1
|
Gallou-Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross MS, Taurelle J, Vigé A, Breton C, Reusens B, Remacle C, Vieau D, Ekström TJ, Jais JP, Junien C. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 2010; 5:e14398. [PMID: 21200436 PMCID: PMC3006175 DOI: 10.1371/journal.pone.0014398] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable. METHODS AND FINDINGS We investigated whether a high-fat diet (HFD) during pregnancy modified the expression of imprinted genes and local and global DNA methylation patterns in the placenta. Pregnant mice were fed a HFD or a control diet (CD) during the first 15 days of gestation. We compared gene expression patterns in total placenta homogenates, for male and female offspring, by the RT-qPCR analysis of 20 imprinted genes. Sexual dimorphism and sensitivity to diet were observed for nine genes from four clusters on chromosomes 6, 7, 12 and 17. As assessed by in situ hybridization, these changes were not due to variation in the proportions of the placental layers. Bisulphite-sequencing analysis of 30 CpGs within the differentially methylated region (DMR) of the chromosome 17 cluster revealed sex- and diet-specific differential methylation of individual CpGs in two conspicuous subregions. Bioinformatic analysis suggested that these differentially methylated CpGs might lie within recognition elements or binding sites for transcription factors or factors involved in chromatin remodelling. Placental global DNA methylation, as assessed by the LUMA technique, was also sexually dimorphic on the CD, with lower methylation levels in male than in female placentae. The HFD led to global DNA hypomethylation only in female placenta. Bisulphite pyrosequencing showed that neither B1 nor LINE repetitive elements could account for these differences in DNA methylation. CONCLUSIONS A HFD during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes important in the control of many cellular, metabolic and physiological functions potentially involved in adaptation and/or evolution. These findings highlight the importance of studying both sexes in epidemiological protocols and dietary interventions.
Collapse
Affiliation(s)
- Catherine Gallou-Kabani
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Anne Gabory
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
- INRA, UMR1198, UMR INRA/ENV Maisons-Alfort/CNRS: Biologie du Développement et Reproduction, (ENV Maisons-Alfort; CNRS), Physiologie Animale et Systèmes d'Elevage, Centre de recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Jörg Tost
- Laboratoire d'Epigénétique, CEA - Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Mohsen Karimi
- Laboratory for Medical Epigenetics, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Mayeur
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Jean Lesage
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Elsa Boudadi
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Marie-Sylvie Gross
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Julien Taurelle
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Alexandre Vigé
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Christophe Breton
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Brigitte Reusens
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Claude Remacle
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Didier Vieau
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Tomas J. Ekström
- Laboratory for Medical Epigenetics, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claudine Junien
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
- INRA, UMR1198, UMR INRA/ENV Maisons-Alfort/CNRS: Biologie du Développement et Reproduction, (ENV Maisons-Alfort; CNRS), Physiologie Animale et Systèmes d'Elevage, Centre de recherche de Jouy-en-Josas, Jouy-en-Josas, France
| |
Collapse
|
2
|
Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 2010; 32:473-80. [PMID: 20486133 DOI: 10.1002/bies.200900170] [Citation(s) in RCA: 478] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The H19 gene produces a non-coding RNA, which is abundantly expressed during embryonic development and down-regulated after birth. Although this gene was discovered over 20 years ago, its function has remained unclear. Only recently a role was identified for the non-coding RNA and/or its microRNA partner, first as a tumour suppressor gene in mice, then as a trans-regulator of a group of co-expressed genes belonging to the imprinted gene network that is likely to control foetal and early postnatal growth in mice. The mechanisms underlying this transcriptional or post-transcriptional regulation remain to be discovered, perhaps by identifying the protein partners of the full-length H19 RNA or the targets of the microRNA. This first in vivo evidence of a functional role for the H19 locus provides new insights into how genomic imprinting helps to control embryonic growth.
Collapse
Affiliation(s)
- Anne Gabory
- Biology of Development and Reproduction, INRA-ENVA, UMR 1198, Jouy en Josas, France
| | | | | |
Collapse
|
4
|
Hagège H, Nasser R, Weber M, Milligan L, Aptel N, Jacquet C, Drewell RA, Dandolo L, Surani MA, Cathala G, Forné T. The 3' portion of the mouse H19 Imprinting-Control Region is required for proper tissue-specific expression of the Igf2 gene. Cytogenet Genome Res 2006; 113:230-7. [PMID: 16575185 DOI: 10.1159/000090837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 09/15/2005] [Indexed: 11/19/2022] Open
Abstract
Genomic imprinting at the H19/Igf2 locus is governed by a cis-acting Imprinting-Control Region (ICR), located 2 kb upstream of the H19 gene. This region possesses an insulator function which is activated on the unmethylated maternal allele through the binding of the CTCF factor. It has been previously reported that paternal transmission of the H19(SilK) deletion, which removes the 3' portion of H19 ICR, leads to the loss of H19 imprinting. Here we show that, in the liver, this reactivation of the paternal H19 gene is concomitant to a dramatic decrease in Igf2 mRNA levels. This deletion alters higher-order chromatin architecture, Igf2 promoter usage and tissue-specific expression. Therefore, when methylated, the 3' portion of the H19 ICR is a bi-functional regulatory element involved not only in H19 imprinting but also in 'formatting' the higher-order chromatin structure for proper tissue-specific expression of both H19 and Igf2 genes.
Collapse
Affiliation(s)
- H Hagège
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|