1
|
Long H, Wu H, Sun C, Xu X, Yang XH, Xiao J, Lv M, Chen Q, Fan M. Biological mechanism of sex differences in mental rotation: Evidence from multimodal MRI, transcriptomic and receptor/transporter data. Neuroimage 2024; 304:120955. [PMID: 39586343 DOI: 10.1016/j.neuroimage.2024.120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Sex differences in mental rotation are a well-documented phenomenon in cognitive research, with implications for the differing prevalence of neuropsychiatric disorders such as autism spectrum disorder (ASD), Alzheimer's disease (AD) and major depressive disorder (MDD) between the sexes. Despite extensive documentation, the biological mechanism underpinning these differences remain elusive. This study aimed to elucidate neural, genetic, and molecular bases of these disparities in mental rotation by integrating data from multimodal magnetic resonance imaging (MRI), transcriptomic and receptor/transporter. We first calculated the dynamic regional homogeneity (dReHo), gray matter volume (GMV) and fractional anisotropy (FA) in voxel-wise manner and parceled them into 246 brain regions based on Brainnetome Atlas. Subsequent analyses involved Pearson Correlations to examine the association between mental rotation performance and dReHo/GMV/FA and two-sample t-tests to delineate gender differences in these indices. Based on the above results, further mediation analysis was conducted to explore the relationship between sex, brain biomarkers and mental rotation. In addition, transcriptome-neuroimaging association analysis and correlation analysis between brain biomarkers and neurotransmitter receptor/transporter distribution were also performed to uncover genetic and molecular mechanisms contributing to the observed sex differences in mental rotation. We found correlations between mental rotation performance and dReHo, GMV and FA of the inferior parietal lobule (IPL) and superior temporal gyrus (STG) and sex effects on these brain biomarkers. Notably, the dReHo of the left IPL mediated the relationship between sex and mental rotation. Further correlation analysis revealed that the proton-coupled oligopeptide transporter PEPT2 (SLC15A2) and interleukin 17 receptor D (IL17RD) were associated with sex-related t-statistic maps and mental rotation-related r-statistic maps of dReHo. Moreover, γ-aminobutyric acid subtype A (GABAA) receptor availability was correlated with the r-statistic of dReHo, while norepinephrine transporter (NET) availability was correlated with its t-statistic. Serial mediation models revealed the indirect effect of these genes on the r-statistic maps through the transporter/receptor and t-statistic maps. Our findings provide novel insights into the biological mechanism underlying sex differences in mental rotation, identifying potential biomarkers for cognitive impairment and explaining variations in prevalence of certain mental disorders between the sexes. These results highlight the necessity of considering sex in research on mental health disorders.
Collapse
Affiliation(s)
- Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hao Wu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chaoliang Sun
- Zhejiang Lab, Zhongtai Street, Yuhang District, Hangzhou 311100, China
| | - Xinli Xu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jie Xiao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Mingqi Lv
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qiuju Chen
- School of Design and Architecture, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Yin L, Wang X, Zhang D, Lin Z, Wang Y, Yu C, Jie H, Xu F, Yang C, Liu Y. The proteome and metabolome changes distinguish the effect of dietary energy levels on the development of ovary in chicken during sexual maturity. Poult Sci 2024; 103:104495. [PMID: 39531803 PMCID: PMC11602595 DOI: 10.1016/j.psj.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
To deeply understanding the impact of peripheral energy level on the development of ovaries during the sexual maturation of chicken, in this study, the ovaries and serum of sexually mature and immature chickens at the same age from different energy level groups were collected, and the proteome and metabolome were detected. The results of ovarian and serum metabolomics revealed that dietary energy levels affected the energy metabolism and fatty acid oxidation of ovary in chicken, including the up-regulated expression of dihydroacetone phosphate and α-linolenic acid in high energy level groups. The results of proteomics showed that peripheral energy levels affected the catecholamine biosynthesis and metabolism in ovary before sexual maturation. The integrating analysis revealed that increased energy flux may influence ovarian development by regulating cholesterol reserves and steroid hormone synthesis in the ovaries. In vitro, the cultivation of chicken primary granulosa cells showed that sterol carrier protein 2 played a role in fatty acid synthesis and metabolism but did not significantly affect progesterone synthesis. Overall, dietary energy levels may be involved in the development of the ovaries during sexual maturation by influencing energy metabolism, biosynthesis of unsaturated fatty acids and steroid hormone within the ovaries.
Collapse
Affiliation(s)
- Lingqian Yin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Hang Jie
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan 408435, Chongqing, China
| | - Feng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Kole IH, Vural P, Yurdacan B, Alemdar A, Mutlu C. Evaluation of SLC6A2 and CYP2D6 polymorphisms' effects on atomoxetine treatment in attention deficit and hyperactivity disorder. Eur J Clin Pharmacol 2024; 80:1773-1785. [PMID: 39158690 DOI: 10.1007/s00228-024-03744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND There is insufficient replicated data to establish a relationship between the polymorphisms of SLC6A2 and CYP2D6 and the treatment responses of atomoxetine (ATX) in ADHD. We focused on evaluating the effect of top-line single nucleotide polymorphisms (SNPs) in SLC6A2 and CYP2D6 on the ATX treatment response in attention deficit and hyperactivity disorder (ADHD). METHODS Of 160 patient records, 34 patients who met the inclusion criteria were evaluated to determine the relationship between genotypes of ten SNPs (six of SLC6A2 and four of CYP2D6) and ATX treatment response. Additionally, the connection between SNPs of CYP2D6 and the severity of side effects associated with ATX was analyzed in 37 patients, including the 34 study patients, and three patients discontinued because of ATX-dependent side effects. RESULTS All six polymorphisms we studied in SLC6A2 were associated with the treatment response of ATX. Clinical improvement in oppositional defiant disorder symptoms of patients with ADHD was only observed in carriers of the homozygous "C" allele of rs3785143 (podd = 0.026). We detected an association between higher CGI-side-effect severity scores and the "TT" genotype of rs1065852 polymorphism in CYP2D6 (p = 0.043). CONCLUSIONS The findings of this study suggest that genotypes of polymorphisms within the SLC6A2 and CYP2D6 may play an influential role in treatment response or the severity of side effects associated with ATX in ADHD patients.
Collapse
Affiliation(s)
- Ismail Hasan Kole
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye.
| | - Pınar Vural
- Department of Psychology, Faculty of Humanities and Social Sciences, Fatih Sultan Mehmet Vakif University, Istanbul, Türkiye
| | - Beste Yurdacan
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Türkiye
| | - Adem Alemdar
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Türkiye
| | - Caner Mutlu
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye.
| |
Collapse
|
4
|
Ji W, Miao A, Liang K, Liu J, Qi Y, Zhou Y, Duan X, Sun J, Lai L, Wu JX. Substrate binding and inhibition mechanism of norepinephrine transporter. Nature 2024; 633:473-479. [PMID: 39143211 DOI: 10.1038/s41586-024-07810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Norepinephrine transporter (NET; encoded by SLC6A2) reuptakes the majority of the released noradrenaline back to the presynaptic terminals, thereby affecting the synaptic noradrenaline level1. Genetic mutations and dysregulation of NET are associated with a spectrum of neurological conditions in humans, making NET an important therapeutic target1. However, the structure and mechanism of NET remain unclear. Here we provide cryogenic electron microscopy structures of the human NET (hNET) in three functional states-the apo state, and in states bound to the substrate meta-iodobenzylguanidine (MIBG) or the orthosteric inhibitor radafaxine. These structures were captured in an inward-facing conformation, with a tightly sealed extracellular gate and an open intracellular gate. The substrate MIBG binds at the centre of hNET. Radafaxine also occupies the substrate-binding site and might block the structural transition of hNET for inhibition. These structures provide insights into the mechanism of substrate recognition and orthosteric inhibition of hNET.
Collapse
Affiliation(s)
- Wenming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Anran Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Kai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jiameng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yuhan Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yue Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xinli Duan
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Jixue Sun
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Lipeng Lai
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Jing-Xiang Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
5
|
Tan J, Xiao Y, Kong F, Zhang X, Xu H, Zhu A, Liu Y, Lei J, Tian B, Yuan Y, Yan C. Molecular basis of human noradrenaline transporter reuptake and inhibition. Nature 2024; 632:921-929. [PMID: 39048818 DOI: 10.1038/s41586-024-07719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Noradrenaline, also known as norepinephrine, has a wide range of activities and effects on most brain cell types1. Its reuptake from the synaptic cleft heavily relies on the noradrenaline transporter (NET) located in the presynaptic membrane2. Here we report the cryo-electron microscopy (cryo-EM) structures of the human NET in both its apo state and when bound to substrates or antidepressant drugs, with resolutions ranging from 2.5 Å to 3.5 Å. The two substrates, noradrenaline and dopamine, display a similar binding mode within the central substrate binding site (S1) and within a newly identified extracellular allosteric site (S2). Four distinct antidepressants, namely, atomoxetine, desipramine, bupropion and escitalopram, occupy the S1 site to obstruct substrate transport in distinct conformations. Moreover, a potassium ion was observed within sodium-binding site 1 in the structure of the NET bound to desipramine under the KCl condition. Complemented by structural-guided biochemical analyses, our studies reveal the mechanism of substrate recognition, the alternating access of NET, and elucidate the mode of action of the four antidepressants.
Collapse
Affiliation(s)
- Jiaxin Tan
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Xiao
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Hanwen Xu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Angqi Zhu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiming Liu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yafei Yuan
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Choi Y, Lee ES, Woo SK, Lee KC, Chung HK, Kang JH. Feasibility Study of Single-Photon Emission Computed Tomography with Iodine-123 Labeled Metaiodobenzylguanidine for Preclinical Evaluation of Labetalol as a β-Adrenergic Receptor Blocker. Mol Pharm 2024; 21:2435-2440. [PMID: 38626389 PMCID: PMC11080995 DOI: 10.1021/acs.molpharmaceut.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
Among clinically used radiopharmaceuticals, iodine-123 labeled metaiodobenzylguanidine ([123I]mIBG) serves for diagnosing neuroendocrine tumors and obtaining images of myocardial sympathetic innervation. mIBG, a structural analogue of norepinephrine (NE), a neurotransmitter acting in peripheral and central nerves, follows a pathway similar to NE, transmitting signals through the NE transporter (NET) located at synaptic terminals. It moves through the body without decomposing, enabling noninvasive image evaluation. In this study, we aimed to quantify [123I]mIBG uptake in the adrenal glands using small animal single-photon emission computed tomography/computed tomography (SPECT/CT) images post [123I]mIBG administration. We investigated the possibility of assessing the effectiveness of β-adrenergic receptor blockers by quantifying SPECT/CT images and biodistribution results to determine the degree of [123I]mIBG uptake in the adrenal glands treated with labetalol, a known β-adrenergic receptor blocker. Upon intravenous administration of [123I]mIBG to mice, SPECT/CT images were acquired over time to confirm the in vivo distribution pattern, revealing a clear uptake in the adrenal glands. Labetalol inhibited the uptake of [123I]mIBG in cell lines expressing NET. A decrease in [123I]mIBG uptake in the adrenal glands was observed in the labetalol-treated group compared with the normal group through SPECT/CT imaging and biodistribution studies. These results demonstrate that SPECT/CT imaging with [123I]mIBG could be applicable for evaluating the preclinical efficacy of new antihypertensive drug candidates such as labetalol, a β-adrenergic receptor blocker.
