1
|
Chick embryo chorioallantoic membrane: a biomaterial testing platform for tissue engineering applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Bao XY, Fan YN, Wang QN, Wang XP, Yang RM, Zou ZX, Zhang Q, Li DS, Duan L, Yu XG. The Potential Mechanism Behind Native and Therapeutic Collaterals in Moyamoya. Front Neurol 2022; 13:861184. [PMID: 35557620 PMCID: PMC9086844 DOI: 10.3389/fneur.2022.861184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose To explore the genetic basis and molecular mechanism of native arteriogenesis and therapeutic synangiosis in moyamoya disease (MMD). Methods An angiography-based study using patients from a prospective trial of encephaloduroarteriosynangiosis (EDAS) surgery was performed. The spontaneous collaterals grades were evaluated according to the system described by a new grading system. Blood samples were collected from all the recruited patients before EDAS and during the second hospitalization 3 months post-EDAS. We performed Boolean analysis using a combination of specific cell surface markers of CD34briCD133+CD45dimKDR+. Genotyping of p.R4810K was also performed. The correlation of age, sex, initial symptoms at diagnosis, collateral grade, Suzuki stages, the RNF213 genotype, time to peak (TTP), and endothelial progenitor cell (EPC) count with good collateral circulation was evaluated. Results Eighty-five patients with MMD were included in this study. The mutation rate of RNF213 p.R4810K in our study was 25.9% (22/85). The heterozygous mutations were occurred significantly more frequently in the cases that were presented with infarction, worse neurological status, severe posterior cerebral artery (PCA) stenosis, and longer TTP delay. Further, the heterozygous mutations occurred significantly more frequently in the poor collateral stage group. Lower grades were significantly correlated with severe ischemia symptoms, worse neurological status, and a longer TTP delay. The post-operative angiographic findings showed that a good Matsushima grade was correlated with heterozygous mutations, a lower collateral stage, and a longer TTP delay. The CD34briCD133+CD45dimKDR+ cell count in patients 3 months post-EDAS was significantly higher as compared to the count before EDAS in the good Matsushima grade group. However, this change was not observed in the poor Matsushima grade group. Conclusions These data imply that mutations of RNF213 p.R4810K affect the establishment of spontaneous collateral circulation, and EPCs are involved in the process of formation of new EDAS collaterals.
Collapse
Affiliation(s)
- Xiang-Yang Bao
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Yan-Na Fan
- Department of Radiation Oncology, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of the PLA), Beijing, China
| | - Qian-Nan Wang
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Xiao-Peng Wang
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Ri-Miao Yang
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Zheng-Xing Zou
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - De-Sheng Li
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
- *Correspondence: Lian Duan
| | - Xin-Guang Yu
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
- Xin-Guang Yu
| |
Collapse
|
3
|
Cocola C, Magnaghi V, Abeni E, Pelucchi P, Martino V, Vilardo L, Piscitelli E, Consiglio A, Grillo G, Mosca E, Gualtierotti R, Mazzaccaro D, La Sala G, Di Pietro C, Palizban M, Liuni S, DePedro G, Morara S, Nano G, Kehler J, Greve B, Noghero A, Marazziti D, Bussolino F, Bellipanni G, D'Agnano I, Götte M, Zucchi I, Reinbold R. Transmembrane Protein TMEM230, a Target of Glioblastoma Therapy. Front Cell Neurosci 2021; 15:703431. [PMID: 34867197 PMCID: PMC8636015 DOI: 10.3389/fncel.2021.703431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12–15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.,Consorzio Italbiotec, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Edoardo Abeni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Arianna Consiglio
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giorgio Grillo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Roberta Gualtierotti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mazzaccaro
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Mira Palizban
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Sabino Liuni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giuseppina DePedro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giovanni Nano
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States.,Department of Oncology, University of Turin, Orbassano, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, Orbassano, Italy.,Laboratory of Vascular Oncology Candiolo Cancer Institute - IRCCS, Candiolo, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Igea D'Agnano
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Ileana Zucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Rolland Reinbold
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| |
Collapse
|
4
|
Haas G, Fan S, Ghadimi M, De Oliveira T, Conradi LC. Different Forms of Tumor Vascularization and Their Clinical Implications Focusing on Vessel Co-option in Colorectal Cancer Liver Metastases. Front Cell Dev Biol 2021; 9:612774. [PMID: 33912554 PMCID: PMC8072376 DOI: 10.3389/fcell.2021.612774] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
