1
|
Aguilera J, Navarrete-de Gálvez E, El Houssaini A, Soto-Lara F, Herrera-Ceballos E, de Gálvez MV. The topical application of different galenic formulations can alter the thermographic images of skin: Limitations for public thermal screening on infection control situations. Am J Infect Control 2024; 52:400-409. [PMID: 37422066 DOI: 10.1016/j.ajic.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND To analyze whether the application of topical formulas as cosmetics or sunscreens could affect the skin thermographic readings in terms of infection control in pandemic situations. METHODS The temperature of the skin of the dorsal region of the back and the face of 20 volunteers was followed after the application of 6 different types of gels, sunscreens, and make-up under controlled temperature and humidity conditions. High-resolution thermographic images were analyzed to calculate the temperature of treated skin compared to skin free of topical products. RESULTS The application of hydroalcoholic gel resulted in a mean drop of more than 2°C just after 1 minute followed by organic sunscreens until 1.7°C. Recovery was observed progressively until minute 9. Color make-up type formulas, rich in iron oxide as well as sunscreens with mineral filters had little or no effect on the skin thermal response. CONCLUSIONS It is possible to alter the skin temperature almost immediately by using hydroalcoholic gels and sunscreen cosmetics. So, it is possible to produce false negative data in the readings of patients screened thermically.
Collapse
Affiliation(s)
- José Aguilera
- Photobiological Dermatology Laboratory Medical Research Centre, Department of Dermatology and Medicine, School of Medicine, University of Malaga, Malaga, Spain.
| | - Enrique Navarrete-de Gálvez
- Project Engineering Area, Department of Graphic Expression Design and Projects, University of Malaga, Malaga, Spain
| | - Ali El Houssaini
- Neurological Rehabilitation Clinic Godeshöhe (Johanniter), Bonn, Germany
| | - Francisco Soto-Lara
- Project Engineering Area, Department of Graphic Expression Design and Projects, University of Malaga, Malaga, Spain
| | - Enrique Herrera-Ceballos
- Photobiological Dermatology Laboratory Medical Research Centre, Department of Dermatology and Medicine, School of Medicine, University of Malaga, Malaga, Spain
| | - María V de Gálvez
- Photobiological Dermatology Laboratory Medical Research Centre, Department of Dermatology and Medicine, School of Medicine, University of Malaga, Malaga, Spain
| |
Collapse
|
2
|
Leo H, Saddami K, Roslidar, Muharar R, Munadi K, Arnia F. Lightweight convolutional neural network (CNN) model for obesity early detection using thermal images. Digit Health 2024; 10:20552076241271639. [PMID: 39193310 PMCID: PMC11348482 DOI: 10.1177/20552076241271639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/05/2024] [Indexed: 08/29/2024] Open
Abstract
Objective The presence of a lightweight convolutional neural network (CNN) model with a high-accuracy rate and low complexity can be useful in building an early obesity detection system, especially on mobile-based applications. The previous works of the CNN model for obesity detection were focused on the accuracy performances without considering the complexity size. In this study, we aim to build a new lightweight CNN model that can accurately classify normal and obese thermograms with low complexity sizes. Methods The DenseNet201 CNN architectures were modified by replacing the standard convolution layers with multiple depthwise and pointwise convolution layers from the MobileNet architectures. Then, the depth network of the dense block was reduced to determine which depths were the most comparable to obtain minimum validation losses. The proposed model then was compared with state-of-the-art DenseNet and MobileNet CNN models in terms of classification performances, and complexity size, which is measured in model size and computation cost. Results The results of the testing experiment show that the proposed model has achieved an accuracy of 81.54% with a model size of 1.44 megabyte (MB). This accuracy was comparable to that of DenseNet, which was 83.08%. However, DenseNet's model size was 71.77 MB. On the other hand, the proposed model's accuracy was higher than that of MobileNetV2, which was 79.23%, with a computation cost of 0.69 billion floating-point operations per second (GFLOPS), which approximated that of MobileNetV2, which was 0.59 GFLOPS. Conclusions The proposed model inherited the feature-extracting ability from the DenseNet201 architecture while keeping the lightweight complexity characteristic of the MobileNet architecture.