Collapse
Affiliation(s)
- Yiseul Choi
- Korea
Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Eun Sang Lee
- Korea
Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Sang-Keun Woo
- Division
of Applied RI, Korea Institute of Radiological
and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Kyo Chul Lee
- Division
of Applied RI, Korea Institute of Radiological
and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Hye Kyung Chung
- Korea
Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Joo Hyun Kang
- Korea
Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| |
Collapse
|
7
|
Yamagishi-Kimura R, Honjo M, Aihara M. Effect of a fixed combination of ripasudil and brimonidine on aqueous humor dynamics in mice. Sci Rep 2024; 14:7861. [PMID: 38570526 PMCID: PMC10991514 DOI: 10.1038/s41598-024-58212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ripasudil-brimonidine fixed-dose combination (K-232) simultaneously targets three different intraocular pressure (IOP) lowering mechanisms, increasing trabecular meshwork outflow and uveoscleral outflow, and reducing aqueous humor production Vascularly, ripasudil induces transient vasodilation, brimonidine transient vasoconstriction. Investigating effects on IOP, aqueous dynamics, and EVP in mice eyes by microneedle and constant-pressure perfusion methods, and on cytoskeletal and fibrotic proteins changes in HTM cells by a gel contraction assay and immunocytochemistry. Ripasudil, K-232, and brimonidine droplets significantly reduced IOP at 30 min, with K-232 sustaining the effect at 60 min. For EVP, only K-232 exhibited reduced EVP until 60 min after instillation. In vitro, ripasudil inhibited gel contractility and TGFβ2-induced fibrotic changes, whereas brimonidine did not. K-232 significantly lowered IOPs in mice by combining the effects of ripasudil and brimonidine. Brimonidine alone also showed IOP reductions with enhanced outflow facility, and the drug did not interfere with the effects of ripasudil on the trabecular meshwork outflow; K-232 and ripasudil alone both significantly lowered the EVP and enhanced outflow facility, demonstrating that K-232 efficiently reduces IOPs.
Collapse
Affiliation(s)
- Reiko Yamagishi-Kimura
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655, Japan.
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655, Japan
| |
Collapse
|
8
|
Ray A, Stelloh C, Liu Y, Meyer A, Geurts AM, Cowley A, Greene AS, Liang M, Rao S. Histone Modifications and Their Contributions to Hypertension. Hypertension 2024; 81:229-239. [PMID: 38031837 PMCID: PMC11229175 DOI: 10.1161/hypertensionaha.123.21755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Essential hypertension, a multifaceted disorder, is a worldwide health problem. A complex network of genetic, epigenetic, physiological, and environmental components regulates blood pressure (BP), and any dysregulation of this network may result in hypertension. Growing evidence suggests a role for epigenetic factors in BP regulation. Any alterations in the expression or functions of these epigenetic regulators may dysregulate various determinants of BP, thereby promoting the development of hypertension. Histone posttranslational modifications are critical epigenetic regulators that have been implicated in hypertension. Several studies have demonstrated a clear association between the increased expression of some histone-modifying enzymes, especially HDACs (histone deacetylases), and hypertension. In addition, treatment with HDAC inhibitors lowers BP in hypertensive animal models, providing an excellent opportunity to design new drugs to treat hypertension. In this review, we discuss the potential contribution of different histone modifications to the regulation of BP.
Collapse
Affiliation(s)
- Atrayee Ray
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cary Stelloh
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Yong Liu
- Department of Physiology, University of Arizona, Tucson, AZ 85721
| | - Alison Meyer
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Allen Cowley
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Mingyu Liang
- Department of Physiology, University of Arizona, Tucson, AZ 85721
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Section of Hematology/Oncology/Transplantation, Medical College of Wisconsin, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, WI, 53226, USA
| |
Collapse
|
9
|
Xia Z, Cao Z, Surento W, Zhang L, Qiu L, Xu Q, Zhang L, Li L, Cao Y, Luo Y, Lu G, Qi R. Relationship between SLC6A2 gene polymorphisms and brain volume in Han Chinese adults who lost their sole child. BMC Psychiatry 2024; 24:11. [PMID: 38166870 PMCID: PMC10763183 DOI: 10.1186/s12888-023-05467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Norepinephrine transporter (NET) is encoded by the SLC6A2 gene and is a potential target for studying the pathogenesis of PTSD. To the best of our knowledge, no prior investigations have examined SLC6A2 polymorphism-related neuroimaging abnormalities in PTSD patients. METHODS In 218 Han Chinese adults who had lost their sole child, we investigated the association between the T-182 C SLC6A2 genotype and gray matter volume (GMV). Participants included 57 PTSD sufferers and 161 non-PTSD sufferers, and each group was further separated into three subgroups based on each participant's SLC6A2 genotype (TT, CT, and CC). All participants received magnetic resonance imaging (MRI) and clinical evaluation. To assess the effects of PTSD diagnosis, genotype, and genotype × diagnosis interaction on GMV, 2 × 3 full factorial designs were used. Pearson's correlations were used to examine the association between GMV and CAPS, HAMD, and HAMA. RESULTS The SLC6A2 genotype showed significant main effects on GMV of the left superior parietal gyrus (SPG) and the bilateral middle cingulate gyrus (MCG). Additionally, impacts of the SLC6A2 genotype-diagnosis interaction were discovered in the left superior frontal gyrus (SFG). The CAPS, HAMA, and HAMD scores, as well as the genotype main effect and diagnostic SLC6A2 interaction, did not significantly correlate with each other. CONCLUSION These findings indicate a modulatory effect that the SLC6A2 polymorphism exerts on the SPG and MCG, irrespective of PTSD diagnosis. We found evidence to suggest that the SLC6A2 genotype-diagnosis interaction on SFG may potentially contribute to PTSD pathogenesis in adults who lost their sole child.
Collapse
Affiliation(s)
- Zhuoman Xia
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Zhihong Cao
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, 75 Tongzhenguan Road, Wuxi, Wuxi, 214200, China
| | - Wesley Surento
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, Los Angeles, CA, 90292, USA
| | - Li Zhang
- Mental Health Institute, the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, National Technology Institute of Psychiatry, Central South University, Changsha, Hunan, 410011, China
| | - Lianli Qiu
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Lingjiang Li
- Mental Health Institute, the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, National Technology Institute of Psychiatry, Central South University, Changsha, Hunan, 410011, China
| | - Yang Cao
- College of Arts & Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Yifeng Luo
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, 75 Tongzhenguan Road, Wuxi, Wuxi, 214200, China.
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China.
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China.
| |
Collapse
|
10
|
Mastrangelo S, Romano A, Attinà G, Maurizi P, Ruggiero A. Timing and chemotherapy association for 131-I-MIBG treatment in high-risk neuroblastoma. Biochem Pharmacol 2023; 216:115802. [PMID: 37696454 DOI: 10.1016/j.bcp.2023.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Prognosis of high-risk neuroblastoma is dismal, despite intensive induction chemotherapy, surgery, high-dose chemotherapy, radiotherapy, and maintenance. Patients who do not achieve a complete metastatic response, with clearance of bone marrow and skeletal NB infiltration, after induction have a significantly lowersurvival rate. Thus, it's necessary to further intensifytreatment during this phase. 131-I-metaiodobenzylguanidine (131-I-MIBG) is a radioactive compound highly effective against neuroblastoma, with32% response rate in relapsed/resistant cases, and only hematological toxicity. 131-I-MIBG wasutilized at different doses in single or multiple administrations, before autologous transplant or combinedwith high-dose chemotherapy. Subsequently, it was added to consolidationin patients with advanced NB after induction, but an independent contribution against neuroblastoma and for myelotoxicity is difficult to determine. Despiteresults of a 2008 paper demonstratedefficacy and mild hematological toxicity of 131-I-MIBG at diagnosis, no center had included it with intensive chemotherapy in first-line treatment protocols. In our institution, at diagnosis, 131-I-MIBG was included in a 5-chemotherapy drug combination and administered on day-10, at doses up to 18.3 mCi/kg. Almost 87% of objective responses were observed 50 days from start with acceptable hematological toxicity. In this paper, we review the literature data regarding 131-I-MIBG treatment for neuroblastoma, and report on doses and combinations used, tumor responses and toxicity. 131-I-MIBG is very effective against neuroblastoma, in particular if given to patients at diagnosis and in combination with chemotherapy, and it should be included in all induction regimens to improve early responses rates and consequently long-term survival.
Collapse
Affiliation(s)
- Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy.
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
11
|
Bongers BJ, Sijben HJ, Hartog PBR, Tarnovskiy A, IJzerman AP, Heitman LH, van Westen GJP. Proteochemometric Modeling Identifies Chemically Diverse Norepinephrine Transporter Inhibitors. J Chem Inf Model 2023; 63:1745-1755. [PMID: 36926886 PMCID: PMC10052348 DOI: 10.1021/acs.jcim.2c01645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Solute carriers (SLCs) are relatively underexplored compared to other prominent protein families such as kinases and G protein-coupled receptors. However, proteins from the SLC family play an essential role in various diseases. One such SLC is the high-affinity norepinephrine transporter (NET/SLC6A2). In contrast to most other SLCs, the NET has been relatively well studied. However, the chemical space of known ligands has a low chemical diversity, making it challenging to identify chemically novel ligands. Here, a computational screening pipeline was developed to find new NET inhibitors. The approach increases the chemical space to model for NETs using the chemical space of related proteins that were selected utilizing similarity networks. Prior proteochemometric models added data from related proteins, but here we use a data-driven approach to select the optimal proteins to add to the modeled data set. After optimizing the data set, the proteochemometric model was optimized using stepwise feature selection. The final model was created using a two-step approach combining several proteochemometric machine learning models through stacking. This model was applied to the extensive virtual compound database of Enamine, from which the top predicted 22,000 of the 600 million virtual compounds were clustered to end up with 46 chemically diverse candidates. A subselection of 32 candidates was synthesized and subsequently tested using an impedance-based assay. There were five hit compounds identified (hit rate 16%) with sub-micromolar inhibitory potencies toward NET, which are promising for follow-up experimental research. This study demonstrates a data-driven approach to diversify known chemical space to identify novel ligands and is to our knowledge the first to select this set based on the sequence similarity of related targets.
Collapse
Affiliation(s)
- Brandon J Bongers
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Huub J Sijben
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Peter B R Hartog
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | | | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.,Oncode Institute, Jaarbeursplein 6, Utrecht 3521 AL, The Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
12
|
Biomarkers as predictors of treatment response to tricyclic antidepressants in major depressive disorder: A systematic review. J Psychiatr Res 2022; 150:202-213. [PMID: 35397333 DOI: 10.1016/j.jpsychires.2022.03.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022]
Abstract
Tricyclic antidepressants (TCAs) are frequently prescribed in case of non-response to first-line antidepressants in Major Depressive Disorder (MDD). Treatment of MDD often entails a trial-and-error process of finding a suitable antidepressant and its appropriate dose. Nowadays, a shift is seen towards a more personalized treatment strategy in MDD to increase treatment efficacy. One of these strategies involves the use of biomarkers for the prediction of antidepressant treatment response. We aimed to summarize biomarkers for prediction of TCA specific (i.e. per agent, not for the TCA as a drug class) treatment response in unipolar nonpsychotic MDD. We performed a systematic search in PubMed and MEDLINE. After full-text screening, 36 papers were included. Seven genetic biomarkers were identified for nortriptyline treatment response. For desipramine, we identified two biomarkers; one genetic and one nongenetic. Three nongenetic biomarkers were identified for imipramine. None of these biomarkers were replicated. Quality assessment demonstrated that biomarker studies vary in endpoint definitions and frequently lack power calculations. None of the biomarkers can be confirmed as a predictor for TCA treatment response. Despite the necessity for TCA treatment optimization, biomarker studies reporting drug-specific results for TCAs are limited and adequate replication studies are lacking. Moreover, biomarker studies generally use small sample sizes. To move forward, larger cohorts, pooled data or biomarkers combined with other clinical characteristics should be used to improve predictive power.
