1
|
Zumpfe K, Berbon M, Habenstein B, Loquet A, Smith AA. Analytical Framework to Understand the Origins of Methyl Side-Chain Dynamics in Protein Assemblies. J Am Chem Soc 2024; 146:8164-8178. [PMID: 38476076 PMCID: PMC10979401 DOI: 10.1021/jacs.3c12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Side-chain motions play an important role in understanding protein structure, dynamics, protein-protein, and protein-ligand interactions. However, our understanding of protein side-chain dynamics is currently limited by the lack of analytical tools. Here, we present a novel analytical framework employing experimental nuclear magnetic resonance (NMR) relaxation measurements at atomic resolution combined with molecular dynamics (MD) simulation to characterize with a high level of detail the methyl side-chain dynamics in insoluble protein assemblies, using amyloid fibrils formed by the prion HET-s. We use MD simulation to interpret experimental results, where rotameric hops, including methyl group rotation and χ1/χ2 rotations, cannot be completely described with a single correlation time but rather sample a broad distribution of correlation times, resulting from continuously changing local structure in the fibril. Backbone motion similarly samples a broad range of correlation times, from ∼100 ps to μs, although resulting from mostly different dynamic processes; nonetheless, we find that the backbone is not fully decoupled from the side-chain motion, where changes in side-chain dynamics influence backbone motion and vice versa. While the complexity of side-chain motion in protein assemblies makes it very challenging to obtain perfect agreement between experiment and simulation, our analytical framework improves the interpretation of experimental dynamics measurements for complex protein assemblies.
Collapse
Affiliation(s)
- Kai Zumpfe
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstraße
16-18, 04107 Leipzig, Germany
| | - Mélanie Berbon
- University
of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Birgit Habenstein
- University
of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Antoine Loquet
- University
of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Albert A. Smith
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstraße
16-18, 04107 Leipzig, Germany
| |
Collapse
|
2
|
Lee E, Redzic JS, Zohar Eisenmesser E. Relaxation and single site multiple mutations to identify and control allosteric networks. Methods 2023; 216:51-57. [PMID: 37302521 PMCID: PMC11066977 DOI: 10.1016/j.ymeth.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Advances in Nuclear Magnetic Resonance (NMR) spectroscopy have allowed for the identification and characterization of movements in enzymes over the last 20 years that has also revealed the complexities of allosteric coupling. For example, many of the inherent movements of enzymes, and proteins in general, have been shown to be highly localized but nonetheless still coupled over long distances. Such partial couplings provide challenges to both identifying allosteric networks of dynamic communication and determining their roles in catalytic function. We have developed an approach to help identify and engineer enzyme function, called Relaxation And Single Site Multiple Mutations (RASSMM). This approach is a powerful extension of mutagenesis and NMR that is based on the observation that multiple mutations to a single site distal to the active site allosterically induces different effects to networks. Such an approach generates a panel of mutations that can also be subjected to functional studies in order to match catalytic effects with changes to coupled networks. In this review, the RASSMM approach is briefly outlined together with two applications that include cyclophilin-A and Biliverdin Reductase B.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Sepahvandi A, Ghaffari M, Bahmanpour AH, Moztarzadeh F, Zarrintaj P, Uludağ H, Mozafari M. COVID-19: insights into virus-receptor interactions. MOLECULAR BIOMEDICINE 2021; 2:10. [PMID: 34766003 PMCID: PMC8035060 DOI: 10.1186/s43556-021-00033-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
The recent outbreak of Coronavirus Disease 2019 (COVID-19) calls for rapid mobilization of scientists to probe and explore solutions to this deadly disease. A limited understanding of the high transmissibility of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) relative to other coronavirus strains guides a deeper investigation into the virus/receptor interactions. The cutting-edge studies in thermodynamic and kinetic properties of interactions such as protein-protein interplays have been reviewed in many modeling and analysis studies. Highlighting the thermodynamic assessments of biological interactions and emphasizing the boosted transmissibility of SARS-CoV-2 despite its high similarity in structure and sequence with other coronavirus strains is an important and highly valuable investigation that can lead scientists to discover analytical and fundamental approaches in studying virus's interactions. Accordingly, we have attempted to describe the crucial factors such as conformational changes and hydrophobicity particularities that influence on thermodynamic potentials in the SARS-COV-2 S-protein adsorption process. Discussing the thermodynamic potentials and the kinetics of the SARS-CoV-2 S-protein in its interaction with the ACE2 receptors of the host cell is a fundamental approach that would be extremely valuable in designing candidate pharmaceutical agents or exploring alternative treatments.
