1
|
Neureiter EG, Erickson-Oberg MQ, Nigam A, Johnson JW. Inhibition of NMDA receptors and other ion channel types by membrane-associated drugs. Front Pharmacol 2025; 16:1561956. [PMID: 40371334 PMCID: PMC12075551 DOI: 10.3389/fphar.2025.1561956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels present at most excitatory synapses in the brain that play essential roles in cognitive functions including learning and memory consolidation. However, NMDAR dysregulation is implicated in many nervous system disorders. Diseases that involve pathological hyperactivity of NMDARs can be treated clinically through inhibition by channel blocking drugs. NMDAR channel block can occur via two known mechanisms. First, in traditional block, charged drug molecules can enter the channel directly from the extracellular solution after NMDAR activation and channel opening. Second, uncharged molecules of channel blocking drug can enter the hydrophobic plasma membrane, and upon NMDAR activation the membrane-associated drug can transit into the channel through a fenestration within the NMDAR. This membrane-associated mechanism of action is called membrane to channel inhibition (MCI) and is not well understood despite the clinical importance of NMDAR channel blocking drugs. Intriguingly, a hydrophobic route of access for drugs is not unique to NMDARs. Our review will address inhibition of NMDARs and other ion channels by membrane-associated drugs and consider how the path of access may affect a drug's therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Xu L, Yan H, Tang Y, Liu Y, Xiang P, Hang T. In vitro and in vivo metabolic study of three new psychoactive β-keto-arylcyclohexylamines. J Anal Toxicol 2024; 48:217-225. [PMID: 38619371 DOI: 10.1093/jat/bkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Since the 2000s, an increasing number of new psychoactive substances have appeared on the illicit drug market. β-Keto-arylcyclohexylamine compounds play important pharmacological roles in anesthesia; however, because these new psychoactive substances have rapidly increasing illicit recreational use, the lack of detailed toxicity data are of particular concern. Therefore, analysis of their metabolites can help forensic personnel provide references and suggestions on whether a suspect has taken an illicit new psychoactive β-keto-arylcyclohexylamine. The present study investigated the in vitro and in vivo metabolism and metabolites of three β-keto-arylcyclohexylamines: deschloro-N-ethyl-ketamine, fluoro-N-ethyl-ketamine and bromoketamine. In vitro and in vivo models were established using zebrafish and human liver microsomes for analysis of Phase I and Phase II metabolites by liquid chromatography-high-resolution mass spectrometry. Altogether, 49 metabolites were identified. The results were applied for the subject urine samples of known fluoro-N-ethyl-ketamine consumer screen analysis in forensic cases. Hydroxy-deschloro-N-ethyl-ketamine, hydroxy-fluoro-N-ethyl-ketamine and hydroxy-bromoketamine were recommended as potential biomarkers for documenting intake in clinical and forensic cases.
Collapse
Affiliation(s)
- Linhao Xu
- School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Jiangning District, Nanjing 211198, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Hui Yan
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Yiling Tang
- School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Jiangning District, Nanjing 211198, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Yu Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Taijun Hang
- School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Jiangning District, Nanjing 211198, China
| |
Collapse
|
3
|
Frankenfeld F, Wagmann L, Abelian A, Wallach J, Adejare A, Brandt SD, Meyer MR. In Vivo and In Vitro Metabolic Fate and Urinary Detectability of Five Deschloroketamine Derivatives Studied by Means of Hyphenated Mass Spectrometry. Metabolites 2024; 14:270. [PMID: 38786747 PMCID: PMC11122975 DOI: 10.3390/metabo14050270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Ketamine derivatives such as deschloroketamine and deschloro-N-ethyl-ketamine show dissociative and psychoactive properties and their abuse as new psychoactive substances (NPSs) has been reported. Though some information is available on the biotransformation of dissociative NPSs, data on deschloro-N-cyclopropyl-ketamine deschloro-N-isopropyl-ketamine and deschloro-N-propyl-ketamine concerning their biotransformation and, thus, urinary detectability are not available. The aims of the presented work were to study the in vivo phase I and II metabolism; in vitro phase I metabolism, using pooled human liver microsomes (pHLMs); and detectability, within a standard urine screening approach (SUSA), of five deschloroketamine derivatives. Metabolism studies were conducted by collecting urine samples from male Wistar rats over a period of 24 h after their administration at 2 mg/kg body weight. The samples were analyzed using liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) and gas chromatography-mass spectrometry (GC-MS). The compounds were mainly metabolized by N-dealkylation, hydroxylation, multiple oxidations, and combinations of these metabolic reactions, as well as glucuronidation and N-acetylation. In total, 29 phase I and 10 phase II metabolites were detected. For the LC-HRMS/MS SUSA, compound-specific metabolites were identified, and suitable screening targets could be recommended and confirmed in pHLMs for all derivatives except for deschloro-N-cyclopropyl-ketamine. Using the GC-MS-based SUSA approach, only non-specific acetylated N-dealkylation metabolites could be detected.