In modern anti-cancer therapy of metastatic colorectal cancer (mCRC) the anti-angiogenic treatment targeting sprouting angiogenesis is firmly established for more than a decade. However, its clinical benefits still remain limited. As liver metastases (LM) represent the most common metastatic site of colorectal cancer and affect approximately one-quarter of the patients diagnosed with this malignancy, its treatment is an essential aspect for patients' prognosis. Especially in the perioperative setting, the application of anti-angiogenic drugs represents a therapeutic option that may be used in case of high-risk or borderline resectable colorectal cancer liver metastases (CRCLM) in order to achieve secondary resectability. Regarding CRCLM, one reason for the limitations of anti-angiogenic treatment may be represented by vessel co-option (VCO), which is an alternative mechanism of blood supply that differs fundamentally from the well-known sprouting angiogenesis and occurs in a significant fraction of CRCLM. In this scenario, tumor cells hijack pre-existing mature vessels of the host organ independently from stimulating new vessels formation. This represents an escape mechanism from common anti-angiogenic anti-cancer treatments, as they primarily target the main trigger of sprouting angiogenesis, the vascular endothelial growth factor A. Moreover, the mechanism of blood supply in CRCLM can be deduced from their phenotypic histopathological growth pattern (HGP). For that, a specific guideline has already been implemented. These HGP vary not only regarding their blood supply, but also concerning their tumor microenvironment (TME), as notable differences in immune cell infiltration and desmoplastic reaction surrounding the CRCLM can be observed. The latter actually serves as one of the central criteria for the classification of the HGP. Regarding the clinically relevant effects of the HGP, it is still a topic of research whether the VCO-subgroup of CRCLM results in an impaired treatment response to anti-angiogenic treatment when compared to an angiogenic subgroup. However, it is well-proved, that VCO in CRCLM generally relates to an inferior survival compared to the angiogenic subgroup. Altogether the different types of blood supply result in a relevant influence on the patients' prognosis. This reinforces the need of an extended understanding of the underlying mechanisms of VCO in CRCLM with the aim to generate more comprehensive approaches which can target tumor vessels alternatively or even other components of the TME. This review aims to augment the current state of knowledge on VCO in CRCLM and other tumor entities and its impact on anti-angiogenic anti-cancer therapy.
Collapse
Affiliation(s)
- Gwendolyn Haas
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Shuang Fan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Endothelial Progenitor Cells Induce Angiogenesis: a Potential Mechanism Underlying Neovascularization in Encephaloduroarteriosynangiosis. Transl Stroke Res 2020; 12:357-365. [PMID: 32632776 DOI: 10.1007/s12975-020-00834-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Encephaloduroarteriosynangiosis (EDAS) is one of the most commonly used indirect vascular reconstruction methods. EDAS aids in the formation of collateral vessels from the extracranial to the intracranial circulation in patients with moyamoya disease (MMD). However, the underlying mechanism of collateral vessel formation is not well understood. Endothelial progenitor cells (EPCs) differentiate to form the vascular endothelial cells and play a very important role in angiogenesis. We designed this prospective clinical trial to investigate the presence of EPCs in patients with MMD and to explore the neovascularization mechanism mediated by the EPCs in EDAS. The patients who were diagnosed with MMD were recruited between February 5, 2017, and January 7, 2018. The blood samples were obtained from an antecubital vein and were analyzed using flow cytometry. EPCs were defined as CD34brCD133+CD45dimKDR+. All the patients enrolled in the study underwent EDAS. Cerebral arteriography was performed 6 months post-EDAS to assess the efficacy of synangiosis. The correlation between EPC count and good collateral circulation was evaluated. Among the 116 patients with MMD enrolled in this study, 73 were women and 43 were men. The average age of the patients was 33.8 ± 15.2 years. The EPC count of the patients with MMD was 0.071% ± 0.050% (expressed as percentage of the peripheral blood mononuclear cells). The EPC count in the good postoperative collateral circulation group was significantly higher (0.085% ± 0.054%) than that in the poor collateral circulation group (0.048% ± 0.034%) (P = 0.000). The age, modified Suzuki-Mugikura grade, and EPC count were significantly correlated with the good collateral circulation post-EDAS in the multivariate analysis (P = 0.018, P = 0.007, and P = 0.003, respectively). The formation of collateral vessels by EDAS is primarily driven by angiogenesis. The EPC count may be the most critical factor for collateral circulation. The therapeutic effect of EDAS is more likely to benefit younger or severe ischemic patients with MMD.