Collapse
Affiliation(s)
- Azadeh Sepahvandi
- Department of Mechanical Engineering College of Engineering and Computing, University of South Carolina, 301 Main St, Columbia, SC 29208 USA
| | - Maryam Ghaffari
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Amir Hossein Bahmanpour
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078 USA
| | - Hasan Uludağ
- Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1 Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3 Canada
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Currently at: Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON Canada
| |
Collapse
|
4
|
Gorman SD, Winston DS, Sahu D, Boehr DD. Different Solvent and Conformational Entropy Contributions to the Allosteric Activation and Inhibition Mechanisms of Yeast Chorismate Mutase. Biochemistry 2020; 59:2528-2540. [DOI: 10.1021/acs.biochem.0c00277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Scott D. Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dennis S. Winston
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Debashish Sahu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Drake JA, Pettitt BM. Physical Chemistry of the Protein Backbone: Enabling the Mechanisms of Intrinsic Protein Disorder. J Phys Chem B 2020; 124:4379-4390. [PMID: 32349480 PMCID: PMC7384255 DOI: 10.1021/acs.jpcb.0c02489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last two decades it has become clear that well-defined structure is not a requisite for proteins to properly function. Rather, spectra of functionally competent, structurally disordered states have been uncovered requiring canonical paradigms in molecular biology to be revisited or reimagined. It is enticing and oftentimes practical to divide the proteome into structured and unstructured, or disordered, proteins. While function, composition, and structural properties largely differ, these two classes of protein are built upon the same scaffold, namely, the protein backbone. The versatile physicochemical properties of the protein backbone must accommodate structural disorder, order, and transitions between these states. In this review, we survey these properties through the conceptual lenses of solubility and conformational populations and in the context of protein-disorder mediated phenomena (e.g., phase separation, order-disorder transitions, allostery). Particular attention is paid to the results of computational studies, which, through thermodynamic decomposition and dissection of molecular interactions, can provide valuable mechanistic insight and testable hypotheses to guide further solution experiments. Lastly, we discuss changes in the dynamics of side chains and order-disorder transitions of the protein backbone as two modes or realizations of "entropic reservoirs" capable of tuning coupled thermodynamic processes.
Collapse
Affiliation(s)
- Justin A Drake
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston 77555, Texas, United States
- Texas Advanced Computing Center, University of Texas at Austin, Austin 78712, Texas, United States
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston 77555, Texas, United States
| |
Collapse
|
6
|
Drake JA, Pettitt BM. Thermodynamics of Conformational Transitions in a Disordered Protein Backbone Model. Biophys J 2019; 114:2799-2810. [PMID: 29925017 DOI: 10.1016/j.bpj.2018.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Conformational entropy is expected to contribute significantly to the thermodynamics of structural transitions in intrinsically disordered proteins or regions in response to protein/ligand binding, posttranslational modifications, and environmental changes. We calculated the backbone (dihedral) conformational entropy of oligoglycine (GlyN), a protein backbone mimic and model intrinsically disordered region, as a function of chain length (N=3, 4, 5, 10, and 15) from simulations using three different approaches. The backbone conformational entropy scales linearly with chain length with a slope consistent with the entropy of folding of well-structured proteins. The entropic contributions of second-order dihedral correlations are predominantly through intraresidue ϕ-ψ pairs, suggesting that oligoglycine may be thermodynamically modeled as a system of independent glycine residues. We find the backbone conformational entropy to be largely independent of global structural parameters, like the end-to-end distance and radius of gyration. We introduce a framework referred to herein as "ensemble confinement" to estimate the loss (gain) of conformational free energy and its entropic component when individual residues are constrained to (released from) particular regions of the ϕ-ψ map. Quantitatively, we show that our protein backbone model resists ordering/folding with a significant, unfavorable ensemble confinement free energy because of the loss of a substantial portion of the absolute backbone entropy. Proteins can couple this free-energy reservoir to distal binding events as a regulatory mechanism to promote or suppress binding.