Collapse
Affiliation(s)
- Fabian Frankenfeld
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Anush Abelian
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA
| | - Jason Wallach
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA
| | - Simon D. Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| |
Collapse
|
4
|
Pepe M, Di Nicola M, Cocciolillo F, Chiappini S, Martinotti G, Calcagni ML, Sani G. 3-Methoxy-Phencyclidine Induced Psychotic Disorder: A Literature Review and an 18F-FDG PET/CT Case Report. Pharmaceuticals (Basel) 2024; 17:452. [PMID: 38675413 PMCID: PMC11053433 DOI: 10.3390/ph17040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
New Psychoactive Substances (NPS) are modifying the drug scenario worldwide and have become a public health concern because of their toxicological profiles and their harmful physical/psychological effects. 3-Methoxy-Phencyclidine (3-MeO-PCP), a non-competitive antagonist of glutamate N-methyl-D-aspartate (NMDA) receptors, belongs to the phencyclidine-like subfamily of arylcyclohexylamines and has gained attention for its toxic, sometimes fatal, effects. Despite several cases of intoxication and death reported in the literature, little is known about substance-induced psychotic disorders (SIP) and potential cognitive impairment following 3-MeO-PCP intake. This literature review aimed to summarize available evidence about 3-MeO-PCP mechanisms of action and physical and psychotropic effects and to spread preliminary findings about persistent psychotic symptoms and impaired cognitive functioning. Additionally, the case of an SIP is reported in a 29-year-old man with small oral intakes of 3-MeO-PCP over two weeks until a high dose ingestion. Psychometric and neuropsychological assessment and brain [18F]-fluorodeoxyglucose positron emission tomography integrated with computed tomography were used to support clinical description. Identifying and addressing the characteristic clinical features and neural substrates of NPS-induced psychoses might help clinicians with a more precise differentiation from other psychotic disorders. Although further studies are required, phenotyping the cognitive profile of NPS users might provide targets for tailored therapeutic approaches.