Collapse
|
13
|
Altered metabolic pathways elucidated via untargeted in vivo toxicometabolomics in rat urine and plasma samples collected after controlled application of a human equivalent amphetamine dose. Arch Toxicol 2021; 95:3223-3234. [PMID: 34414480 PMCID: PMC8448701 DOI: 10.1007/s00204-021-03135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 10/28/2022]
Abstract
Amphetamine is widely consumed as drug of abuse due to its stimulating and cognitive enhancing effects. Since amphetamine has been on the market for quite a long time and it is one of the most commonly used stimulants worldwide, to date there is still limited information on its effects on the metabolome. In recent years, untargeted toxicometabolomics have been increasingly used to study toxicity-related pathways of such drugs of abuse to find and identify important endogenous and exogenous biomarkers. In this study, the acute effects of amphetamine intake on plasma and urinary metabolome in rats were investigated. For this purpose, samples of male Wistar rats after a single dose of amphetamine (5 mg/kg) were compared to a control group using an untargeted metabolomics approach. Analysis was performed using normal and reversed phase liquid chromatography coupled to high-resolution mass spectrometry using positive and negative ionization mode. Statistical evaluation was performed using Welch's two-sample t test, hierarchical clustering, as well as principal component analysis. The results of this study demonstrate a downregulation of amino acids in plasma samples after amphetamine exposure. Furthermore, four new potential biomarkers N-acetylamphetamine, N-acetyl-4-hydroxyamphetamine, N-acetyl-4-hydroxyamphetamine glucuronide, and amphetamine succinate were identified in urine. The present study complements previous data and shows that several studies are necessary to elucidate altered metabolic pathways associated with acute amphetamine exposure.
Collapse
|
14
|
The norepinephrine transporter gene modulates intrinsic brain activity, visual memory, and visual attention in children with attention-deficit/hyperactivity disorder. Mol Psychiatry 2021; 26:4026-4035. [PMID: 31595036 DOI: 10.1038/s41380-019-0545-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
Abstract
The norepinephrine transporter gene (SLC6A2) and deficits in visual memory and attention were associated with attention-deficit/hyperactivity disorder (ADHD). The present study aimed to examine whether the SLC6A2 rs36011 (T)/rs1566652 (G) haplotype affected the intrinsic brain activity in children with ADHD and whether these gene-brain modulations were associated with visual memory and attention in this population. A total of 96 drug-naive children with ADHD and 114 typically developing children (TDC) were recruited. We analyzed intrinsic brain activity with regional homogeneity (ReHo) and degree centrality (DC). Visual memory and visual attention were assessed by the delayed matching to sample (DMS) and rapid visual information processing (RVIP) tasks, respectively. The SNP genotyping of rs36011 and rs1566652 was performed. Children with ADHD showed lower ReHo and DC in the cuneus and lingual gyri than TDC. The TG haplotype was associated with significantly increased DC in the right precentral and postcentral gyri. Significant interactions of ADHD status and the TG haplotype were found in the right postcentral gyrus and superior parietal lobule for ReHo. For the ADHD-TG group, we found significant correlations of performance on the DMS and RVIP tasks with ReHo in bilateral precentral-postcentral gyri and the right postcentral gyrus-superior parietal lobule and DC in bilateral precentral-postcentral gyri. A novel gene-brain-behavior association was identified in which the intrinsic brain activity of the sensorimotor and dorsal attention networks was related to visual memory and visual attention in ADHD children with the SLC6A2 rs36011 (T)/rs1566652 (G) haplotype.
Collapse
|
15
|
Saimuang K, Suttisintong K, Kaewchangwat N, Thanayupong E, Wongngam Y, Charoenphun P, Wanotayan R, Elaissari A, Hongeng S, Polpanich D, Jangpatarapongsa K. A model of modified meta-iodobenzylguanidine conjugated gold nanoparticles for neuroblastoma treatment. RSC Adv 2021; 11:25199-25206. [PMID: 35478920 PMCID: PMC9037022 DOI: 10.1039/d1ra04054e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Iodine-131 meta-iodobenzylguanidine (131I-mIBG) has been utilized as a standard treatment to minimize adverse side effects by targeting therapies to bind to the norepinephrine transporter (NET) expressed on 90% of neuroblastoma cells. However, only a minority of patients who receive 131I-mIBG radiotherapy have clinical responses, and these are usually not curative. In this study, novel ligand-conjugated gold nanoparticles (GNPs) based on mIBG were synthesized and evaluated biologically with neuroblastoma cells in vitro. To induce specific internalization to the tumor cells and utilize it as a model for radioenhancement, 127I-modified mIBG was successfully synthesized and grafted covalently to the surface of carboxylated PEG-GNPs. 49.28% of the novel mIBG derivative was grafted on carboxylated PEG-GNPs. The particles were stable and not toxic to the normal fibroblast cell line, L929, even at the highest concentration tested (1013 NPs per mL) at 24, 48, and 72 h. Moreover, the cellular uptake of the model was decreased significantly in the presence of a NET inhibitor, suggesting that there was specific internalization into neuroblastoma cells line (SH-SY5Y) via the NET. Therefore, this model provides useful guidance toward the design of gold nanomaterials to enhance the efficiency of 131I-mIBG treatment in neuroblastoma patients. However, the investigation of radio-therapeutic efficiency after radioisotope 131I substitution will be further conducted in a radiation safety laboratory using an animal model.
Collapse
Affiliation(s)
- Kween Saimuang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Narongpol Kaewchangwat
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Eknarin Thanayupong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Yodsathorn Wongngam
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Putthiporn Charoenphun
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University Bangkok 10400 Thailand
| | - Rujira Wanotayan
- Department of Radiological Technology, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280 69622 Villeurbanne France
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University Bangkok 10400 Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Kulachart Jangpatarapongsa
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University Bangkok 10700 Thailand
| |
Collapse
|
16
|
Rukavina Mikusic NL, Pineda AM, Gironacci MM. Angiotensin-(1-7) and Mas receptor in the brain. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and electrolyte homeostasis. Besides its importance as regulator of the cardiovascular function, the RAS has also been associated to the modulation of higher brain functions, including cognition, memory, depression and anxiety. For many years, angiotensin II (Ang II) has been considered the major bioactive component of the RAS. However, the existence of many other biologically active RAS components has currently been recognized, with similar, opposite, or distinct effects to those exerted by Ang II. Today, it is considered that the RAS is primarily constituted by two opposite arms. The pressor arm is composed by Ang II and the Ang II type 1 (AT1) receptor (AT1R), which mediates the vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory effects of the RAS. The depressor arm is mainly composed by Ang-(1-7), its Mas receptor (MasR) which mediates the depressor, vasodilatory, antiproliferative, antioxidant and anti-inflammatory effects of Ang-(1-7) and the AT2 receptor (AT2R), which opposes to the effects mediated by AT1R activation. Central Ang-(1-7) is implicated in the control of the cardiovascular function, thus participating in the regulation of blood pressure. Ang-(1-7) also exerts neuroprotective actions through MasR activation by opposing to the harmful effects of the Ang II/AT1R axis. This review is focused on the expression and regulation of the Ang-(1-7)/MasR axis in the brain, its main neuroprotective effects and the evidence regarding its involvement in the pathophysiology of several diseases at cardiovascular and neurological level.
Collapse
Affiliation(s)
- Natalia L. Rukavina Mikusic
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Angélica M. Pineda
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| |
Collapse
|
17
|
Sijben HJ, van Oostveen WM, Hartog PBR, Stucchi L, Rossignoli A, Maresca G, Scarabottolo L, IJzerman AP, Heitman LH. Label-free high-throughput screening assay for the identification of norepinephrine transporter (NET/SLC6A2) inhibitors. Sci Rep 2021; 11:12290. [PMID: 34112854 PMCID: PMC8192900 DOI: 10.1038/s41598-021-91700-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The human norepinephrine transporter (NET) is an established drug target for a wide range of psychiatric disorders. Conventional methods that are used to functionally characterize NET inhibitors are based on the use of radiolabeled or fluorescent substrates. These methods are highly informative, but pose limitations to either high-throughput screening (HTS) adaptation or physiologically accurate representation of the endogenous uptake events. Recently, we developed a label-free functional assay based on the activation of G protein-coupled receptors by a transported substrate, termed the TRACT assay. In this study, the TRACT assay technology was applied to NET expressed in a doxycycline-inducible HEK 293 JumpIn cell line. Three endogenous substrates of NET-norepinephrine (NE), dopamine (DA) and epinephrine (EP)-were compared in the characterization of the reference NET inhibitor nisoxetine. The resulting assay, using NE as a substrate, was validated in a manual HTS set-up with a Z' = 0.55. The inhibitory potencies of several reported NET inhibitors from the TRACT assay showed positive correlation with those from an established fluorescent substrate uptake assay. These findings demonstrate the suitability of the TRACT assay for HTS characterization and screening of NET inhibitors and provide a basis for investigation of other solute carrier transporters with label-free biosensors.
Collapse
Affiliation(s)
- Hubert J Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Wieke M van Oostveen
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Peter B R Hartog
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Laura Stucchi
- Axxam S.p.A, Openzone Science Park, Bresso, Milan, Italy
| | | | | | | | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands.
- Oncode Institute, Leiden, The Netherlands.
| |
Collapse
|
18
|
Okada M, Fukuyama K. Interaction between Mesocortical and Mesothalamic Catecholaminergic Transmissions Associated with NMDA Receptor in the Locus Coeruleus. Biomolecules 2020; 10:biom10070990. [PMID: 32630356 PMCID: PMC7407123 DOI: 10.3390/biom10070990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Noncompetitive N-methyl-D-aspartate/glutamate receptor (NMDAR) antagonists contribute to the pathophysiology of schizophrenia and mood disorders but improve monoaminergic antidepressant-resistant mood disorder and suicidal ideation. The mechanisms of the double-edged sword clinical action of NMDAR antagonists remained to be clarified. The present study determined the interaction between the NMDAR antagonist (MK801), α1 adrenoceptor antagonist (prazosin), and α2A adrenoceptor agonist (guanfacine) on mesocortical and mesothalamic catecholaminergic transmission, and thalamocortical glutamatergic transmission using multiprobe microdialysis. The inhibition of NMDAR in the locus coeruleus (LC) by local MK801 administration enhanced both the mesocortical noradrenergic and catecholaminergic coreleasing (norepinephrine and dopamine) transmissions. The mesothalamic noradrenergic transmission was also enhanced by local MK801 administration in the LC. These mesocortical and mesothalamic transmissions were activated by intra-LC disinhibition of transmission of γ-aminobutyric acid (GABA) via NMDAR inhibition. Contrastingly, activated mesothalamic noradrenergic transmission by MK801 enhanced intrathalamic GABAergic inhibition via the α1 adrenoceptor, resulting in the suppression of thalamocortical glutamatergic transmission. The thalamocortical glutamatergic terminal stimulated the presynaptically mesocortical catecholaminergic coreleasing terminal in the superficial cortical layers, but did not have contact with the mesocortical selective noradrenergic terminal (which projected terminals to deeper cortical layers). Furthermore, the α2A adrenoceptor suppressed the mesocortical and mesothalamic noradrenergic transmissions somatodendritically in the LC and presynaptically/somatodendritically in the reticular thalamic nucleus (RTN). These discrepancies between the noradrenergic and catecholaminergic transmissions in the mesocortical and mesothalamic pathways probably constitute the double-edged sword clinical action of noncompetitive NMDAR antagonists.