Collapse
|
6
|
Díaz-Flores L, Gutiérrez R, Gayoso S, García MP, González-Gómez M, Díaz-Flores L, Sánchez R, Carrasco JL, Madrid JF. Intussusceptive angiogenesis and its counterpart intussusceptive lymphangiogenesis. Histol Histopathol 2020; 35:1083-1103. [PMID: 32329808 DOI: 10.14670/hh-18-222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intussusceptive angiogenesis (IA) is currently considered an important alternative and complementary form of sprouting angiogenesis (SA). Conversely, intussusceptive lymphangiogenesis (IL) is in an initial phase of study. We compare their morphofunctional characteristics, since many can be shared by both processes. To that end, the following aspects are considered: A) The concept of IA and IL as the mechanism by which blood and lymphatic vessels split, expand and remodel through transluminal pillar formations (hallmarks of intussusception). B) Terminology and historical background, with particular reference to the group of Burri, including Djonov and Patan, who initiated and developed the vessel intussusceptive concept in blood vessels. C) Incidence in normal (e.g. in the sinuses of developing lymph nodes) and pathologic conditions, above all in vessel diseases, such as dilated veins in hemorrhoidal disease, intravascular papillary endothelial hyperplasia (IPEH), sinusoidal hemangioma, lobular capillary hemangioma, lymphangiomas/lymphatic malformations and vascular transformation of lymph nodes. D) Differences and complementarity between vessel sprouting and intussusception. E) Characteristics of the cover (endothelial cells) and core (connective tissue components) of pillars and requirements for pillar identification. F) Structures involved in pillar formation, including endothelial contacts of opposite vessel walls, interendothelial bridges, merged adjacent capillaries, vessel loops and spilt pillars. G) Structures resulting from pillars with intussusceptive microvascular growth, arborization, remodeling and segmentation (compartmentalization). H) Influence of intussusception in the morphogenesis of vessel tumors/ pseudotumors; and I) Hemodynamic and molecular control of vessel intussusception, including VEGF, PDGF BB, Hypoxia, Notch, Endoglobin and Nitric oxide.
Collapse
Affiliation(s)
- L Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain.
| | - R Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - S Gayoso
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - M P García
- Department of Pathology, Eurofins® Megalab-Hospiten Hospitals, Tenerife, Spain
| | - M González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - L Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - R Sánchez
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - J L Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence "Campus Mare Nostrum", IMIB-Arrixaca, University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Zhan K, Bai L, Wang G, Zuo B, Xie L, Wang X. Different angiogenesis modes and endothelial responses in implanted porous biomaterials. Integr Biol (Camb) 2019; 10:406-418. [PMID: 29951652 DOI: 10.1039/c8ib00061a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in vivo experimental model based on implanting porous biomaterials to study angiogenesis was proposed. In the implanted porous polyvinyl alcohol, three major modes of angiogenesis, sprouting, intussusception and splitting, were found. By electron microscopy and three-dimensional simulation of the angiogenic vessels, we investigated the morphological characteristics of the three modes and paid special attention to the initial morphological difference between intussusception and splitting, and it was confirmed that the endothelial abluminal invagination and intraluminal protrusion are pre-representations of intussusception and splitting, respectively. Based on immunohistochemical analysis of HIF-1α, VEGF and Flt-1 expressions, it was demonstrated that the dominant mode of angiogenesis is related to the local hypoxic condition, and that there is difference in the response of endothelial cells to hypoxia-induced VEGF between sprouting and splitting. Specifically, in the biomaterials implanted for 3 days, the higher expression and gradient of VEGF induced by severe hypoxia in the avascular area caused sprouting of the peripheral capillaries, and in the biomaterial implanted for 9 days, with moderate hypoxia, splitting became a dominant mode. Whether on day 3 or day 9, Flt-1 expression in sprouting endothelia was significantly higher than that in splitting endothelia, which indicates that sprouting is caused by the strong response of endothelial cells to VEGF, while splitting is associated with their weaker response. As a typical experimental example, these results show the effectiveness of the porous biomaterial implantation model for studying angiogenesis, which is expected to become a new general model.
Collapse
Affiliation(s)
- Kuihua Zhan
- School of Mechanical and Electric Engineering, Soochow University, 8 Jixue Road, Suzhou, 215131, China.