Collapse
Affiliation(s)
- Maria Pepe
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Marco Di Nicola
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Fabrizio Cocciolillo
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Stefania Chiappini
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
- School of Medical Sciences, UniCamillus International University of Medical Sciences, Via di S. Alessandro 8, 00131 Rome, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D’Annunzio, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Maria Lucia Calcagni
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Institute of Nuclear Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
5
|
Xu L, Liu X, Song Z, Xiang P, Hang T, Yan H. In vitro and in vivo metabolism of 3-Methoxyeticyclidine in human liver microsomes, a zebrafish model, and two human urine samples based on liquid chromatography-high-resolution mass spectrometry. Drug Test Anal 2024; 16:30-37. [PMID: 37125436 DOI: 10.1002/dta.3488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
3-Methoxyeticyclidine (3-MeO-PCE), a phencyclidine-type substance, has a higher N-methyl-D-aspartate receptor binding affinity than phencyclidine and an involvement in fatal intoxication cases. The aim of this study was to identify new biomarkers and biotransformation pathways for 3-MeO-PCE. In vitro models were established using zebrafish and human liver microsomes for analysis of the phases I and II metabolites of 3-MeO-PCE by liquid chromatography-high-resolution mass spectrometry. Urine samples of known 3-MeO-PCE consumers in forensic cases were then subjected to analysis. Overall, 14 metabolites were identified in zebrafish and human liver microsomes, allowing postulation of the following metabolic pathways: hydroxylation, O-demethylation, N-dealkylation, dehydrogenation, combination, and glucuronidation or sulfation. 3-MeO-PCE and three metabolites (M2, M3, and M6) were detected in urine. We recommended M2 (the hydroxylation product) as a potential biomarker for documenting 3-MeO-PCE intake in clinical and forensic cases.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinze Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zixuan Song
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Taijun Hang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Yan
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
6
|
Wang PR, Dore S, Weleff J, Butler RS, Barnett BS. Phencyclidine Positivity on Urine Drug Screening in Patients Treated for Alcohol Withdrawal on a Dual-diagnosis Medically Assisted Withdrawal Unit. J Addict Med 2023; 17:695-701. [PMID: 37934534 DOI: 10.1097/adm.0000000000001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
OBJECTIVES Little contemporary research has explored phencyclidine (PCP) use in people with alcohol use disorder. Therefore, we sought to determine the prevalence of PCP positivity on urine toxicology screening among patients admitted for alcohol withdrawal, identify correlates of PCP positivity, and investigate PCP positivity's relationship to length of stay (LOS) and risk of facility readmission. METHODS This was a retrospective study of patients admitted to a dual-diagnosis medically assisted withdrawal unit for alcohol withdrawal from 2014 to 2019. Univariate tests and logistic regression were used to investigate potential correlates of PCP positivity on admission toxicology screening (primary outcome). Multivariable linear regression models and survival analyses analyzing LOS and risk of readmission (secondary outcomes) were also developed. RESULTS Ninety of 3731 patients (2.4%) screened positive for PCP. There were significant associations on univariate testing between PCP positivity and age, race, homeless status, and urine toxicology positivity for amphetamines, benzodiazepines, barbiturates, cocaine, tetrahydrocannabinol, and oxycodone. On multivariate logistic regression, only tetrahydrocannabinol, barbiturates, and cocaine positivity were associated with PCP positivity. Multivariate logistic regression and survival analysis found no statistically significant associations between PCP positivity and LOS or risk of readmission. CONCLUSIONS This study provides rare analysis of contemporary data on PCP use among patients undergoing medically assisted alcohol withdrawal. Phencyclidine positivity was uncommon, but use appears considerably higher among this patient population than the general population. There was no significant association between PCP positivity and LOS or readmission risk.
Collapse
Affiliation(s)
- Philip R Wang
- From the Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH (PRW, SD, BSB); Department of Psychiatry and Psychology, Center for Behavioral Health, Neurological Institute, Cleveland Clinic, Cleveland, OH (JW, BSB); and Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (RSB)
| | | | | | | | | |
Collapse
|
7
|
Characterization of 3-Hydroxyeticyclidine (3-HO-PCE) Metabolism in Human Liver Microsomes and Biological Samples Using High-Resolution Mass Spectrometry. Metabolites 2023; 13:metabo13030432. [PMID: 36984871 PMCID: PMC10055977 DOI: 10.3390/metabo13030432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
3-Hydroxyeticyclidine (3-HO-PCE) is a ketamine derivative that produces dissociative, hallucinogenic, and euphoric effects when consumed, but little is known about its pharmacological properties, metabolism, and toxicity compared to other designer ketamine analogs. To address this gap in knowledge, this study explored for the first time the metabolism of 3-HO-PCE. Based on this investigation, it is hypothesized that combining the use of Human Liver Microsomes (HLM) as an In vitro model with urine and hair samples from drug users may enable the identification of key analytes that can extend the detection window of 3-HO-PCE, particularly in cases of overdose. The analysis identified 15 putative metabolites, 12 of which are produced through phase I metabolism involving N-dealkylation, deamination, and oxidation, and 3 through phase II O-glucuronidation. The metabolism of 3-HO-PCE is similar to that of O-PCE, another designer ketamine of the eticyclidine family. The study identified M2a and hydroxy-PCA as reliable biomarkers for untargeted screening of the eticyclidine family in urine and hair, respectively. For targeted screening of 3-HO-PCE, M10 is recommended as the target analyte in urine, and M5 shows promise for long-term monitoring of 3-HO-PCE using hair analysis.