Collapse
|
19
|
Karakus OO, Godugu K, Rajabi M, Mousa SA. Dual Targeting of Norepinephrine Transporter (NET) Function and Thyrointegrin αvβ3 Receptors in the Treatment of Neuroblastoma. J Med Chem 2020; 63:7653-7662. [DOI: 10.1021/acs.jmedchem.0c00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ozlem Ozen Karakus
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| |
Collapse
|
20
|
Recent advances in radiotracers targeting norepinephrine transporter: structural development and radiolabeling improvements. J Neural Transm (Vienna) 2020; 127:851-873. [PMID: 32274584 PMCID: PMC7223405 DOI: 10.1007/s00702-020-02180-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
The norepinephrine transporter (NET) is a major target for the evaluation of the cardiac sympathetic nerve system in patients with heart failure and Parkinson's disease. It is also used in the therapeutic applications against certain types of neuroendocrine tumors, as exemplified by the clinically used 123/131I-MIBG as theranostic single-photon emission computed tomography (SPECT) agent. With the development of more advanced positron emission tomography (PET) technology, more radiotracers targeting NET have been reported, with superior temporal and spatial resolutions, along with the possibility of functional and kinetic analysis. More recently, fluorine-18-labelled NET tracers have drawn increasing attentions from researchers, due to their longer radiological half-life relative to carbon-11 (110 min vs. 20 min), reduced dependence on on-site cyclotrons, and flexibility in the design of novel tracer structures. In the heart, certain NET tracers provide integral diagnostic information on sympathetic innervation and the nerve status. In the central nervous system, such radiotracers can reveal NET distribution and density in pathological conditions. Most radiotracers targeting cardiac NET-function for the cardiac application consistent of derivatives of either norepinephrine or MIBG with its benzylguanidine core structure, e.g. 11C-HED and 18F-LMI1195. In contrast, all NET tracers used in central nervous system applications are derived from clinically used antidepressants. Lastly, possible applications of NET as selective tracers over organic cation transporters (OCTs) in the kidneys and other organs controlled by sympathetic nervous system will also be discussed.
Collapse
|
21
|
Ramachandran CD, Gholami K, Lam SK, Hoe SZ. A preliminary study of the effect of a high-salt diet on transcriptome dynamics in rat hypothalamic forebrain and brainstem cardiovascular control centers. PeerJ 2020; 8:e8528. [PMID: 32175184 PMCID: PMC7059759 DOI: 10.7717/peerj.8528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/07/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND High dietary salt intake is strongly correlated with cardiovascular (CV) diseases and it is regarded as a major risk factor associated with the pathogenesis of hypertension. The CV control centres in the brainstem (the nucleus tractus solitarii (NTS) and the rostral ventrolateral medulla (RVLM)) and hypothalamic forebrain (the subfornical organ, SFO; the supraoptic nucleus, SON and the paraventricular nucleus, PVN) have critical roles in regulating CV autonomic motor outflows, and thus maintaining blood pressure (BP). Growing evidence has implicated autonomic regulatory networks in salt-sensitive HPN (SSH), but the genetic basis remains to be delineated. We hypothesized that the development and/ or maintenance of SSH is reliant on the change in the expression of genes in brain regions controlling the CV system. METHODOLOGY We used RNA-Sequencing (RNA-Seq) to describe the differential expression of genes in SFO, SON, PVN, NTS and RVLM of rats being chronically fed with high-salt (HS) diet. Subsequently, a selection of putatively regulated genes was validated with quantitative reverse transcription polymerase chain reaction (qRT-PCR) in both Spontaneously Hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats. RESULTS The findings enabled us to identify number of differentially expressed genes in SFO, SON, PVN, NTS and RVLM; that are either up-regulated in both strains of rats (SON- Caprin2, Sctr), down-regulated in both strains of rats (PVN- Orc, Gkap1), up-regulated only in SHRs (SFO- Apopt1, Lin52, AVP, OXT; SON- AVP, OXT; PVN- Caprin2, Sclt; RVLM- A4galt, Slc29a4, Cmc1) or down-regulated only in SHRs (SON- Ndufaf2, Kcnv1; PVN- Pi4k2a; NTS- Snrpd2l, Ankrd29, St6galnac6, Rnf157, Iglon5, Csrnp3, Rprd1a; RVLM- Ttr, Faim). CONCLUSIONS These findings demonstrated the adverse effects of HS diet on BP, which may be mediated via modulating the signaling systems in CV centers in the hypothalamic forebrain and brainstem.
Collapse
Affiliation(s)
- Chitra Devi Ramachandran
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
| | - Khadijeh Gholami
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
- Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur, Wilayah Perseketuan, Malaysia
| | - Sau Kuen Lam
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
| |
Collapse
|
22
|
Vieira-Rocha M, Rodríguez-Rodríguez P, Sousa J, González M, Arribas S, López de Pablo A, Diniz C. Vascular angiotensin AT1 receptor neuromodulation in fetal programming of hypertension. Vascul Pharmacol 2019; 117:27-34. [DOI: 10.1016/j.vph.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/31/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
|
23
|
Guilherme JPLF, Bigliassi M, Lancha Junior AH. Association study of SLC6A2 gene Thr99Ile variant (rs1805065) with athletic status in the Brazilian population. Gene 2019; 707:53-57. [PMID: 31075414 DOI: 10.1016/j.gene.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Genetic variants in monoamine neurotransmitter genes have been recurrently associated with panic disorder, addiction and mood disorders. Recent evidence also indicates that norepinephrine neurotransmission can influence a series of psychophysical and psychobiological parameters related to athletic performance, and the presence of variants in the SLC6A2 (solute carrier family 6 member 2) gene, which encodes the norepinephrine transporter, can be detrimental to an adequate noradrenergic signaling. Accordingly, the objective of the present study was to explore the SLC6A2 Thr99Ile variant (rs1805065) in a cohort composed of highly-trained individuals and non-trained individuals. A total of 1556 Brazilians: 926 non-athletes and 630 athletes (322 endurance athletes and 308 power athletes) were compared in this case-control association study. The Thr99Ile variant showed only two genotypes (C/C or C/T), and a low minor allele frequency of ≈1%. However, none of the power athletes had the mutant T-allele (i.e., the C/T genotype), which may be related to decreased norepinephrine transporter activity. The genotype distribution and allele frequency observed in power athletes were significantly different when compared to non-athletes or endurance athletes. Therefore, the presence of the T-allele may decrease the chance of belonging to the group of athletes involved in explosive physical tasks. These results still need to be replicated in independent cohorts. However, it appears reasonable to assume that there is an association between the SLC6A2 gene variant and power athletic status.
Collapse
Affiliation(s)
- João Paulo L F Guilherme
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; Endurance Performance Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | - Marcelo Bigliassi
- Endurance Performance Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Antonio H Lancha Junior
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Kayano D, Kinuya S. Current Consensus on I-131 MIBG Therapy. Nucl Med Mol Imaging 2018; 52:254-265. [PMID: 30100938 DOI: 10.1007/s13139-018-0523-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
Metaiodobenzylguanidine (MIBG) is structurally similar to the neurotransmitter norepinephrine and specifically targets neuroendocrine cells including some neuroendocrine tumors. Iodine-131 (I-131)-labeled MIBG (I-131 MIBG) therapy for neuroendocrine tumors has been performed for more than a quarter-century. The indications of I-131 MIBG therapy include treatment-resistant neuroblastoma (NB), unresectable or metastatic pheochromocytoma (PC) and paraganglioma (PG), unresectable or metastatic carcinoid tumors, and unresectable or metastatic medullary thyroid cancer (MTC). I-131 MIBG therapy is one of the considerable effective treatments in patients with advanced NB, PC, and PG. On the other hand, I-131 MIBG therapy is an alternative method after more effective novel therapies are used such as radiolabeled somatostatin analogs and tyrosine kinase inhibitors in patients with advanced carcinoid tumors and MTC. No-carrier-aided (NCA) I-131 MIBG has more favorable potential compared to the conventional I-131 MIBG. Astatine-211-labeled meta-astatobenzylguanidine (At-211 MABG) has massive potential in patients with neuroendocrine tumors. Further studies about the therapeutic protocols of I-131 MIBG including NCA I-131 MIBG in the clinical setting and At-211 MABG in both the preclinical and clinical settings are needed.
Collapse
Affiliation(s)
- Daiki Kayano
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan.,2Department of Nuclear Medicine, Fukushima Medical University Hospital, 1 Hikariga-oka, Fukushima, 960-1295 Japan
| | - Seigo Kinuya
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| |
Collapse
|
25
|
Werner RA, Kobayashi R, Javadi MS, Köck Z, Wakabayashi H, Unterecker S, Nakajima K, Lapa C, Menke A, Higuchi T. Impact of Novel Antidepressants on Cardiac 123I-Metaiodobenzylguanidine Uptake: Experimental Studies on SK-N-SH Cells and Healthy Rabbits. J Nucl Med 2018; 59:1099-1103. [PMID: 29496989 DOI: 10.2967/jnumed.117.206045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
123I-metaiodobenzylguanidine (123I-MIBG) has independent prognostic value for risk stratification among heart failure patients, but the use of concomitant medication should not affect its quantitative information. We evaluated whether the 4 classes of antidepressants currently most prescribed as first-line treatment for major depressive disorder (MDD) have the potential to alter 123I-MIBG imaging results. Methods: The inhibition effect of desipramine, escitalopram, venlafaxine, and bupropion on 131I-MIBG uptake was assessed by in vitro uptake assays using human neuroblastoma SK-N-SH cells. The half-maximal inhibitory concentration of tracer uptake was determined from dose-response curves. To evaluate the effect of intravenous pretreatment with desipramine (1.5 mg/kg) and escitalopram (2.5 or 15 mg/kg) on 123I-MIBG cardiac uptake, in vivo planar 123I-MIBG scanning of healthy New Zealand White rabbits was performed. Results: The half-maximal inhibitory concentrations of desipramine, escitalopram, venlafaxine, and bupropion on 131I-MIBG cellular uptake were 11.9 nM, 7.5 μM, 4.92 μM, and 12.9 μM, respectively. At the maximum serum concentration (as derived by previous clinical trials), the inhibition rates of 131I-MIBG uptake were 90.6% for desipramine, 25.5% for venlafaxine, 11.7% for bupropion, and 0.72% for escitalopram. A low inhibition rate for escitalopram in the cell uptake study triggered investigation of an in vivo rabbit model: with a dosage considerably higher than used in clinical practice, the noninhibitory effect of escitalopram was confirmed. Furthermore, pretreatment with desipramine markedly reduced cardiac 123I-MIBG uptake. Conclusion: In the present in vitro binding assay and in vivo rabbit study, the selective serotonin reuptake inhibitor escitalopram had no major impact on neuronal cardiac 123I-MIBG uptake within therapeutic dose ranges, whereas other types of first-line antidepressants for MDD treatment led to a significant decrease. These preliminary results warrant further confirmatory clinical trials regarding the reliability of cardiac 123I-MIBG imaging, in particular, if the patient's neuropsychiatric status would not tolerate withdrawal of a potentially norepinephrine-interfering antidepressant.