Collapse
Affiliation(s)
- Justin A Drake
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
7
|
Dutta S, Ghosh M, Chakrabarti J. In-silico studies on conformational stability of flagellin-receptor complexes. J Biomol Struct Dyn 2019; 38:2240-2252. [PMID: 31232224 DOI: 10.1080/07391102.2019.1630317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flagellin is a protein, responsible for virulent activities of bacteria. The host cell surface receptor protein TLR5 is known to interact with flagellin in order to activate immune response. However, the underlying microscopic details of this immune response are still elusive. In this study, we report on conformational stability of flagellin of two different organisms known as fliC and flaD in bilayer with reference to water. We find that both the flagellin is conformationally more stable in bilayer than in water. We also observe that fliC-TLR5 and flaD-TLR5 complexes are conformationally stable when the extracellular domain of the protein binds to conserved D1 domain of both fliC and flaD, although the binding interface between fliC-TLR5 and flaD-TLR5 is not identical. Our studies suggest that this might lead to differences in coreceptor bindings involved in immune response and thus have potential application in pharmaceutical developments. AbbreviationsA2Aadenosine receptorDPPCdipalmitoyl phosphatidylcholineecdextracellular domainecl2extracellular loop 2eLRRextracellular Leucine rich repeat domainflaDflagellin of Vibrio choleraefliCflagellin of Salmonella typhimuriumHPVhyper-variableMDmolecular dynamicsRMSDroot means squared deviationTIRtoll-interleukin receptorTLR5toll like receptor 5VPAC1vasoactive intestinal peptide receptorCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sutapa Dutta
- Department of Chemical, Biological and Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Mahua Ghosh
- Department of Chemical, Biological and Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - J Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India.,Unit of Nanoscience and Technology-II and The Thematic Unit of Excellence on Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
8
|
Liu X, Fuentes EJ. Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:129-218. [PMID: 30712672 PMCID: PMC7185565 DOI: 10.1016/bs.ircmb.2018.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-synaptic density-95, disks-large and zonula occludens-1 (PDZ) domains are small globular protein-protein interaction domains widely conserved from yeast to humans. They are composed of ∼90 amino acids and form a classical two α-helical/six β-strand structure. The prototypical ligand is the C-terminus of partner proteins; however, they also bind internal peptide sequences. Recent findings indicate that PDZ domains also bind phosphatidylinositides and cholesterol. Through their ligand interactions, PDZ domain proteins are critical for cellular trafficking and the surface retention of various ion channels. In addition, PDZ proteins are essential for neuronal signaling, memory, and learning. PDZ proteins also contribute to cytoskeletal dynamics by mediating interactions critical for maintaining cell-cell junctions, cell polarity, and cell migration. Given their important biological roles, it is not surprising that their dysfunction can lead to multiple disease states. As such, PDZ domain-containing proteins have emerged as potential targets for the development of small molecular inhibitors as therapeutic agents. Recent data suggest that the critical binding function of PDZ domains in cell signaling is more than just glue, and their binding function can be regulated by phosphorylation or allosterically by other binding partners. These studies also provide a wealth of structural and biophysical data that are beginning to reveal the physical features that endow this small modular domain with a central role in cell signaling.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Ernesto J. Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Corresponding author: E-mail:
| |
Collapse
|
9
|
Isotopic Labeling of Eukaryotic Membrane Proteins for NMR Studies of Interactions and Dynamics. Methods Enzymol 2018; 614:37-65. [PMID: 30611431 DOI: 10.1016/bs.mie.2018.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Membrane proteins, and especially G-protein coupled receptors (GPCRs), are increasingly important targets of structural biology studies due to their involvement in many biomedically critical pathways in humans. These proteins are often highly dynamic and thus benefit from studies by NMR spectroscopy in parallel with complementary crystallographic and cryo-EM analyses. However, such studies are often complicated by a range of practical concerns, including challenges in preparing suitably isotopically labeled membrane protein samples, large sizes of protein/detergent or protein/lipid complexes, and limitations on sample concentrations and stabilities. Here we describe our approach to addressing these challenges via the use of simple eukaryotic expression systems and modified NMR experiments, using the human adenosine A2A receptor as an example. Protocols are provided for the preparation of U-2H (13C,1H-Ile δ1)-labeled membrane proteins from overexpression in the methylotrophic yeast Pichia pastoris, as well as techniques for studying the fast ns-ps sidechain dynamics of the methyl groups of such samples. We believe that, with the proper optimization, these protocols should be generalizable to other GPCRs and human membrane proteins.