Collapse
|
8
|
Sajwani HS. The Dilemma of New Psychoactive Substances: A Growing Threat. Saudi Pharm J 2023; 31:348-350. [PMID: 37026049 PMCID: PMC10071313 DOI: 10.1016/j.jsps.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
New psychoactive substances (NPS) pose a major public threat and are a growing problem worldwide. They were designed to replace banned or controlled drugs while escaping quality control measures. Their chemical structure is constantly changed which imposes a major forensic challenge, and makes it difficult for law enforcement measures to track and ban them. Hence, they are called "legal highs" as they replicate illicit drugs whilst remaining legal. Low cost, easy accessibility and less legal liability are the main factors that contribute to the popularity of NPS among the public. This is particularly with the lack of knowledge of the health risks and harms associated with NPS not only amongst the public, but healthcare professionals as well, which further constitutes a challenge for preventative and treatment measures. Further medico-legal investigation, extensive laboratory and non-laboratory analyses, and advanced forensic measures are necessary to identify, schedule and control new psychoactive substances. Besides, additional efforts are required to educate the public and increase their awareness regarding NPS and their potential harms.
Collapse
|
9
|
Simão AY, Antunes M, Cabral E, Oliveira P, Rosendo LM, Brinca AT, Alves E, Marques H, Rosado T, Passarinha LA, Andraus M, Barroso M, Gallardo E. An Update on the Implications of New Psychoactive Substances in Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4869. [PMID: 35457736 PMCID: PMC9028227 DOI: 10.3390/ijerph19084869] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023]
Abstract
The emergence of new psychoactive substances has earned a great deal of attention, and several reports of acute poisoning and deaths have been issued involving, for instance, synthetic opiates. In recent years, there have been profound alterations in the legislation concerning consumption, marketing, and synthesis of these compounds; rapid alert systems have also been subject to changes, and new substances and new markets, mainly through the internet, have appeared. Their effects and how they originate in consumers are still mostly unknown, primarily in what concerns chronic toxicity. This review intends to provide a detailed description of these substances from the point of view of consumption, toxicokinetics, and health consequences, including case reports on intoxications in order to help researchers and public health agents working daily in this area.
Collapse
Affiliation(s)
- Ana Y. Simão
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Mónica Antunes
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal
| | - Emanuel Cabral
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Patrik Oliveira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Ana Teresa Brinca
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Estefânia Alves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Hernâni Marques
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Luís A. Passarinha
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, NOVA School of Science and Technology, Universidade NOVA, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA, 2819-516 Caparica, Portugal
| | | | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| |
Collapse
|
10
|
Frison G, Zancanaro F, Frasson S, Quadretti L, Agnati M, Vlassich F, Gagliardi G, Salerno TMG, Donato P, Mondello L. Analytical Characterization of 3-MeO-PCP and 3-MMC in Seized Products and Biosamples: The Role of LC-HRAM-Orbitrap-MS and Solid Deposition GC-FTIR. Front Chem 2021; 8:618339. [PMID: 33628763 PMCID: PMC7897676 DOI: 10.3389/fchem.2020.618339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Among the phencyclidine (PCP) and synthetic cathinone analogs present on the street market, 3-methoxyphencyclidine (3-MeO-PCP) is one of the most popular dissociative hallucinogen drugs, while 3-methylmethcathinone (3-MMC) is a commonly encountered psychostimulant. Numerous 3-MeO-PCP- and 3-MMC-related intoxication cases have been reported worldwide. Identification of the positional isomers of MeO-PCP and MMC families are particularly challenging for clinical and forensic laboratories; this is mostly due to their difficult chromatographic separation (particularly when using liquid chromatography–LC) and similar mass spectrometric behaviors. 