Collapse
Affiliation(s)
- Rudolf A Werner
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Nuclear Medicine, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Heart Failure Center, University of Wuerzburg, Wuerzburg, Germany
| | - Ryohei Kobayashi
- Department of Nuclear Medicine, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Heart Failure Center, University of Wuerzburg, Wuerzburg, Germany
| | - Mehrbod Som Javadi
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zoe Köck
- Department of Nuclear Medicine, University of Wuerzburg, Wuerzburg, Germany
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Heart Failure Center, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Kenichi Nakajima
- Department of Nuclear Medicine, Kanazawa University, Kanazawa, Japan; and
| | - Constantin Lapa
- Department of Nuclear Medicine, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Menke
- Comprehensive Heart Failure Center, University of Wuerzburg, Wuerzburg, Germany.,Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University of Wuerzburg, Wuerzburg, Germany .,Comprehensive Heart Failure Center, University of Wuerzburg, Wuerzburg, Germany.,Department of Biomedical Imaging, National Cardiovascular and Cerebral Center, Suita, Japan
| |
Collapse
|
26
|
Hu B, Zhang J, Wang J, He B, Wang D, Zhang W, Zhou X, Li H. Responses of PKCε to cardiac overloads on myocardial sympathetic innervation and NET expression. Auton Neurosci 2017; 210:24-33. [PMID: 29195789 DOI: 10.1016/j.autneu.2017.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023]
Abstract
Protein kinase C (PKC) is a key mediator of many diverse physiological and pathological responses. PKC activation play an important regulatory role of cardiac function. The present study was performed to investigate whether there were differential activations of the PKCε and how the activation coupled with norepinephrine transporter (NET) surface expression, sympathetic innervation pattern and extracellular matrix remodeling in different cardiac hemodynamic overloads induced by abdominal aortic constriction or aortocaval fistula. At 8weeks after the operations, heart failure were induced, accompanied with myocardial hypertrophy, which was more pronounced in pressure overload (POL) than that of volume overload (VOL) rats, left ventricular dysfunction and increased plasma norepinephrine (NE). In POL rats there was an increase in myocardial collagen deposition, in contrast, the amount decreased in VOL as compared with the sham rats. POL remarkably upregulated PKCε membrane-cytosol ratio and downregulated NET membrane fraction, whereas, in VOL induced opposite changes. Accompanied with the PKCε activation, nerve sprouting, evidenced by myocardial GAP43 protein increased, and different nerve phenotypes were found, in POL tyrosine hydroxylase (TH) positive nerve density increased with NET and choline acetyltransferase (ChAT) immunoreactivity density decreased, in contrast, in VOL NET and ChAT increased, TH did not change. The overloads did not induce alteration of NET mRNA expression, but resulted in different myocardial β1-AR mRNA expression, in POL β1-AR mRNAwas significantly downregulated, while in VOL rats unaltered. Conclusion, the present results suggested that the different cardiac hemodynamic overload could differentially activate a common signaling, PKCε intermediate and thereby generate biological diversity.
Collapse
Affiliation(s)
- Bing Hu
- Xiqing Hospital, Tianjin, China
| | - Jing Zhang
- Pingjin Hospital, Logistics University of CAPF, China
| | - Jing Wang
- Pingjin Hospital, Logistics University of CAPF, China
| | - Bing He
- Tianjin Key Laboratory for Biomarkers of Occupation and Environmental Hazard, China
| | - Deshun Wang
- Pingjin Hospital, Logistics University of CAPF, China
| | | | - Xin Zhou
- Pingjin Hospital, Logistics University of CAPF, China; Institute of Cardiovascular disease of CAPF, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, China
| | - He Li
- Pingjin Hospital, Logistics University of CAPF, China; Institute of Cardiovascular disease of CAPF, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, China.
| |
Collapse
|
27
|
Dai D, Wen F, Zhou S, Su Z, Liu G, Wang M, Zhou J, He F. Association of MTTP gene variants with pediatric NAFLD: A candidate-gene-based analysis of single nucleotide variations in obese children. PLoS One 2017; 12:e0185396. [PMID: 28953935 PMCID: PMC5617203 DOI: 10.1371/journal.pone.0185396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Objective We used targeted next-generation sequencing to investigate whether genetic variants of lipid metabolism-related genes are associated with increased susceptibility to nonalcoholic fatty liver disease (NAFLD) in obese children. Methods A cohort of 100 obese children aged 6 to 18 years were divided into NAFLD and non-NAFLD groups and subjected to hepatic ultrasound, anthropometric, and biochemical analyses. We evaluated the association of genetic variants with NAFLD susceptibility by investigating the single nucleotide polymorphisms in each of 36 lipid-metabolism-related genes. The panel genes were assembled for target region sequencing. Correlations between single nucleotide variations, biochemical markers, and clinical phenotypes were analyzed. Results 97 variants in the 36 target genes per child were uncovered. Twenty-six variants in 16 genes were more prevalent in NAFLD subjects than in in-house controls. The mutation rate of MTTP rs2306986 and SLC6A2 rs3743788 was significantly higher in NAFLD subjects than in non-NAFLD subjects (OR: 3.879; P = 0.004; OR: 6.667, P = 0.005). Logistic regression analysis indicated the MTTP variant rs2306986 was an independent risk factor for NAFLD (OR: 23.468, P = 0.044). Conclusions The results of this study, examining a cohort of obese children, suggest that the genetic variation at MTTP rs2306986 was associated with higher susceptibility to NAFLD. This may contribute to the altered lipid metabolism by disruption of assembly and secretion of lipoprotein, leading to reducing fat export from the involved hepatocytes.
Collapse
Affiliation(s)
- Dongling Dai
- Shenzhen Children's Hospital, Shenzhen, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feiqiu Wen
- Shenzhen Children's Hospital, Shenzhen, China
- * E-mail: (FW); (SZ)
| | - Shaoming Zhou
- Shenzhen Children's Hospital, Shenzhen, China
- * E-mail: (FW); (SZ)
| | - Zhe Su
- Shenzhen Children's Hospital, Shenzhen, China
| | - Guosheng Liu
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mingbang Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
- Shenzhen Following Precision Medical Research Institute, Shenzhen, China
| | - Jianli Zhou
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fusheng He
- Shenzhen Following Precision Medical Research Institute, Shenzhen, China
| |
Collapse
|
28
|
Coordinate expression of pan-neuronal and functional signature genes in sympathetic neurons. Cell Tissue Res 2017; 370:227-241. [PMID: 28936781 DOI: 10.1007/s00441-017-2688-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/27/2017] [Indexed: 12/20/2022]
Abstract
Neuron subtypes of the mature nervous system differ in the expression of characteristic marker genes while they share the expression of generic neuronal genes. The regulatory logic that maintains subtype-specific and pan-neuronal genes is not well understood. To begin to address this issue, we analyze RNA sequencing results from whole sympathetic ganglia and single sympathetic neurons in the mouse. We focus on gene products involved in the neuronal cytoskeleton, neurotransmitter synthesis and storage, transmitter release and reception and electrical information processing. We find a particular high correlation in the expression of stathmin 2 and several members of the tubulin beta family, classical pan-neuronal markers. Noradrenergic transmitter-synthesizing enzymes and transporters are also well correlated in their cellular transcript levels. In addition, noradrenergic marker transcript levels correlate well with selected pan-neuronal markers. Such a correlation in transcript levels is also seen between a number of selected ion channel, receptor and synaptic protein genes. These results provide the foundation for the analyses of the coordinated expression of downstream target genes in nerve cells.
Collapse
|
29
|
Bayer M, Schmitt J, Dittmann H, Handgretinger R, Bruchelt G, Sauter AW. Improved selectivity of mIBG uptake into neuroblastoma cells in vitro and in vivo by inhibition of organic cation transporter 3 uptake using clinically approved corticosteroids. Nucl Med Biol 2016; 43:543-551. [PMID: 27376201 DOI: 10.1016/j.nucmedbio.2016.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/09/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Radiolabeled meta-iodobenzylguanidine (mIBG) is used for imaging and therapy of neuroblastoma as well as pheochromocytoma. However, non-tumorous tissues also incorporate mIBG mainly by organic cation transporters (OCTs). In this study, we tested different clinically approved corticosteroids as potential inhibitors of the OCT3-mediated uptake in vitro and in vivo, to achieve a more selective mIBG tumor uptake. METHODS The in vitro incorporation of [(3)H]norepinephrine ([(3)H]NE), [(3)H]dopamine ([(3)H]DA) and [(123)I]mIBG in neuroblastoma cells (SK-N-SH, Kelly, IMR-32) and in HEK-293 cells transfected with human OCT3 was measured with and without supplemental corticosteroids (hydrocortisone, prednisolone, dexamethasone, corticosterone). The in vivo biodistribution of [(123)I]mIBG in absence and presence of corticosteroids was studied in non-tumor bearing NOD scid gamma mice. Retrospectively, we selected patients with and without corticosteroid treatment prior to [(123)I]mIBG scintigraphy. RESULTS A concentration-dependent inhibitory effect of different corticosteroids on the [(3)H]NE and [(3)H]DA uptake via OCT3 was illustrated in vitro. The highest OCT3 inhibition was observed for corticosterone, but clinically used corticosteroids, showed also promising inhibitory effects. In contrast, the uptake in neuroblastoma cells was reduced only moderately. Hydrocortisone or prednisolone had only minor effects on [(123)I]mIBG uptake of both neuroblastoma cells, but reduced uptake in OCT3 expressing cells significantly. In mice tissues, [(123)I]mIBG uptake was inhibited by corticosteroids especially in the small intestine and kidney. Finally, in one patient with hydrocortisone treatment performed prior to [(123)I]mIBG scan, heart and liver uptake was reduced compared to untreated patients. CONCLUSIONS The OCT3 is widely spread in many organs and responsible for non-targeted uptake of radiolabeled mIBG. In our study, clinically approved corticosteroids inhibited mIBG uptake in OCT3 expressing cells effectively, whereas tracer accumulation in NT (norepinephrine transporter) expressing neuroblastoma cells showed consistency. We conclude, that a single dose of hydrocortisone or prednisolone prior to [(123)I]mIBG scintigraphy may improve specificity and reduce radiation dose to non-target organs.
Collapse
Affiliation(s)
- Melanie Bayer
- Eberhard Karls University, Children's Hospital, Department I, General Pediatrics & Hematology/Oncology, Tuebingen, Germany
| | - Julia Schmitt
- Eberhard Karls University, Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Tuebingen, Germany
| | - Helmut Dittmann
- Eberhard Karls University, Department of Radiology, Nuclear Medicine, Tuebingen, Germany
| | - Rupert Handgretinger
- Eberhard Karls University, Children's Hospital, Department I, General Pediatrics & Hematology/Oncology, Tuebingen, Germany
| | - Gernot Bruchelt
- Eberhard Karls University, Children's Hospital, Department I, General Pediatrics & Hematology/Oncology, Tuebingen, Germany
| | - Alexander W Sauter
- Eberhard Karls University, Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Tuebingen, Germany; Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, D-72076 Tuebingen, Germany.
| |
Collapse
|
30
|
|
31
|
Sramek JJ, Hardy LW, Bieck P, Zamora C, Versavel M, Kharidia J, Grinnell T, Chen YL, Sullivan M, Ding H, Cutler NR. Exploratory Biomarker Study of the Triple Reuptake Inhibitor SEP-432 Compared to the Dual Reuptake Inhibitor Duloxetine in Healthy Normal Subjects. CNS Neurosci Ther 2016; 22:404-12. [PMID: 26849844 DOI: 10.1111/cns.12513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION SEP-432 is a triple monoamine reuptake inhibitor of norepinephrine (NE), serotonin (5-HT), and dopamine (DA), based on in vitro binding studies. We sought evidence that SEP-432 engages these monoamine systems by measuring concentrations of monoamines and/or their main metabolites in cerebrospinal fluid (CSF) and plasma and comparing results to duloxetine, a dual reuptake inhibitor of NE and 5-HT. METHODS Eighteen healthy normal subjects received either SEP-432 (300 mg/day), duloxetine (60 mg/day), or placebo for 14 days in-clinic (double blind) with CSF and plasma collections at baseline (single lumbar puncture) and Day 14 (24-h CSF and plasma collection). Concentrations of monoamines and their metabolites, as well as pharmacokinetic concentrations of SEP-432 and metabolite, were quantified by liquid chromatography-tandem mass spectrometry. RESULTS Compared to placebo in the Day 14 area under the curve 24-h (AUC0-24 h ) analysis, SEP-432 significantly (P < 0.05) decreased the NE metabolite dihydroxyphenylglycol (DHPG) in CSF and plasma, decreased 5-HT in plasma, and did not affect DA metabolites, while duloxetine had significant effects on DHPG and 5-HT. Time-matched baseline to Day 14 biomarker comparisons confirmed these findings. CONCLUSION CSF monoamine biomarkers confirmed central NET activity for SEP-432 and duloxetine's dual reuptake inhibition.