Collapse
Affiliation(s)
- Hendrik Leo
- Postgraduate School of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairun Saddami
- Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Telematics Research Center, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Roslidar
- Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Rusdha Muharar
- Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairul Munadi
- Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Fitri Arnia
- Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Telematics Research Center, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
3
|
Ricci M, De Feo MS, Granese GM, Frantellizzi V, Carabellese B, Lubrano E, Cimini A. 18F-FDG PET/CT technology for the assessment of brown adipose tissue: an updated review. Expert Rev Med Devices 2023; 20:1143-1156. [PMID: 37965719 DOI: 10.1080/17434440.2023.2283618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
INTRODUCTION This review provides an update of 18 F-fluorodeoxyglucose ([18F] FDG) for Brown adipose tissue (BAT) activity quantification, whose role is not completely understood. AREAS COVERED We conducted an unstructured search of the literature for any studies employing the [18F] FDG PET in BAT assessment. We explored BAT quantification both in healthy individuals and in different pathologies, after cold exposure and as a metabolic biomarker. The assessment of possible BAT modulators by using [18F] FDG PET is shown. Further PET tracers and novel developments for BAT assessments are also described. EXPERT OPINION Further PET tracers and imaging modalities are under investigation, but the [18F] FDG PET is currently the method of choice for the evaluation of BAT and further multicentric trials are needed for a better understanding of the BAT physiopathology, also after cold stimuli. The modulation of BAT activity, assessed by [18F] FDG PET imaging, seems a promising tool for the management of conditions such as obesity and type 2 diabetes. Moreover, an interesting possible correlation of BAT activation with prognostic [18F] FDG PET indices in cancer patients should be assessed with further multicentric trials.
Collapse
Affiliation(s)
- Maria Ricci
- Nuclear Medicine Unit, Cardarelli Hospital, Campobasso, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | - Giorgia Maria Granese
- Department of Radiological Sciences Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | | | - Ennio Lubrano
- Dipartimento di Medicina e Scienze della Salute, Università degli Studi del Molise, Italy
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, L'Aquila, Italy
| |
Collapse
|
4
|
May thermal imaging be useful in early diagnosis of lower extremities chronic venous disease? POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2023. [DOI: 10.2478/pjmpe-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Abstract
Introduction: World statistics confirmed that about 40-50% of men and 50-55% of women suffer from chronic venous disease. Currently, the Duplex ultrasound is the leading diagnostic method for chronic venous disease (CVD), but it has some limitations. Therefore, it is important to find a new diagnostic technique that will provide additional parameters, describing not only structural but also early metabolic and functional changes.
Materials and Methods: This study aimed to demonstrate the usefulness of the thermal imaging technique in the diagnosis of chronic venous disease. Results were obtained for two groups: 61 patients suffering from the primary chronic venous disease (CVD group) and 30 healthy people (control group). The obtained results compared the thermal imaging parameters to data obtained from the ultrasound examination. Parameters such as the reflux duration and extent of the CEAP classification were correlated with the mean temperature of the limb, the mean temperature of the lesion (determined using two methods), and the thermal range. Based on data obtained during the study, correlation coefficients were calculated for individual parameters.
Results: The results obtained show that the mean limb temperature, and especially the mean temperature of a proposed isothermal area, is significantly correlated with the range of reflux. The conducted tests showed the correlation between some thermal and ultrasonic parameters determined by Spearman's coefficient is 0.4 (p < 0.05).
Conclusions: Thus, parameters such as the isothermal area and the thermal range may be used as a preliminary quantitative diagnosis, similarly to those derived from the Duplex ultrasound.
Collapse
|
5
|
Liu S, Zhao Z, Wang Z, Diao T, Zhang K, Zhang H, Sun D, Kong F, Fu Q. Establishing a Thermal Imaging Technology (IRT) Based System for Evaluating Rat Erectile Function. Sex Med 2022; 10:100475. [PMID: 34999483 PMCID: PMC8847846 DOI: 10.1016/j.esxm.2021.100475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Measurement of intra-cavernous pressure (ICP) is an internationally recognized method to evaluate erectile function of animals, however, this process is invasive, destructive, and cannot be repeated, leading to a daunting challenge for monitoring the changes in erectile function throughout the whole treatment duration. Aim To verify whether infrared ray thermography technology based system could be a good substitution of ICP for evaluating rat erectile function. Methods A novel thermal image-based method, infrared ray thermography technology (IRT) was employed to monitor erectile function in erectile dysfunction (ED) rats. To detect the sensitivity and specificity of this new technology, 4 ED rat models (Diabetic, nerve-injury, vascular-injury and aged ED models) were established and subjected to both ICP and IRT test. Outcomes Statistical comparisons were done to test the effectiveness of this new way for detecting and dynamically monitoring erectile function. Results Based on the data curves obtained from ICP and IRT, the IRT showed a similar trend (including peak value, climbing speed) as that of ICP. IRT is considered as a precise way to monitor the real-time changes of erectile function in all ED rat models. The AUC of peak temperature detected by IRT in DMED, aged ED, vascular-injury ED, the nerve-injury ED and total ED rat models were 0.9811,0.9836,0.9893,0.9989 and 0.9882, respectively. Meanwhile, the AUC of temperature climbing rate were 0.6486,0.8357,0.9184,0.8675and 0.8168.Also,it is a non-invasive process of dynamically monitoring erectile function of a same rat at different time points (before and after drug intervention). The data showed that the real-time recovery by tadalafil was obtained by IRT methods even after treatment for only 2 weeks in the diabetic ED (DMED) rat model. Conclusion A novel noninvasive method for monitoring erectile function in rat ED models was established, and can replace or supplement ICP test. Liu S, Zhao Z, Wang Z et al. Establishing a Thermal Imaging Technology (IRT) Based System for Evaluating Rat Erectile Function. Sex Med 2022;10:100475.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China; Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, SD, China
| | - Zhendong Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China; Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, SD, China
| | - Ziwen Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Tongxiang Diao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Dingqi Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Feng Kong
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China; Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, SD, China.