3-MeO-PCP and 3-MMC were identified in two powders, detained by two subjects and seized by the police, by different analytical techniques, including liquid chromatography-high-resolution accurate-mass Orbitrap mass spectrometry (LC-HRAM-Orbitrap-MS), and solid deposition gas chromatography-Fourier transform infrared spectroscopy (sd-GC-FTIR). LC-HRAM-Orbitrap-MS allowed us to assign the elemental formulae C18H27NO (MeO-PCP) and C11H15NO (MMC) through accurate mass measurement of the two MH+ ions, and the comparison of experimental and calculated MH+ isotopic patterns. However, MH+ collision-induced product ions spectra were not conclusive in discriminating between the positional isomers [(3-MeO-PCP vs. 4-MeO-PCP) and (3-MMC vs. 4-MMC and 2-MMC)]. Likewise, sd-GC-FTIR easily allowed us to differentiate between the MeO-PCP and MMC positional isomers unambiguously, confirming the presence of 3-MeO-PCP and 3-MMC, due to the high-quality match factor of the experimental FTIR spectra against the target FTIR spectra of MeO-PCP and MMC isomers in a dedicated library. 3-MeO-PCP (in contrast to 3-MMC) was also detected in blood and urine samples of both subjects and analyzed in the context of routine forensic casework by LC-HRAM-Orbitrap-MS following a simple deproteinization step. In addition, this untargeted approach allowed us to detect dozens of phase I and phase II 3-MeO-PCP metabolites in all biological specimens. Analysis of the extracted samples by sd-GC-FTIR revealed the presence of 3-MeO-PCP, thus confirming the intake of such specific methoxy-PCP isomer in both cases. These results highlight the effectiveness of LC-HRAM-Orbitrap-MS and sd-GC-FTIR data in attaining full structural characterization of the psychoactive drugs, even in absence of reference standards, in both non-biological and biological specimens.
Collapse
Affiliation(s)
- Giampietro Frison
- Laboratory of Environmental Hygiene and Forensic Toxicology, DMPO Department, AULSS 3, Venice, Italy
| | - Flavio Zancanaro
- Laboratory of Environmental Hygiene and Forensic Toxicology, DMPO Department, AULSS 3, Venice, Italy
| | - Samuela Frasson
- Laboratory of Environmental Hygiene and Forensic Toxicology, DMPO Department, AULSS 3, Venice, Italy
| | - Laura Quadretti
- Emergency Department Unit, Madonna della Salute Hospital, AULSS 5, Porto Viro (Rovigo), Italy
| | - Michele Agnati
- Emergency Department Unit, Madonna della Salute Hospital, AULSS 5, Porto Viro (Rovigo), Italy
| | - Francesca Vlassich
- Intensive Care Unit, Madonna della Salute Hospital, AULSS 5, Porto Viro (Rovigo), Italy
| | - Giuseppe Gagliardi
- Department of Anesthesiology and Intensive Care, AULSS 5, Porto Viro (Rovigo), Italy
| | - Tania Maria Grazia Salerno
- BeSep S.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paola Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- BeSep S.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Chromaleont S.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Research Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
11
|
Ryu IS, Kim OH, Lee YE, Kim JS, Li ZH, Kim TW, Lim RN, Lee YJ, Cheong JH, Kim HJ, Lee YS, Steffensen SC, Lee BH, Seo JW, Jang EY. The Abuse Potential of Novel Synthetic Phencyclidine Derivative 1-(1-(4-Fluorophenyl)Cyclohexyl)Piperidine (4'-F-PCP) in Rodents. Int J Mol Sci 2020; 21:ijms21134631. [PMID: 32610694 PMCID: PMC7369973 DOI: 10.3390/ijms21134631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The dissociative anesthetic phencyclidine (PCP) and PCP derivatives, including 4′-F-PCP, are illegally sold and abused worldwide for recreational and non-medical uses. The psychopharmacological properties and abuse potential of 4′-F-PCP have not been fully characterized. In this study, we evaluated