Collapse
|
10
|
Affiliation(s)
- Valerie Vaissier Welborn
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Fox JM, Zhao M, Fink MJ, Kang K, Whitesides GM. The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition. Annu Rev Biophys 2018; 47:223-250. [DOI: 10.1146/annurev-biophys-070816-033743] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomolecular recognition can be stubborn; changes in the structures of associating molecules, or the environments in which they associate, often yield compensating changes in enthalpies and entropies of binding and no net change in affinities. This phenomenon—termed enthalpy/entropy (H/S) compensation—hinders efforts in biomolecular design, and its incidence—often a surprise to experimentalists—makes interactions between biomolecules difficult to predict. Although characterizing H/S compensation requires experimental care, it is unquestionably a real phenomenon that has, from an engineering perspective, useful physical origins. Studying H/S compensation can help illuminate the still-murky roles of water and dynamics in biomolecular recognition and self-assembly. This review summarizes known sources of H/ S compensation (real and perceived) and lays out a conceptual framework for understanding and dissecting—and, perhaps, avoiding or exploiting—this phenomenon in biophysical systems.
Collapse
Affiliation(s)
- Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Mengxia Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Michael J. Fink
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
- The Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
12
|
Kumar V, Prakash A, Lynn AM. Alterations in local stability and dynamics of A4V SOD1 in the presence of trifluoroethanol. Biopolymers 2018; 109:e23102. [DOI: 10.1002/bip.23102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Amresh Prakash
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|
13
|
Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat Commun 2017; 8:2276. [PMID: 29273709 PMCID: PMC5741624 DOI: 10.1038/s41467-017-02258-w] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Structure-based drug design has often been restricted by the rather static picture of protein-ligand complexes presented by crystal structures, despite the widely accepted importance of protein flexibility in biomolecular recognition. Here we report a detailed experimental and computational study of the drug target, human heat shock protein 90, to explore the contribution of protein dynamics to the binding thermodynamics and kinetics of drug-like compounds. We observe that their binding properties depend on whether the protein has a loop or a helical conformation in the binding site of the ligand-bound state. Compounds bound to the helical conformation display slow association and dissociation rates, high-affinity and high cellular efficacy, and predominantly entropically driven binding. An important entropic contribution comes from the greater flexibility of the helical relative to the loop conformation in the ligand-bound state. This unusual mechanism suggests increasing target flexibility in the bound state by ligand design as a new strategy for drug discovery.
Collapse
|
14
|
Nucci NV. New insight on the S100A1-STIP1 complex highlights the important relationship between allostery and entropy in protein function. Biochem J 2017; 474:2977-2980. [PMID: 28819010 DOI: 10.1042/bcj20170275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 03/21/2025]
Abstract
Calcium signaling serves as a nexus of many vital cellular processes. Of particular importance is the role the calcium signaling plays in the prevention of protein misfolding, and the S100 family of calcium-binding proteins is a key player in this pathway. While the S100 proteins carry out a range of roles, the interaction of S100A1 and the stress-inducible phosphoprotein 1 (STIP1) has been shown to be particularly important. A recent study by Maciejewski et al. in Biochemical Journal (Biochemical Journal (2017) 474, 1853-1866) revealed new insights into the nature of the S100A1-STIP1 interaction. Not only did the present paper indicate the stoichiometry of binding for this interaction (three S100A1 dimers : one STIP1), it also demonstrated that the binding interaction is highly co-operative and that each S100A1-STIP1-binding interaction is entropically driven. The findings presented raise important new questions regarding the relationship between entropy and allostery in protein function. Recently, the dynamical underpinnings of allostery in protein function have become a topic of increased interest. A broad range of investigations have demonstrated that allostery can be mediated by entropic processes such as changes in the flexibility of the protein backbone and in the range of motions explored by side chains. The S100A1-STIP1 complex as described by Maciejewski et al. suggests a new system in which an allosteric-binding interaction driven by entropic processes may be systematically dissected in the future.