| |
Collapse
|
6
|
Brasil S, Renck AC, de Meneck F, Brioschi ML, Costa EF, Teixeira MJ. A systematic review on the role of infrared thermography in the Brown adipose tissue assessment. Rev Endocr Metab Disord 2020; 21:37-44. [PMID: 31965434 DOI: 10.1007/s11154-020-09539-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brown adipose tissue (BAT) is an endocrine adipose tissue with attributes to dissipate energy as heat in response to changes in temperature and diet. Infrared thermography (IRT) has been studied in recent years in the assessment of BAT thermogenesis, as an option to positron emission tomography - computed tomography (PET-CT), because of several advantages. We performed a systematic review on the use of IRT in BAT assessment. Comprehensive online search was performed in different databases. The QUADAS 2 tool was used to evaluate studies' quality. 12 studies fit the inclusion criteria, whereas only one of these was considered of low risk of bias. 10 studies were favorable to IRT appliance in BAT evaluation, observing elevation of supraclavicular skin temperature correlated with BAT activity. Studies were heterogeneous in design, and a meta-analysis was precluded. Further studies with similar methodologies are needed. Conclusion: Despite the large number of published methodologies, IRT is a promising method for detecting BAT activation. Current knowledge already allows a better understanding of thermography to improve and standardize the technique.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurological Surgery. Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Alessandra C Renck
- Department of Endocrinology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Franciele de Meneck
- Department of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Marcos L Brioschi
- Division of Neurological Surgery. Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elaine F Costa
- Department of Endocrinology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Manoel J Teixeira
- Division of Neurological Surgery. Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Jimenez‐Pavon D, Corral‐Perez J, Sánchez‐Infantes D, Villarroya F, Ruiz JR, Martinez‐Tellez B. Infrared Thermography for Estimating Supraclavicular Skin Temperature and BAT Activity in Humans: A Systematic Review. Obesity (Silver Spring) 2019; 27:1932-1949. [PMID: 31691547 PMCID: PMC6899990 DOI: 10.1002/oby.22635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Brown adipose tissue (BAT) is a thermogenic tissue with potential as a therapeutic target in the treatment of obesity and related metabolic disorders. The most used technique for quantifying human BAT activity is the measurement of 18 F-fluorodeoxyglucose uptake via a positron emission tomography/computed tomography scan following exposure to cold. However, several studies have indicated the measurement of the supraclavicular skin temperature (SST) by infrared thermography (IRT) to be a less invasive alternative. This work reviews the state of the art of this latter method as a means of determining BAT activity in humans. METHODS The data sources for this review were PubMed, Web of Science, and EBSCOhost (SPORTdiscus), and eligible studies were those conducted in humans. RESULTS In most studies in which participants were first cooled, an increase in IRT-measured SST was noted. However, only 5 of 24 such studies also involved a nuclear technique that confirmed increased activity in BAT, and only 2 took into account the thickness of the fat layer when measuring SST by IRT. CONCLUSIONS More work is needed to understand the involvement of tissues other than BAT in determining IRT-measured SST; at present, IRT cannot determine whether any increase in SST is due to increased BAT activity.