the psychomotor, rewarding, and reinforcing properties of 4′-F-PCP using the open-field test, conditioned place preference (CPP), and self-administration paradigms in rodents. Using Western immunoblotting, we also investigated the expression of dopamine (DA)-related proteins and DA-receptor-mediated downstream signaling cascades in the nucleus accumbens (NAc) of 4′-F-PCP-self-administering rats. Intraperitoneal administration of 10 mg/kg 4′-F-PCP significantly increased locomotor and rearing activities and increased CPP in mice. Intravenous administration of 1.0 mg/kg/infusion of 4′-F-PCP significantly enhanced self-administration during a 2 h session under fixed ratio schedules, showed a higher breakpoint during a 6 h session under progressive ratio schedules of reinforcement, and significantly altered the expression of DA transporter and DA D1 receptor in the NAc of rats self-administering 1.0 mg/kg 4′-F-PCP. Additionally, the expression of phosphorylated (p) ERK, pCREB, c-Fos, and FosB/ΔFosB in the NAc was significantly enhanced by 1.0 mg/kg 4′-F-PCP self-administration. Taken together, these findings suggest that 4′-F-PCP has a high potential for abuse, given its robust psychomotor, rewarding, and reinforcing properties via activation of DAergic neurotransmission and the downstream signaling pathways in the NAc.
Collapse
Affiliation(s)
- In Soo Ryu
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Oc-Hee Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Young Eun Lee
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Ji Sun Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Zhan-Hui Li
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Tae Wan Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Ri-Na Lim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Young Ju Lee
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Bong Hyo Lee
- Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea
| | - Joung-Wook Seo
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Eun Young Jang
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea
| |
Collapse
|
12
|
Luethi D, Liechti ME. Designer drugs: mechanism of action and adverse effects. Arch Toxicol 2020; 94:1085-1133. [PMID: 32249347 PMCID: PMC7225206 DOI: 10.1007/s00204-020-02693-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Psychoactive substances with chemical structures or pharmacological profiles that are similar to traditional drugs of abuse continue to emerge on the recreational drug market. Internet vendors may at least temporarily sell these so-called designer drugs without adhering to legal statutes or facing legal consequences. Overall, the mechanism of action and adverse effects of designer drugs are similar to traditional drugs of abuse. Stimulants, such as amphetamines and cathinones, primarily interact with monoamine transporters and mostly induce sympathomimetic adverse effects. Agonism at μ-opioid receptors and γ-aminobutyric acid-A (GABAA) or GABAB receptors mediates the pharmacological effects of sedatives, which may induce cardiorespiratory depression. Dissociative designer drugs primarily act as N-methyl-D-aspartate receptor antagonists and pose similar health risks as the medically approved dissociative anesthetic ketamine. The cannabinoid type 1 (CB1) receptor is thought to drive the psychoactive effects of synthetic cannabinoids, which are associated with a less desirable effect profile and more severe adverse effects compared with cannabis. Serotonergic 5-hydroxytryptamine-2A (5-HT2A) receptors mediate alterations of perception and cognition that are induced by serotonergic psychedelics. Because of their novelty, designer drugs may remain undetected by routine drug screening, thus hampering evaluations of adverse effects. Intoxication reports suggest that several designer drugs are used concurrently, posing a high risk for severe adverse effects and even death.
Collapse
Affiliation(s)
- Dino Luethi
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Währinger Strasse 13a, 1090, Vienna, Austria.
- Institute of Applied Physics, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria.