Collapse
Affiliation(s)
| | | | - Peter Bieck
- Worldwide Clinical Trials, Beverly Hills, CA, USA
| | - Cynthia Zamora
- Worldwide Clinical Trials, Drug Development Solutions, San Antonio and Austin, TX, USA
| | | | | | | | | | - Michael Sullivan
- Worldwide Clinical Trials, Drug Development Solutions, San Antonio and Austin, TX, USA
| | - Hong Ding
- Worldwide Clinical Trials, Beverly Hills, CA, USA
| | | |
Collapse
|
32
|
Trucco EM, Hicks BM, Villafuerte S, Nigg JT, Burmeister M, Zucker RA. Temperament and externalizing behavior as mediators of genetic risk on adolescent substance use. JOURNAL OF ABNORMAL PSYCHOLOGY 2016; 125:565-75. [PMID: 26845260 DOI: 10.1037/abn0000143] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Understanding how specific genes contribute to risk for addiction remains challenging. This study tests whether childhood temperament and externalizing behavior in early adolescence account for a portion of the association between specific genetic variants and substance use problems in late adolescence. The sample consisted of 487 adolescents from the Michigan Longitudinal Study, a high-risk sample (70.2% male, 81.7% European American ancestry). Polymorphisms across serotonergic (SLC6A4, 5-HTTLPR), dopaminergic (DRD4, u-VNTR), noradrenergic (SLC6A2, rs36021), and GABAergic (GABRA2, rs279858; GABRA6, rs3811995) genes were examined given prior support for associations with temperament, externalizing behavior, and substance use problems. The temperament traits behavioral control and resiliency were assessed using interviewer ratings (ages 9-11), and externalizing behavior (ages 12-14) was assessed using teacher ratings. Self-reported substance use outcomes (ages 15-17) included maximum alcoholic beverages consumed in 24 hours, and frequency of past year cigarette and marijuana use. Behavioral control, resiliency, and externalizing behavior accounted for the associations between polymorphisms in noradrenergic and GABAergic genes and substance use in late adolescence. Individual differences in emotional coping and behavioral regulation represent nonspecific neurobiological underpinnings for an externalizing pathway to addiction. (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | | | - Joel T Nigg
- Department of Psychiatry, Oregon Health and Science University
| | | | | |
Collapse
|
33
|
Abstract
Angiotensin (Ang) (1-7) is the main component of the depressor and protective arm of the renin-angiotensin system. Ang-(1-7) induces vasodilation, natriuresis and diuresis, cardioprotection, inhibits angiogenesis and cell growth and opposes the pressor, proliferative, profibrotic, and prothrombotic actions mediated by Ang II. Centrally, Ang-(1-7) induces changes in mean arterial pressure and this effect may be linked with its inhibitory neuromodulatory action on norepinephrine neurotransmission. The present review is focused on the role of Ang-(1-7) as a protective agent in the brain.
Collapse
Affiliation(s)
- Mariela M Gironacci
- Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
34
|
Solich J, Kolasa M, Kusmider M, Pabian P, Faron-Gorecka A, Zurawek D, Szafran-Pilch K, Kedracka-Krok S, Jankowska U, Swiderska B, Dziedzicka-Wasylewska M. Life-long norepinephrine transporter (NET) knock-out leads to the increase in the NET mRNA in brain regions rich in norepinephrine terminals. Eur Neuropsychopharmacol 2015; 25:1099-108. [PMID: 26002194 DOI: 10.1016/j.euroneuro.2015.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
These studies aimed to identify the genes differentially expressed in the frontal cortex of mice bearing a life-long norepinephrine transporter knock-out (NET-KO) and wild-type animals (WT). Differences in gene expression in the mouse frontal cortex were studied using a whole-genome microarray approach. Using an alternative approach, i.e. RT-PCR (reverse transcription polymerase chain reaction) with primers complementary to various exons of the NET gene, as well as TaqMan arrays, the level of mRNA encoding the NET in other brain regions of the NET-KO mice was also examined. The analyses revealed a group of 92 transcripts (27 genes) that differentiated the NET-KO mice from the WT mice. Surprisingly, the studies have shown that the mRNA encoding NET accumulated in the brain regions rich in norepinephrine nerve endings in the NET-KO mice. Because there is no other source of NET mRNA besides the noradrenergic terminals in the brain regions studied, these results might speak in favor of the presence of mRNA in axon terminals. RNA-Binding Protein Immunoprecipitation approach indicated that mRNA encoding NET was detected in the Ago2 protein/mRNA complex. In addition, the amount of Ago2 protein in the frontal cortex was significantly higher in NET-KO mice as compared with that of the WT animals. These results are important for further characterization of the NET-KO mice, which - besides other merits - might serve as a good model to study the fate of truncated mRNA in neurons.
Collapse
Affiliation(s)
- Joanna Solich
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Magdalena Kolasa
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Maciej Kusmider
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Pabian
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Agata Faron-Gorecka
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Dariusz Zurawek
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Kinga Szafran-Pilch
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Sylwia Kedracka-Krok
- Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Urszula Jankowska
- Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Bianka Swiderska
- Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| |
Collapse
|
35
|
Shang CY, Chiang HL, Gau SSF. A haplotype of the norepinephrine transporter gene (SLC6A2) is associated with visual memory in attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2015; 58:89-96. [PMID: 25554436 DOI: 10.1016/j.pnpbp.2014.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/17/2014] [Accepted: 12/23/2014] [Indexed: 11/25/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common heritable childhood-onset psychiatric disorder with impaired visual memory. Based on the evidence from treatment effect of atomoxetine, which interacts directly with the norepinephrine transporter, on visual memory in children with ADHD, this study examined the linkage disequilibrium structure of the norepinephrine transporter gene (SLC6A2) and the association between SLC6A2 and ADHD and visual memory, a promising endophenotype for ADHD. This family-based association sample consisted of 382 probands with DSM-IV ADHD and their family members (n=1298 in total) of Han Chinese in Taiwan. Visual memory was assessed by the Pattern Recognition Memory (PRM) and Spatial Recognition Memory (SRM) tasks of the Cambridge Neuropsychological Test Automated Battery (CANTAB). We screened 21 polymorphisms across SLC6A2 and used the Family-Based Association Test (FBAT) to test the associations of SLC6A2 polymorphisms with ADHD and the PRM and SRM measures. In haplotype analyses, a haplotype rs36011 (T)/rs1566652 (G) was significantly associated with ADHD (minimal p=0.045) after adjustment for multiple testing. In quantitative analyses, this TG haplotype also demonstrated significant associations with visual memory measures, including mean latency of correct responses in PRM (minimal p=0.019), total correct responses in PRM (minimal p=0.018), and total correct responses in SRM (minimal p=0.015). Our novel finding of the haplotype rs36011 (T)/rs1566652 (G) as a novel genetic marker involved in both ADHD disease susceptibility and visual memory suggests that allelic variations in SLC6A2 could provide insight into the pathways leading from genotype to phenotype of ADHD.
Collapse
Affiliation(s)
- Chi-Yung Shang
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Ling Chiang
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences and Clinical Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
36
|
Badar A, Kiru L, Kalber TL, Jathoul A, Straathof K, Årstad E, Lythgoe MF, Pule M. Fluorescence-guided development of a tricistronic vector encoding bimodal optical and nuclear genetic reporters for in vivo cellular imaging. EJNMMI Res 2015; 5:18. [PMID: 25853023 PMCID: PMC4385325 DOI: 10.1186/s13550-015-0097-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/10/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In vivo imaging using genetic reporters is a central supporting tool in the development of cell and gene therapies affording us the ability to selectively track the therapeutic indefinitely. Previous studies have demonstrated the utility of the human norepinephrine transporter (hNET) as a positron emission tomography/single photon emission computed tomography (PET/SPECT) genetic reporter for in vivo cellular imaging. Here, our aim was to extend on this work and construct a tricistronic vector with dual optical (firefly luciferase) and nuclear (hNET) in vivo imaging and ex vivo histochemical capabilities. Guiding this development, we describe how a fluorescent substrate for hNET, 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP(+)), can be used to optimise vector design and serve as an in vitro functional screen. METHODS Vectors were designed to co-express a bright red-shifted firefly luciferase (FLuc), hNET and a small marker gene RQR8. Genes were co-expressed using 2A peptide linkage, and vectors were transduced into a T cell line, SupT1. Two vectors were constructed with different gene orientations; FLuc.2A.RQR8.2A.hNET and hNET.2A.FLuc.2A.RQR8. hNET function was assessed using ASP(+)-guided flow cytometry. In vivo cellular conspicuity was confirmed using sequential bioluminescence imaging (BLI) and SPECT imaging of transduced SupT1 cells injected into the flanks of mice. RESULTS SupT1/FLuc.2A.RQR8.2A.hNET cells resulted in >4-fold higher ASP(+) uptake compared to SupT1/hNET.2A.FLuc.2A.RQR8, suggesting that 2A orientation effected hNET function. SupT1/FLuc.2A.RQR8.2A.hNET cells were readily visualised with both BLI and SPECT, demonstrating high signal to noise at 24 h post (123)I-meta-iodobenzylguanidine (MIBG) administration. CONCLUSIONS In this study, a pre-clinical tricistronic vector with flow cytometry, BLI, SPECT and histochemical capabilities was constructed, which can be widely applied in cell tracking studies supporting the development of cell therapies. The study further demonstrates that hNET function in engineered cells can be assessed using ASP(+)-guided flow cytometry in place of costly radiosubstrate methodologies. This fluorogenic approach is unique to the hNET PET/SPECT reporter and may prove valuable when screening large numbers of cell lines or vector/mutant constructs.