Collapse
Affiliation(s)
- Nathaniel V Nucci
- Department of Physics and Astronomy, Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, U.S.A.
| |
Collapse
|
15
|
Stetz MA, Wand AJ. Accurate determination of rates from non-uniformly sampled relaxation data. JOURNAL OF BIOMOLECULAR NMR 2016; 65:157-170. [PMID: 27393626 PMCID: PMC5023280 DOI: 10.1007/s10858-016-0046-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/02/2016] [Indexed: 05/04/2023]
Abstract
The application of non-uniform sampling (NUS) to relaxation experiments traditionally used to characterize the fast internal motion of proteins is quantitatively examined. Experimentally acquired Poisson-gap sampled data reconstructed with iterative soft thresholding are compared to regular sequentially sampled (RSS) data. Using ubiquitin as a model system, it is shown that 25 % sampling is sufficient for the determination of quantitatively accurate relaxation rates. When the sampling density is fixed at 25 %, the accuracy of rates is shown to increase sharply with the total number of sampled points until eventually converging near the inherent reproducibility of the experiment. Perhaps contrary to some expectations, it is found that accurate peak height reconstruction is not required for the determination of accurate rates. Instead, inaccuracies in rates arise from inconsistencies in reconstruction across the relaxation series that primarily manifest as a non-linearity in the recovered peak height. This indicates that the performance of an NUS relaxation experiment cannot be predicted from comparison of peak heights using a single RSS reference spectrum. The generality of these findings was assessed using three alternative reconstruction algorithms, eight different relaxation measurements, and three additional proteins that exhibit varying degrees of spectral complexity. From these data, it is revealed that non-linearity in peak height reconstruction across the relaxation series is strongly correlated with errors in NUS-derived relaxation rates. Importantly, it is shown that this correlation can be exploited to reliably predict the performance of an NUS-relaxation experiment by using three or more RSS reference planes from the relaxation series. The RSS reference time points can also serve to provide estimates of the uncertainty of the sampled intensity, which for a typical relaxation times series incurs no penalty in total acquisition time.
Collapse
Affiliation(s)
- Matthew A Stetz
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 905 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104-6059, USA
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 905 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104-6059, USA.
| |
Collapse
|
16
|
Fleck M, Polyansky AA, Zagrovic B. PARENT: A Parallel Software Suite for the Calculation of Configurational Entropy in Biomolecular Systems. J Chem Theory Comput 2016; 12:2055-65. [DOI: 10.1021/acs.jctc.5b01217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Markus Fleck
- Department
of Structural
and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna, 1030, Austria
| | - Anton A. Polyansky
- Department
of Structural
and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna, 1030, Austria
| | - Bojan Zagrovic
- Department
of Structural
and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna, 1030, Austria
| |
Collapse
|
17
|
Doyle CM, Rumfeldt JA, Broom HR, Sekhar A, Kay LE, Meiering EM. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts. Biochemistry 2016; 55:1346-61. [PMID: 26849066 DOI: 10.1021/acs.biochem.5b01133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Lewis E Kay
- Program in Molecular Structure and Function, Hospital for Sick Children , Toronto, Canada
| | | |
Collapse
|
18
|
Johnson TA, Mcleod MJ, Holyoak T. Utilization of Substrate Intrinsic Binding Energy for Conformational Change and Catalytic Function in Phosphoenolpyruvate Carboxykinase. Biochemistry 2016; 55:575-87. [PMID: 26709450 DOI: 10.1021/acs.biochem.5b01215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Previous work has demonstrated that the enzyme cycles between a catalytically inactive open state and a catalytically active closed state. The transition of the enzyme between these states requires the transition of several active site loops to shift from mobile, disordered structural elements to stable ordered states. The mechanism by which these disorder-order transitions are coupled to the ligation state of the active site however is not fully understood. To further investigate the mechanisms by which the mobility of the active site loops is coupled to enzymatic function and the transitioning of the enzyme between the two conformational states, we have conducted structural and functional studies of point mutants of E89. E89 is a proposed key member of the interaction network of mobile elements as it resides in the R-loop region of the enzyme active site. These new data demonstrate the importance of the R-loop in coordinating interactions between substrates at the OAA/PEP binding site and the mobile R- and Ω-loop domains. In turn, the studies more generally demonstrate the mechanisms by which the intrinsic ligand binding energy can be utilized in catalysis to drive unfavorable conformational changes, changes that are subsequently required for both optimal catalytic activity and fidelity.