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| |
Collapse
|
13
|
Elliott SP, Holdbrook T, Brandt SD. Prodrugs of New Psychoactive Substances (NPS): A New Challenge. J Forensic Sci 2020; 65:913-920. [DOI: 10.1111/1556-4029.14268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Simon P. Elliott
- Elliott Forensic Consulting Birmingham U.K
- Department of Analytical, Environmental and Forensic Sciences King’s College London London U.K
| | - Tanith Holdbrook
- Department of Analytical, Environmental and Forensic Sciences King’s College London London U.K
| | - Simon D. Brandt
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University Liverpool U.K
| |
Collapse
|
14
|
Wallach J, Colestock T, Agramunt J, Claydon MDB, Dybek M, Filemban N, Chatha M, Halberstadt AL, Brandt SD, Lodge D, Bortolotto ZA, Adejare A. Pharmacological characterizations of the 'legal high' fluorolintane and isomers. Eur J Pharmacol 2019; 857:172427. [PMID: 31152702 DOI: 10.1016/j.ejphar.2019.172427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022]
Abstract
1,2-Diarylethylamines represent a class of molecules that have shown potential in the treatment of pain, epilepsy, neurodegenerative disease and depression. Examples include lefetamine, remacemide, and lanicemine. Recently, several 1,2-diarylethylamines including the dissociatives diphenidine, methoxphenidine and ephenidine as well as the opioid MT-45, have appeared as 'research chemicals' or 'legal highs'. Due to their recent emergence little is known about their pharmacology. One of these, 1-[1-(2-fluorophenyl)-2-phenylethyl]pyrrolidine (fluorolintane, 2-F-DPPy), is available for purchase with purported dissociative effects intended to resemble phencyclidine (PCP) and ketamine. To better understand this emerging class, pharmacological investigations were undertaken for the first time on fluorolintane and its five aryl-fluorine-substituted isomers. In vitro binding studies revealed high affinity for N-methyl-D-aspartate (NMDA) receptors with fluorolintane (Ki = 87.92 nM) with lesser affinities for related compounds. Additional affinities were seen for all compounds at several sites including norepinephrine (NET), serotonin (SERT) and dopamine (DAT) transporters, and sigma receptors. Notably high affinities at DAT were observed, which were in most cases greater than NMDA receptor affinities. Additional functional and behavioral experiments show fluorolintane inhibited NMDA receptor-induced field excitatory postsynaptic potentials in rat hippocampal slices and inhibited long-term potentiation induced by theta-burst stimulation in rat hippocampal slices with potencies consistent with its NMDA receptor antagonism. Finally fluorolintane inhibited prepulse inhibition in rats, a measure of sensorimotor gating, with a median effective dose (ED50) of 13.3 mg/kg. These findings are consistent with anecdotal reports of dissociative effects of fluorolintane in humans.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA; Substance Use Disorders Institute, University of the Sciences, Philadelphia, PA, USA.
| | - Tristan Colestock
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Julià Agramunt
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Matt D B Claydon
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Michael Dybek
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, USA
| | - Nadine Filemban
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Muhammad Chatha
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - David Lodge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA; Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
15
|
Dybek M, Wallach J, Kavanagh PV, Colestock T, Filemban N, Dowling G, Westphal F, Elliott SP, Adejare A, Brandt SD. Syntheses and analytical characterizations of the research chemical 1-[1-(2-fluorophenyl)-2-phenylethyl]pyrrolidine (fluorolintane) and five of its isomers. Drug Test Anal 2019; 11:1144-1161. [PMID: 31033229 DOI: 10.1002/dta.2608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/13/2023]
Abstract
A number of substances based on the 1,2-diarylethylamine template have been investigated for various potential clinical applications whereas others have been encountered as research chemicals sold for non-medical use. Some of these substances have transpired to function as NMDA receptor antagonists that elicit dissociative effects in people who use these substances recreationally. 1-[1-(2-Fluorophenyl)-2-phenylethyl]pyrrolidine (fluorolintane, 2-F-DPPy) has recently appeared as a research chemical, which users report has dissociative effects. One common difficulty encountered by stakeholders confronting the appearance of new psychoactive substances is the presence of positional isomers. In the case of fluorolintane, the presence of the fluorine substituent on either the phenyl and benzyl moieties of the 1,2-diarylethylamine structure results in a total number of six possible racemic isomers, namely 2-F-, 3-F-, and 4-F-DPPy (phenyl ring substituents) and 2"-F-, 3"-F-, and 4"-F-DPPy (benzyl ring substituents). The present study reports the chemical syntheses and comprehensive analytical characterizations of the two sets of three positional isomers. These studies included various low- and high-resolution mass spectrometry platforms, gas- and liquid chromatography (GC and LC), nuclear magnetic resonance (NMR) spectroscopy and GC-condensed phase and attenuated total reflection infrared spectroscopy analyses. The differentiation between each set of three isomers was possible under a variety of experimental conditions including GC chemical ionization triple quadrupole tandem mass spectrometric analysis of the [M + H - HF]+ species. The latter MS method was particularly helpful as it revealed distinct formations of product ions for each of the six investigated substances.