Collapse
Affiliation(s)
- Adam Badar
- />Division of Medicine, Centre for Advanced Biomedical Imaging (CABI), University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Louise Kiru
- />Division of Medicine, Centre for Advanced Biomedical Imaging (CABI), University College London, 72 Huntley Street, London, WC1E 6DD UK
- />UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Tammy L Kalber
- />Division of Medicine, Centre for Advanced Biomedical Imaging (CABI), University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Amit Jathoul
- />UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Karin Straathof
- />UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Erik Årstad
- />Department of Chemistry and Institute of Nuclear Medicine, University College London, 235 Euston Road (T-5), London, NW1 2BU UK
| | - Mark F Lythgoe
- />Division of Medicine, Centre for Advanced Biomedical Imaging (CABI), University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Martin Pule
- />UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD UK
| |
Collapse
|
37
|
Kiel JW, Kopczynski CC. Effect of AR-13324 on episcleral venous pressure in Dutch belted rabbits. J Ocul Pharmacol Ther 2015; 31:146-51. [PMID: 25756366 PMCID: PMC4397991 DOI: 10.1089/jop.2014.0146] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE AR-13324 is a potential new drug for the treatment of patients with glaucoma that has been shown to lower intraocular pressure (IOP) by increasing trabecular outflow facility and decreasing aqueous production. The present study tested the hypothesis that AR-13324 also lowers IOP by reducing episcleral venous pressure (EVP). METHODS In Dutch Belted (DB) rabbits (n=11), arterial pressure (AP), IOP, carotid blood flow (BFcar), heart rate (HR), and EVP were measured invasively. Animals were dosed with AR-13324 (0.04%, topical, n=6) once daily for 3 days. On day 3, the animals were anesthetized, and then, measurements were obtained before dosing with AR-13324 or vehicle (n=5) and for 3 h after dosing. The data (mean±standard error of the mean) were analyzed by repeated measures ANOVA with post hoc testing. Retrospective baseline data from prior similar studies in New Zealand White rabbits were also compiled. RESULTS Baseline values were as follows: AP, 101±3 mmHg; IOP; 33±3 mmHg; EVP, 16±1 mmHg; BFcar, 41±4 mL/min; and HR, 330±6 bpm. Three hours after AR-13324 dosing, IOP was reduced by 39%±7% (P<0.001) and EVP decreased by 35%±4% (P<0.05); after vehicle dosing, IOP was reduced by 24%±4% (P<0.05) and EVP increased by 25%±5% (P<0.05). AP, BFcar, and HR were unchanged. CONCLUSIONS AR-13324 produces statistically significant lowering of EVP in DB rabbits. In addition, the baseline values for AP, IOP, EVP, BFcar, and HR in the DB rabbit are higher than those previously reported in the New Zealand rabbit.
Collapse
Affiliation(s)
- Jeffrey W Kiel
- 1 Department of Ophthalmology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | |
Collapse
|
38
|
Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer 2015; 62:5-11. [PMID: 25175627 PMCID: PMC4237663 DOI: 10.1002/pbc.25200] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/07/2014] [Indexed: 12/21/2022]
Abstract
Neuroblastoma is unique amongst common pediatric cancers for its expression of the norepinephrine transporter (NET), enabling tumor-selective imaging and therapy with radioactive analogues of norepinephrine. The majority of neuroblastoma tumors are avid for (123)I-metaiodobenzaguanidine (mIBG) on imaging, yet the therapeutic response to (131) I-mIBG is only 30% in clinical trials, and off-target effects cause short- and long-term morbidity. We review the contemporary understanding of the tumor-selective uptake, retention, and efflux of meta-iodobenzylguanidine (mIBG) and strategies currently in development for improving its efficacy. Combination treatment strategies aimed at enhancing NET are likely necessary to reach the full potential of (131)I-mIBG therapy.
Collapse
Affiliation(s)
- Keri A Streby
- Division of Hematology/Oncology/Blood and Marrow Transplant, The Ohio State UniversityColumbus, Ohio
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State UniversityColumbus, Ohio
| | - Nilay Shah
- Division of Hematology/Oncology/Blood and Marrow Transplant, The Ohio State UniversityColumbus, Ohio
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State UniversityColumbus, Ohio
| | - Mark A Ranalli
- Division of Hematology/Oncology/Blood and Marrow Transplant, The Ohio State UniversityColumbus, Ohio
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State UniversityColumbus, Ohio
| | - Anne Kunkler
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State UniversityColumbus, Ohio
| | - Timothy P Cripe
- Division of Hematology/Oncology/Blood and Marrow Transplant, The Ohio State UniversityColumbus, Ohio
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State UniversityColumbus, Ohio
| |
Collapse
|
39
|
Vatta MS, Bianciotti LG, Guil MJ, Hope SI. Regulation of the Norepinephrine Transporter by Endothelins. HORMONES AND TRANSPORT SYSTEMS 2015; 98:371-405. [DOI: 10.1016/bs.vh.2014.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Mouri A, Hoshino Y, Narusawa S, Ikegami K, Mizoguchi H, Murata Y, Yoshimura T, Nabeshima T. Thyrotoropin receptor knockout changes monoaminergic neuronal system and produces methylphenidate-sensitive emotional and cognitive dysfunction. Psychoneuroendocrinology 2014; 48:147-61. [PMID: 25016105 DOI: 10.1016/j.psyneuen.2014.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/10/2014] [Accepted: 05/27/2014] [Indexed: 11/15/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) has been reported in association with resistance to thyroid hormone, a disease caused by a mutation in the thyroid hormone receptor β (TRβ) gene. TRβ is a key protein mediating down-regulation of thyrotropin (TSH) expression by 3,3',5-tri-iodothyronine (T3), an active form of thyroid hormone. Dysregulation of TSH and its receptor (TSHR) is implicated in the pathophysiology of ADHD but the role of TSHR remains elusive. Here, we clarified a novel role for TSHR in emotional and cognitive functions related to monoaminergic nervous systems. TSHR knockout mice showed phenotypes of ADHD such as hyperactivity, impulsiveness, a decrease in sociality and increase in aggression, and an impairment of short-term memory and object recognition memory. Administration of methylphenidate (1, 5 and 10mg/kg) reversed impulsiveness, aggression and object recognition memory impairment. In the knockout mice, monoaminergic changes including decrease in the ratio of 3-methoxy-4-hydroxyphenylglycol/noradrenaline and increase in the ratio of homovanillic acid/dopamine were observed in some brain regions, accompanied by increase in the expression of noradrenaline transporter in the frontal cortex. When TSH was completely suppressed by the supraphysiological administration of T3 to the adult mice, some behavioral and neurological changes in TSHR KO mice were also observed, suggesting that these changes were not due to developmental hypothyroidism induced by the inactivation of TSHR but to the loss of the TSH-TSHR pathway itself. Taken together, the present findings suggest a novel role for TSHR in behavioral and neurological phenotypes of ADHD.
Collapse
Affiliation(s)
- Akihiro Mouri
- Department of Chemical Pharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya 468-8503, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya 468-0069, Japan
| | - Yuta Hoshino
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shiho Narusawa
- Department of Chemical Pharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya 468-8503, Japan
| | - Keisuke Ikegami
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroyuki Mizoguchi
- Futuristic Environmental Simulation Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshiharu Murata
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Toshitaka Nabeshima
- Department of Chemical Pharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya 468-8503, Japan; Department of Regional Pharmaceutical Care and Sciences, Meijo University, Nagoya 468-8503, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya 468-0069, Japan.
| |
Collapse
|
41
|
Kim YK, Hwang JA, Lee HJ, Yoon HK, Ko YH, Lee BH, Jung HY, Hahn SW, Na KS. Association between norepinephrine transporter gene (SLC6A2) polymorphisms and suicide in patients with major depressive disorder. J Affect Disord 2014; 158:127-32. [PMID: 24655776 DOI: 10.1016/j.jad.2014.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/25/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Although several studies have investigated possible associations between norepinephrine neurotransmitter transporter gene (SLC6A2) polymorphisms and depression, few studies have examined associations between SLC6A2 polymorphisms and suicide. METHODS Three single-nucleotide polymorphisms (rs2242446, rs28386840, and rs5569) were measured in 550 patients: 201 with major depressive disorder (MDD) and suicide attempt/s, 160 with MDD without suicide attempts, and 189 healthy controls. Analysis of single-nucleotide polymorphisms (SNPs) and haplotype was conducted for the three groups. Subsequently, multivariate logistic regression analysis adjusting for age and gender was conducted to identify independent influences of each SNP. A possible association between suicide lethality and SLC6A2 polymorphisms was also investigated. RESULTS In the genotype and allele frequency analysis, there were significant differences in rs28386840 between suicidal MDD patients and healthy controls. In the haplotype analysis, TAA (rs2242446-rs28386840-rs5569, from left to right) was associated with suicide attempts in MDD, although the significance (p=0.043) disappeared after Bonferroni correction. There were no relationships between lethality scores and SLC6A2 polymorphisms in suicidal MDD. LIMITATIONS Modest sample size and a single type of neurotransmitter analyzed (norepinephrine) are the primary limitations. CONCLUSION Our results suggest that SLC6A2 polymorphisms were associated with suicide risk in patients with MDD. Future studies are warranted to elucidate possible mechanisms by which SLC6A2 polymorphisms influence suicide risk.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Jung-A Hwang
- Department of Psychiatry, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Young-Hoon Ko
- Department of Psychiatry, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Bun-Hee Lee
- Department of Psychiatry, Gangnam Eulji Hospital, Eulji University, Seoul, Republic of Korea
| | - Han-Yong Jung
- Department of Psychiatry, Soonchunhyang University, College of Medicine, Seoul, Republic of Korea
| | - Sang-Woo Hahn
- Department of Psychiatry, Soonchunhyang University, College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, 1198, Guwol-dong, Namdong-gu 405-760, Incheon, Republic of Korea.
| |
Collapse
|
42
|
Rocha-Pereira C, Arribas SM, Fresco P, González MC, Gonçalves J, Diniz C. Impaired inhibitory function of presynaptic A1-adenosine receptors in SHR mesenteric arteries. J Pharmacol Sci 2014; 122:59-70. [PMID: 23782593 DOI: 10.1254/jphs.12266fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In hypertension, vascular reactivity alterations have been attributed to numerous factors, including higher sympathetic innervation/adenosine. This study examined the modulation of adenosine receptors on vascular sympathetic nerves and their putative contribution to higher noradrenaline spillover in hypertension. We assessed adenosine receptors distribution in the adventitia through confocal microscopy, histomorphometry, and their regulatory function on electrically-evoked [(3)H]-noradrenaline overflow, using selective agonists/antagonists. We found that: i) A1-adenosine receptor agonist (CPA: 100 nM) inhibited tritium overflow to a lower extent in SHR (25% ± 3%, n = 14) compared to WKY (38% ± 3%, n = 14) mesenteric arteries; ii) A2A-adenosine receptor agonist (CGS 21680: 100 nM) induced a slight increase of tritium overflow that was similar in SHR (22% ± 8%, n = 8) and WKY (24% ± 5%, n = 8) mesenteric arteries; iii) A2B- and A3-adenosine receptors did not alter tritium overflow in either strain; iv) all adenosine receptors were present on mesenteric artery sympathetic nerves and/or some adventitial cells of both strains; and v) A1-adenosine receptor staining fractional area was lower in SHR than in WKY mesenteric arteries. We conclude that there is an impaired inhibitory function of vascular presynaptic A1-adenosine receptors in SHR, likely related to a reduced presence of these receptors on sympathetic innervation, which might lead to higher levels of noradrenaline in the synaptic cleft and contribute to hypertension in this strain.