Collapse
Affiliation(s)
- David Jimenez‐Pavon
- MOVE‐IT Research Group, Department of Physical Education, Faculty of Education SciencesUniversity of CádizCádizSpain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of CádizCádizSpain
| | - Juan Corral‐Perez
- MOVE‐IT Research Group, Department of Physical Education, Faculty of Education SciencesUniversity of CádizCádizSpain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of CádizCádizSpain
| | - David Sánchez‐Infantes
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBadalonaBarcelonaSpain
- Biomedical Research Center (Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
| | - Francesc Villarroya
- Biomedical Research Center (Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
- Department of Biochemistry and Molecular BiomedicineInstitute of BiomedicineBarcelonaSpain
| | - Jonatan R. Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesSport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
| | - Borja Martinez‐Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesSport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CentreLeidenthe Netherlands
| |
Collapse
|
8
|
Law JM, Morris DE, Astle V, Finn E, Muros JJ, Robinson LJ, Randell T, Denvir L, Symonds ME, Budge H. Brown Adipose Tissue Response to Cold Stimulation Is Reduced in Girls With Autoimmune Hypothyroidism. J Endocr Soc 2019; 3:2411-2426. [PMID: 31777769 PMCID: PMC6872489 DOI: 10.1210/js.2019-00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/04/2019] [Indexed: 01/15/2023] Open
Abstract
Objective The interaction between thyroid status and brown adipose tissue (BAT) activation is complex. We assessed the effect of autoimmune hypothyroidism (ATD) in female children on BAT activation, measured using infrared thermography. Design Twenty-six female participants (14 with ATD and 12 healthy controls) between 5 and 17 years of age attended a single study session. Thermal images were taken of the supraclavicular region before, and after, the introduction of a cool stimulus. Results Participants with ATD had lower resting (hypothyroid, 34.9 ± 0.7°C; control, 35.4 ± 0.5°C; P = 0.03) and stimulated (hypothyroid, 35.0 ± 0.6°C; control, 35.5 ± 0.5°C; P = 0.04) supraclavicular temperatures compared with controls, but there was no difference between groups in the temperature increase with stimulation. BAT activation, calculated as the relative temperature change comparing the supraclavicular temperature to a sternal reference region, was reduced in participants with ATD (hypothyroid, 0.1 ± 0.1°C; control, 0.2 ± 0.2°C; P = 0.04). Children with ATD were frequently biochemically euthyroid due to replacement therapy, but, despite this, increased relative supraclavicular temperature was closely associated with increased TSH (r = 0.7, P = 0.01) concentrations. Conclusions Girls with ATD had an attenuated thermogenic response to cold stimulation compared with healthy controls, but, contrary to expectation, those with suboptimal biochemical control (with higher TSH) showed increased BAT activation. This suggests that the underlying disease process may have a negative effect on BAT response, but high levels of TSH can mitigate, and even stimulate, BAT activity. In summary, thyroid status is a complex determinant of BAT activity in girls with ATD.
Collapse
Affiliation(s)
- James M Law
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - David E Morris
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Valerie Astle
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Ellie Finn
- School of Medicine, Monash University, Melbourne, Victoria, Australia
| | - José Joaquín Muros
- Department of Food Science, School of Pharmacy, University of Granada, Granada, Spain
| | - Lindsay J Robinson
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| | - Tabitha Randell
- Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Louise Denvir
- Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Disease Centre and Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Helen Budge
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
9
|
Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Sci Rep 2019; 9:9104. [PMID: 31235722 PMCID: PMC6591281 DOI: 10.1038/s41598-019-45540-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/05/2019] [Indexed: 12/01/2022] Open
Abstract
Brown adipose tissue (BAT) is able to rapidly generate heat and metabolise macronutrients, such as glucose and lipids, through activation of mitochondrial uncoupling protein 1 (UCP1). Diet can modulate UCP1 function but the capacity of individual nutrients to promote the abundance and activity of UCP1 is not well established. Caffeine consumption has been associated with loss of body weight and increased energy expenditure, but whether it can activate UCP1 is unknown. This study examined the effect of caffeine on BAT thermogenesis in vitro and in vivo. Stem cell-derived adipocytes exposed to caffeine (1 mM) showed increased UCP1 protein abundance and cell metabolism with enhanced oxygen consumption and proton leak. These functional responses were associated with browning-like structural changes in mitochondrial and lipid droplet content. Caffeine also increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial biogenesis, together with a number of BAT selective and beige gene markers. In vivo, drinking coffee (but not water) stimulated the temperature of the supraclavicular region, which co-locates to the main region of BAT in adult humans, and is indicative of thermogenesis. Taken together, these results demonstrate that caffeine can promote BAT function at thermoneutrality and may have the potential to be used therapeutically in adult humans.
Collapse
|