Collapse
Affiliation(s)
- Michael Dybek
- Department of Chemistry and Biochemistry, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| | - Jason Wallach
- Department of Pharmaceutical Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| | - Pierce V Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James's Hospital, James's Street, Dublin, 8 D08W9RT, Ireland
| | - Tristan Colestock
- Department of Pharmaceutical Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| | - Nadine Filemban
- Department of Pharmaceutical Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| | - Geraldine Dowling
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James's Hospital, James's Street, Dublin, 8 D08W9RT, Ireland.,Department of Life Sciences, School of Science, Sligo Institute of Technology, Ash Lane, Sligo, F91YW50, Ireland
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, Section Narcotics/Toxicology, Mühlenweg 166, D-24116, Kiel, Germany
| | | | - Adeboye Adejare
- Department of Pharmaceutical Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
16
|
Wallach J, Brandt SD. 1,2-Diarylethylamine- and Ketamine-Based New Psychoactive Substances. Handb Exp Pharmacol 2018; 252:305-352. [PMID: 30196446 DOI: 10.1007/164_2018_148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While phencyclidine (PCP) and ketamine remain the most well-studied and widely known dissociative drugs, a number of other agents have appeared since the late 1950s and early 1960s, when the pharmacological potential of this class was first realized. For example, hundreds of compounds have been pursued as part of legitimate research efforts to explore these agents. Some of these found their way out of the research labs and onto illicit markets of the 1960s and following decades as PCP analogs. Other "illicit analogs" apparently never appeared in the scientific literature prior to their existence on clandestine markets, thus originating as novel innovations in the minds of clandestine chemists and their colleagues. Like so much else in this world, new technologies changed this dynamic. In the 1990s individuals separated by vast geographical distances could now communicate nearly instantaneously with ease through the Internet. Some individuals used this newly found opportunity to discuss the chemistry and psychoactive effects of dissociative drugs as well as to collaborate on the design and development of novel dissociative compounds. Similar to modern pharmaceutical companies and academic researchers, these seekers tinkered with the structure of their leads pursuing goals such as improved duration of action, analgesic effects, and reduced toxicity. Whether all these goals were achieved for any individual compound remains to be seen, but their creations have been let out of the bag and are now materialized as defined compositions of matter. Moreover, these creations now exist not only in and of themselves but live on further as permutations into various novel analogs and derivatives. In some cases these compounds have made their way to academic labs where potential clinical applications have been identified. These compounds reached wider distribution when other individuals picked up on these discussions and began to market them as "research chemicals" or "legal highs". The result is a continuously evolving game that is being played between legislatures, law enforcement, and research chemical market players. Two structurally distinct classes that have appeared as dissociative-based new psychoactive substances (NPS) are the 1,2-diarylethylamines and β-keto-arylcyclohexylamines. Examples of the former include diphenidine and various analogs such as fluorolintane and N-ethyl-lanicemine, and examples of the latter are analogs of ketamine such as methoxetamine, deschloroketamine, and 2-fluoro-2-deschloroketamine. The subject of this chapter is the introduction to some of the dissociative NPS from these classes and their known pharmacology that have emerged on the market in recent years.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA.
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|