Collapse
Affiliation(s)
- Troy A Johnson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Matthew J Mcleod
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - Todd Holyoak
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada.,Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
19
|
Kornev AP, Taylor SS. Dynamics-Driven Allostery in Protein Kinases. Trends Biochem Sci 2015; 40:628-647. [PMID: 26481499 DOI: 10.1016/j.tibs.2015.09.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 01/05/2023]
Abstract
Protein kinases have very dynamic structures and their functionality strongly depends on their dynamic state. Active kinases reveal a dynamic pattern with residues clustering into semirigid communities that move in μs-ms timescale. Previously detected hydrophobic spines serve as connectors between communities. Communities do not follow the traditional subdomain structure of the kinase core or its secondary structure elements. Instead they are organized around main functional units. Integration of the communities depends on the assembly of the hydrophobic spine and phosphorylation of the activation loop. Single mutations can significantly disrupt the dynamic infrastructure and thereby interfere with long-distance allosteric signaling that propagates throughout the whole molecule. Dynamics is proposed to be the underlying mechanism for allosteric regulation in protein kinases.
Collapse
Affiliation(s)
- Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, 92093, USA.
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, 92093, USA; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Montero-Morán GM, Sampedro JG, Saab-Rincón G, Cervantes-González MA, Huerta-Ocampo JÁ, De León-Rodríguez A, Barba de la Rosa AP. Biochemical and Molecular Characterization of a Novel Cu/Zn Superoxide Dismutase from Amaranthus hypochondriacus L.: an Intrinsically Disordered Protein. Appl Biochem Biotechnol 2015; 176:2328-45. [PMID: 26129702 DOI: 10.1007/s12010-015-1721-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
Abstract
A novel Cu/ZnSOD from Amaranthus hypochondriacus was cloned, expressed, and characterized. Nucleotide sequence analysis showed an open reading frame (ORF) of 456 bp, which was predicted to encode a 15.6-kDa molecular weight protein with a pI of 5.4. Structural analysis showed highly conserved amino acid residues involved in Cu/Zn binding. Recombinant amaranth superoxide dismutase (rAhSOD) displayed more than 50 % of catalytic activity after incubation at 100 °C for 30 min. In silico analysis of Amaranthus hypochondriacus SOD (AhSOD) amino acid sequence for globularity and disorder suggested that this protein is mainly disordered; this was confirmed by circular dichroism, which showed the lack of secondary structure. Intrinsic fluorescence studies showed that rAhSOD undergoes conformational changes in two steps by the presence of Cu/Zn, which indicates the presence of two binding sites displaying different affinities for metals ions. Our results show that AhSOD could be classified as an intrinsically disordered protein (IDP) that is folded when metals are bound and with high thermal stability.
Collapse
Affiliation(s)
- Gabriela M Montero-Morán
- División Biología Molecular, IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu Q, Shi C, Yu L, Zhang L, Xiong Y, Tian C. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations. Biochem Biophys Res Commun 2015; 457:467-72. [PMID: 25600810 DOI: 10.1016/j.bbrc.2015.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/07/2015] [Indexed: 11/30/2022]
Abstract
Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of (15)N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S(2)) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S(2)) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S(2) values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S(2) parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S(2) calculated from the experimental NMR relaxation measurements, in a site-specific manner.
Collapse
Affiliation(s)
- Qing Liu
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chaowei Shi
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Lu Yu
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031, PR China
| | - Longhua Zhang
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ying Xiong
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
22
|
Laine JM, Amat M, Morgan BR, Royer WE, Massi F. Insight into the allosteric mechanism of Scapharca dimeric hemoglobin. Biochemistry 2014; 53:7199-210. [PMID: 25356908 PMCID: PMC4245988 DOI: 10.1021/bi500591s] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric regulation is an essential function of many proteins that control a variety of different processes such as catalysis, signal transduction, and gene regulation. Structural rearrangements have historically been considered the main means of communication between different parts of a protein. Recent studies have highlighted the importance, however, of changes in protein flexibility as an effective way to mediate allosteric communication across a protein. Scapharca dimeric hemoglobin (HbI) is the simplest possible allosteric system, with cooperative ligand binding between two identical subunits. Thermodynamic equilibrium studies of the binding of oxygen to HbI have shown that cooperativity is an entropically driven effect. The change in entropy of the system observed upon ligand binding may arise from changes in the protein, the ligand, or the water of the system. The goal of this study is to determine the contribution of the change in entropy of the protein backbone to HbI cooperative binding. Molecular dynamics simulations and nuclear magnetic resonance relaxation techniques have revealed that the fast internal motions of HbI contribute to the cooperative binding to carbon monoxide in two ways: (1) by contributing favorably to the free energy of the system and (2) by participating in the cooperative mechanism at the HbI subunit interface. The internal dynamics of the weakly cooperative HbI mutant, F97Y, were also investigated with the same methods. The changes in backbone NH dynamics observed for F97Y HbI upon ligand binding are not as large as for the wild type, in agreement with the reduced cooperativity observed for this mutant. The results of this study indicate that interface flexibility and backbone conformational entropy of HbI participate in and are important for the cooperative mechanism of carbon monoxide binding.
