-dimensional structure determination of membrane proteins in phospholipid bilayer membranes under physiological conditions and has played an important role in elucidating the physical and chemical properties of biological membranes, providing key information about the structure and dynamics of the phospholipid components. Recently, developments in the recombinant expression of membrane proteins, sample preparation, pulse sequences for high-resolution spectroscopy, radio frequency probes, high-field magnets, and computational methods have enabled a number of membrane protein structures to be determined in lipid bilayer membranes. In this Account, we illustrate solid-state NMR methods with examples from two bacterial outer membrane proteins (OmpX and Ail) that form integral membrane β-barrels. The ability to measure orientation-dependent frequencies in the solid-state NMR spectra of membrane-embedded proteins provides the foundation for a powerful approach to structure determination based primarily on orientation restraints. Orientation restraints are particularly useful for NMR structural studies of membrane proteins because they provide information about both three-dimensional structure and the orientation of the protein within the membrane. When combined with dihedral angle restraints derived from analysis of isotropic chemical shifts, molecular fragment replacement, and de novo structure prediction, orientation restraints can yield high-quality three-dimensional structures with few or no distance restraints. Using complementary solid-state NMR methods based on oriented sample (OS) and magic angle spinning (MAS) approaches, one can resolve and assign multiple peaks through the use of (15)N/(13)C labeled samples and measure precise restraints to determine structures.
Collapse
Affiliation(s)
- Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Francesca M. Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
45
|
Incorporation of labile trans-4,5-difluoromethanoproline into a peptide as a stable label for 19F NMR structure analysis. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Tkachenko AN, Radchenko DS, Mykhailiuk PK, Afonin S, Ulrich AS, Komarov IV. Design, synthesis, and application of a trifluoromethylated phenylalanine analogue as a label to study peptides by solid-state 19F NMR spectroscopy. Angew Chem Int Ed Engl 2013; 52:6504-7. [PMID: 23653105 DOI: 10.1002/anie.201301344] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Anton N Tkachenko
- Faculty of Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska 62a, 01601 Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
47
|
Tkachenko AN, Radchenko DS, Mykhailiuk PK, Afonin S, Ulrich AS, Komarov IV. Design, Synthesis, and Application of a Trifluoromethylated Phenylalanine Analogue as a Label to Study Peptides by Solid-State19F NMR Spectroscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Wadhwani P, Reichert J, Strandberg E, Bürck J, Misiewicz J, Afonin S, Heidenreich N, Fanghänel S, Mykhailiuk PK, Komarov IV, Ulrich AS. Stereochemical effects on the aggregation and biological properties of the fibril-forming peptide [KIGAKI]3 in membranes. Phys Chem Chem Phys 2013; 15:8962-71. [PMID: 23652359 DOI: 10.1039/c3cp50896j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single D-amino acid substitutions can be used to suppress or slow down the aggregation of peptides into β-sheeted assemblies compared to the respective L-amino acids. Here, we investigate the influence of local stereochemistry in the model peptide [KIGAKI]3-NH2, which is known to form amyloid-like fibrils. To find out whether aggregation plays a role in various biologically relevant functions that involve peptide-lipid interactions, we studied the antimicrobial, hemolytic and fusogenic activities of this amphiphilic membrane-active molecule. The stiff and sterically constrained amino acid CF3-Bpg [3-(trifluoromethyl)-bicyclopent-[1,1,1]-1-ylglycine] was incorporated either as an L- or a D-enantiomer at different hydrophobic positions of the KIGAKI sequence. D-Epimers have a higher aggregation threshold than the L-epimers, yet the aggregation of both was confirmed using electron microscopy and circular dichroism. Solid-state (19)F-NMR analysis showed that the peptide aggregated in native membranes from human erythrocytes and bacterial protoplasts in the same way as in synthetic lipid bilayers. We then monitored the effect of the single L- or D-CF3-Bpg substitutions in KIGAKI on its distinct biological activities, which have to be measured at low peptide concentrations where the aggregation threshold cannot be directly assessed. These functional assays showed that the aggregation propensity of KIGAKI does not play a role in its antimicrobial action, but an increased tendency to aggregate promotes other undesirable effects such as hemolysis and membrane fusion. These results confirm the membranolytic and thereby toxic nature of amyloidogenic peptides, and emphasize the unpredictable role of peptide aggregation in the different assays used to study biological activities.
Collapse
Affiliation(s)
- Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Buer BC, Levin BJ, Marsh ENG. Perfluoro-tert
-butyl-homoserine as a sensitive 19
F NMR reporter for peptide-membrane interactions in solution. J Pept Sci 2013; 19:308-14. [DOI: 10.1002/psc.2501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin C. Buer
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109 USA
| | - Benjamin J. Levin
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109 USA
| | - E. Neil G. Marsh
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109 USA
- Department of Biological Chemistry; University of Michigan Medical School; Ann Arbor MI 48109 USA
| |
Collapse
|
50
|
Bellucci MC, Terraneo G, Volonterio A. Multi-component synthesis of peptide–sugar conjugates. Org Biomol Chem 2013; 11:2421-44. [DOI: 10.1039/c3ob27176e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|