Collapse
Affiliation(s)
- Carolina Rocha-Pereira
- REQUIMTE/FARMA, Department of Drug Science, Laboratory of Pharmacology, Faculty of Pharmacy, Universidade do Porto, Portugal
| | | | | | | | | | | |
Collapse
|
43
|
Kinoshita J, Takahashi Y, Watabe AM, Utsunomiya K, Kato F. Impaired noradrenaline homeostasis in rats with painful diabetic neuropathy as a target of duloxetine analgesia. Mol Pain 2013; 9:59. [PMID: 24279796 PMCID: PMC4222693 DOI: 10.1186/1744-8069-9-59] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/22/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Painful diabetic neuropathy (PDN) is a serious complication of diabetes mellitus that affects a large number of patients in many countries. The molecular mechanisms underlying the exaggerated nociception in PDN have not been established. Recently, duloxetine (DLX), a serotonin and noradrenaline re-uptake inhibitor, has been recommended as one of the first-line treatments of PDN in the United States Food and Drug Administration, the European Medicines Agency and the Japanese Guideline for the Pharmacologic Management of Neuropathic pain. Because selective serotonin re-uptake inhibitors show limited analgesic effects in PDN, we examined whether the potent analgesic effect of DLX contributes toward improving the pathologically aberrant noradrenaline homeostasis in diabetic models. RESULTS In streptozotocin (STZ) (50 mg/kg, i.v.)-induced diabetic rats that exhibited robust mechanical allodynia and thermal hyperalgesia, DLX (10 mg/kg, i.p.) significantly and markedly increased the nociceptive threshold. The analgesic effect of DLX was nullified by the prior administration of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) (50 mg/kg, i.p.), which drastically eliminated dopamine-beta-hydroxylase- and norepinephrine transporter-immunopositive fibers in the lumbar spinal dorsal horn and significantly reduced the noradrenaline content in the lumbar spinal cord. The treatment with DSP-4 alone markedly lowered the nociceptive threshold in vehicle-treated non-diabetic rats; however, this pro-nociceptive effect was occluded in STZ-treated diabetic rats. Furthermore, STZ-treated rats exhibited a higher amount of dopamine-beta-hydroxylase- and norepinephrine transporter-immunopositive fibers in the dorsal horn and noradrenaline content in the spinal cord compared to vehicle-treated rats. CONCLUSIONS Impaired noradrenaline-mediated regulation of the spinal nociceptive network might underlie exaggerated nociception in PDN. DLX might exert its analgesic effect by selective enhancement of noradrenergic signals, thus counteracting this situation.
Collapse
Affiliation(s)
- Jun Kinoshita
- Department of Neuroscience, Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan.
| | | | | | | | | |
Collapse
|
44
|
Wehrwein EA, Novotny M, Swain GM, Parker LM, Esfahanian M, Spitsbergen JM, Habecker BA, Kreulen DL. Regional changes in cardiac and stellate ganglion norepinephrine transporter in DOCA-salt hypertension. Auton Neurosci 2013; 179:99-107. [PMID: 24075956 DOI: 10.1016/j.autneu.2013.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
Abstract
Uptake of norepinephrine via the neuronal norepinephrine transporter is reduced in the heart during deoxycorticosterone (DOCA)-salt hypertension. We hypothesized that this was due to reduced norepinephrine transporter mRNA and/or protein expression in the stellate ganglia and heart. After 4 weeks of DOCA-salt treatment there was no change in norepinephrine transporter mRNA in either the right or the left stellate ganglia from hypertensive rats (n=5-7, p>0.05). Norepinephrine transporter immunoreactivity in the left stellate ganglion was significantly increased (n=4, p<0.05) while the right stellate ganglion was unchanged (n=4, p>0.05). Whole heart norepinephrine content was significantly reduced in DOCA rats consistent with reduced uptake function; however, when norepinephrine was assessed by chamber, a significant decrease was noted only in the right atrium and right ventricle (n=6, p<0.05). Cardiac norepinephrine transport binding by chamber revealed that it was only reduced in the left atrium (n=5-7, p>0.05). Therefore, 1) contrary to our hypothesis reduced reuptake in the hypertensive heart is not exclusively due to an overall reduction in norepinephrine transporter mRNA or protein in the stellate ganglion or heart, and 2) norepinephrine transporter regulation occurs regionally in the heart and stellate ganglion in the hypertensive rat heart.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The noradrenaline (norepinephrine) system exerts profound influences on cognition via ascending projections to the forebrain, mostly originating from the locus coeruleus. This paper provides an overview of available infrahuman and healthy human studies, exploring the effects of specific noradrenergic manipulations on dissociable cognitive functions, including attention, working memory, cognitive flexibility, response inhibition and emotional memory. Remarkable parallels across species have been reported which may account for the mechanisms by which noradrenergic medications exert their beneficial effects in disorders such as depression and attention-deficit hyperactivity disorder (ADHD). The literature is discussed in relation to prevailing models of noradrenergic influences over cognition and novel therapeutic directions, including in relation to investigating the effects of noradrenergic manipulations on other disorders characterized by impulsivity, and dementias. Unanswered questions are also highlighted, along with key avenues for future research, both proof-of-concept and clinical.
Collapse
|
46
|
Abramoff T, Guil MJ, Morales VP, Hope SI, Soria C, Bianciotti LG, Vatta MS. Enhanced assymetrical noradrenergic transmission in the olfactory bulb of deoxycorticosterone acetate-salt hypertensive rats. Neurochem Res 2013; 38:2063-71. [PMID: 23888389 DOI: 10.1007/s11064-013-1114-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/10/2013] [Accepted: 07/13/2013] [Indexed: 01/14/2023]
Abstract
The ablation of olfactory bulb induces critical changes in dopamine, and monoamine oxidase activity in the brain stem. Growing evidence supports the participation of this telencephalic region in the regulation blood pressure and cardiovascular activity but little is known about its contribution to hypertension. We have previously reported that in the olfactory bulb of normotensive rats endothelins enhance noradrenergic activity by increasing tyrosine hydroxylase activity and norepinephrine release. In the present study we sought to establish the status of noradrenergic activity in the olfactory bulb of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Different steps in norepinephrine transmission including tyrosine hydroxylase activity, neuronal norepinephrine release and uptake were assessed in the left and right olfactory bulb of DOCA-salt hypertensive rats. Increased tyrosine hydroxylase activity, and decreased neuronal norepinephrine uptake were observed in the olfactory bulb of DOCA-salt hypertensive rats. Furthermore the expression of tyrosine hydroxylase and its phosphorylated forms were also augmented. Intriguingly, asymmetrical responses between the right and left olfactory bulb of normotensive and hypertensive rats were observed. Neuronal norepinephrine release was increased in the right but not in the left olfactory bulb of DOCA-salt hypertensive rats, whereas non asymmetrical differences were observed in normotensive animals. Present findings indicate that the olfactory bulb of hypertensive rats show an asymmetrical increase in norepinephrine activity. The observed changes in noradrenergic transmission may likely contribute to the onset and/or progression of hypertension in this animal model.
Collapse
Affiliation(s)
- Tamara Abramoff
- Cátedra de Fisiología e Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 7, 1113AAD-CABA, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
47
|
Outhred T, Hawkshead BE, Wager TD, Das P, Malhi GS, Kemp AH. Acute neural effects of selective serotonin reuptake inhibitors versus noradrenaline reuptake inhibitors on emotion processing: Implications for differential treatment efficacy. Neurosci Biobehav Rev 2013; 37:1786-800. [PMID: 23886514 DOI: 10.1016/j.neubiorev.2013.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/26/2023]
Abstract
Clinical research has demonstrated differential efficacy of selective serotonin reuptake inhibitors (SSRIs) and norepinephrine reuptake inhibitors (NRIs), which may relate to differential acute effects these medications have on emotional brain processes. Here we present findings from a Multi-Level Kernel Density Analysis meta-analysis that integrates and contrasts activations from disparate fMRI studies in order to examine whether single dose SSRIs and NRIs have different effects on emotion processing tasks in healthy participants. Seven SSRI and four NRI studies were eligible for inclusion. SSRIs decreased amygdala responses, suggesting reduced emotional reactivity to emotional stimuli, whereas NRIs increased frontal and medial activation, suggesting increased emotion regulation. As hypothesised, an interaction of antidepressant and task type was found, such that SSRIs modulated amygdaloid-hippocampal, medial and frontal activity during both the presentation of faces and pictures, whereas NRIs only modulated the activation in medial and frontal regions during the presentation of pictures. Findings are interpreted within a novel model of the differential effects of SSRIs and NRIs on emotion processing.
Collapse
Affiliation(s)
- Tim Outhred
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, Royal North Shore Hospital, NSW 2065, Australia; SCAN Research and Teaching Unit, School of Psychology, University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
The activation of α1-adrenoceptors is implicated in the antidepressant-like effect of creatine in the tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:39-50. [PMID: 23357536 DOI: 10.1016/j.pnpbp.2013.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/08/2013] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
Abstract
The antidepressant-like activity of creatine in the tail suspension test (TST) was demonstrated previously by our group. In this study we investigated the involvement of the noradrenergic system in the antidepressant-like effect of creatine in the mouse TST. In the first set of experiments, creatine administered by i.c.v. route (1 μg/site) decreased the immobility time in the TST, suggesting the central effect of this compound. The anti-immobility effect of peripheral administration of creatine (1 mg/kg, p.o.) was prevented by the pretreatment of mice with α-methyl-p-tyrosine (100 mg/kg, i.p., inhibitor of tyrosine hydroxylase), prazosin (1 mg/kg, i.p., α1-adrenoceptor antagonist), but not by yohimbine (1 mg/kg, i.p., α2-adrenoceptor antagonist). Creatine (0.01 mg/kg, subeffective dose) in combination with subeffective doses of amitriptyline (1 mg/kg, p.o., tricyclic antidepressant), imipramine (0.1 mg/kg, p.o., tricyclic antidepressant), reboxetine (2 mg/kg, p.o., selective noradrenaline reuptake inhibitor) or phenylephrine (0.4 μg/site, i.c.v., α1-adrenoceptor agonist) reduced the immobility time in the TST as compared with either drug alone. These results indicate that the antidepressant-like effect of creatine is likely mediated by an activation of α1-adrenoceptor and that creatine produces synergistic effects in the TST with antidepressants that modulate noradrenaline transporter, suggesting that an improvement in the response to the antidepressant therapy may occur when creatine is combined with these antidepressants. Furthermore, the synergistic effect of creatine (0.01 mg/kg, p.o.) and reboxetine (2 mg/kg, p.o.) combination was abolished by the α1-adrenoceptor antagonist prazosin, indicating that the antidepressant-like effect of combined therapy is likely mediated by an activation of α1-adrenoceptor.
Collapse
|
49
|
Abstract
Ang-(1–7) [angiotensin-(1–7)] constitutes an important functional end-product of the RAS (renin–angiotensin system) endogenously formed from AngI (angiotensin I) or AngII (angiotensin II) through the catalytic activity of ACE2 (angiotensin-converting enzyme 2), prolyl carboxypeptidase, neutral endopeptidase or other endopeptidases. Ang-(1–7) lacks the pressor, dipsogenic or stimulatory effect on aldosterone release characteristic of AngII. In contrast, it produces vasodilation, natriuresis and diuresis, and inhibits angiogenesis and cell growth. At the central level, Ang-(1–7) acts at sites involved in the control of cardiovascular function, thus contributing to blood pressure regulation. This action may result from its inhibitory neuromodulatory action on NE [noradrenaline (norepinephrine)] levels at the synaptic cleft, i.e. Ang-(1–7) reduces NE release and synthesis, whereas it causes an increase in NE transporter expression, contributing in this way to central NE neuromodulation. Thus, by selective neurotransmitter release, Ang-(1–7) may contribute to the overall central cardiovascular effects. In the present review, we summarize the central effects of Ang-(1–7) and the mechanism by which the peptide modulates NE levels in the synaptic cleft. We also provide new evidences of its cerebroprotective role.
Collapse
|
50
|
The Role of Cysteines and Histidins of the Norepinephrine Transporter. Neurochem Res 2013; 38:1303-14. [DOI: 10.1007/s11064-013-1022-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/17/2022]
|