Collapse
Affiliation(s)
- Jennifer M Laine
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts , Worcester, Massachusetts 01605, United States
| | | | | | | | | |
Collapse
|
23
|
Urbančič I, Ljubetič A, Štrancar J. Resolving Internal Motional Correlations to Complete the Conformational Entropy Meter. J Phys Chem Lett 2014; 5:3593-3600. [PMID: 26278615 DOI: 10.1021/jz5020828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conformational entropy (SΩ) has long been used to theoretically characterize the dynamics of proteins, DNA, and other polymers. Though recent advances enabled its calculation also from simulations and nuclear magnetic resonance (NMR) relaxation experiments, correlated molecular motion has hitherto greatly hindered both numerical and experimental determination, requiring demanding empirical and computational calibrations. Herein, we show that these motional correlations can be estimated directly from the temperature-dependent SΩ series that reveal effective persistence lengths of the polymers, which we demonstrate by measuring SΩ of amphiphilic molecules in model lipid systems by spin-labeling electron paramagnetic resonance (EPR) spectroscopy. We validate our correlation-corrected SΩ meter against the basic biophysical interactions underlying biomembrane formation and stability, against the changes in enthalpy and diffusion coefficients upon phase transitions, and against the energetics of fatty acid dissociation. As the method can be directly applied to conformational analysis of proteins and other polymers, as well as adapted to NMR or polarized fluorescence techniques, we believe that the approach can greatly enrich the scope of experimentally available statistical thermodynamics, offering new physical insights into the behavior of biomolecules.
Collapse
Affiliation(s)
- Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, "Jožef Stefan" Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Laboratory of Biophysics, Condensed Matter Physics Department, "Jožef Stefan" Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Janez Štrancar
- Laboratory of Biophysics, Condensed Matter Physics Department, "Jožef Stefan" Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Suárez D, Díaz N. Direct methods for computing single-molecule entropies from molecular simulations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1195] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Dimas Suárez
- Departamento de Química Física y Analítica; Universidad de Oviedo; Oviedo Spain
| | - Natalia Díaz
- Departamento de Química Física y Analítica; Universidad de Oviedo; Oviedo Spain
| |
Collapse
|
25
|
Kastritis PL, Bonvin AMJJ. Molecular origins of binding affinity: seeking the Archimedean point. Curr Opin Struct Biol 2013; 23:868-77. [PMID: 23876790 DOI: 10.1016/j.sbi.2013.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022]
Abstract
Connecting three dimensional structure and affinity is analogous to seeking the 'Archimedean point', a vantage point from where any observer can quantitatively perceive the subject of inquiry. Here we review current knowledge and challenges that lie ahead of us in the quest for this Archimedean point. We argue that current models are limited in reproducing measured data because molecular description of binding affinity must expand beyond the interfacial contribution and also incorporate effects stemming from conformational changes/dynamics and long-range interactions. Fortunately, explicit modeling of various kinetic schemes underlying biomolecular recognition and confined systems that reflect in vivo interactions are coming within reach. This quest will hopefully lead to an accurate biophysical interpretation of binding affinity that would allow unprecedented understanding of the molecular basis of life through unraveling the why's of interaction networks.
Collapse
Affiliation(s)
- Panagiotis L Kastritis
- Bijvoet Center for Biomolecular Research, Science Faculty - Chemistry, Utrecht University, 3584CH Utrecht, The Netherlands
| | | |
Collapse
|