| | | | | | | | | | | |
Collapse
|
8
|
Zuazo-Gaztelu I, Casanovas O. Unraveling the Role of Angiogenesis in Cancer Ecosystems. Front Oncol 2018; 8:248. [PMID: 30013950 PMCID: PMC6036108 DOI: 10.3389/fonc.2018.00248] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of the tumor and stromal cell-driven angiogenic program is one of the first requirements in the tumor ecosystem for growth and dissemination. The understanding of the dynamic angiogenic tumor ecosystem has rapidly evolved over the last decades. Beginning with the canonical sprouting angiogenesis, followed by vasculogenesis and intussusception, and finishing with vasculogenic mimicry, the need for different neovascularization mechanisms is further explored. In addition, an overview of the orchestration of angiogenesis within the tumor ecosystem cellular and molecular components is provided. Clinical evidence has demonstrated the effectiveness of traditional vessel-directed antiangiogenics, stressing on the important role of angiogenesis in tumor establishment, dissemination, and growth. Particular focus is placed on the interaction between tumor cells and their surrounding ecosystem, which is now regarded as a promising target for the development of new antiangiogenics.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| |
Collapse
|
9
|
Hashim SNM, Yusof MFH, Zahari W, Noordin KBAA, Kannan TP, Hamid SSA, Mokhtar KI, Ahmad A. Angiogenic potential of extracellular matrix of human amniotic membrane. Tissue Eng Regen Med 2016; 13:211-217. [PMID: 30603401 DOI: 10.1007/s13770-016-9057-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/14/2015] [Accepted: 08/24/2015] [Indexed: 10/21/2022] Open
Abstract
Combination between tissue engineering and other fields has brought an innovation in the area of regenerative medicine which ultimate aims are to repair, improve, and produce a good tissue construct. The availability of many types of scaffold, both synthetically and naturally have developed into many outstanding end products that have achieved the general objective in tissue engineering. Interestingly, most of this scaffold emulates extracellular matrix (ECM) characteristics. Therefore, ECM component sparks an interest to be explored and manipulated. The ECM featured in human amniotic membrane (HAM) provides a suitable niche for the cells to adhere, grow, proliferate, migrate and differentiate, and could possibly contribute to the production of angiogenic micro-environment indirectly. Previously, HAM scaffold has been widely used to accelerate wound healing, treat bone related and ocular diseases, and involved in cardiovascular repair. Also, it has been used in the angiogenicity study, but with a different technical approach. In addition, both side of HAM could be used in cellularised and decellularised conditions depending on the objectives of a particular research. Therefore, it is of paramount importance to investigate the behavior of ECM components especially on the stromal side of HAM and further explore the angiogenic potential exhibited by this scaffold.
Collapse
Affiliation(s)
| | | | - Wafa' Zahari
- 1School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kelantan, Malaysia
| | | | - Thirumulu Ponnuraj Kannan
- 1School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kelantan, Malaysia.,2Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Khairani Idah Mokhtar
- 4Kulliyyah of Dentistry, International Islamic University Malaysia, Pahang, Malaysia
| | - Azlina Ahmad
- 1School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kelantan, Malaysia
| |
Collapse
|
10
|
Bai L, Wu D, Xu J, Liu H, Xie M, Guan G, Sun Z, Tan X. On model of angiogenesis and the mechanism in porous silk fibroin films. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:927-933. [PMID: 21373813 DOI: 10.1007/s10856-011-4258-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 02/12/2011] [Indexed: 05/30/2023]
Abstract
The purpose of this paper is to explore the mechanism of the angiogenesis modes in the biomaterials implanted in vivo. By means of experimental observation and analysis of the capillary growing state in the porous silk fibroin film implanted into rats, we intended to develop a modeling expression on the growth mode of the capillaries in the biomaterials. Additionally, we proposed the response model of endothelial cells (ECs) resulting from vascular endothelial growth factor's concentrations at different stages after the implantation. With the implantation experiment, it was identified that angiogenesis developed in the way of capillary sprouting at the early stage of implantation and of intussusception at the late stage. Based on the response model of ECs, experimental results are explained.
Collapse
Affiliation(s)
- Lun Bai
- College of Textile and Clothing Engineering, Soochow University, 178 Xiangmen-road, Suzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Taylor AC, Seltz LM, Yates PA, Peirce SM. Chronic whole-body hypoxia induces intussusceptive angiogenesis and microvascular remodeling in the mouse retina. Microvasc Res 2010; 79:93-101. [PMID: 20080108 DOI: 10.1016/j.mvr.2010.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 01/28/2023]
Abstract
Currently, little is known about the response of the adult retinal microvasculature to hypoxia. To test the hypothesis that chronic systemic hypoxia induces angiogenesis and microvascular remodeling in the adult mouse retina, adult 10-week old female C57Bl/6 mice were exposed to 10% O(2) for 2 or 3 weeks. After hypoxia exposure, retinas were harvested, whole-mounted, and processed for immunohistochemistry. Retinas were stained with lectin, anti-smooth muscle alpha-actin antibody, and anti-NG2 antibody to visualize microvascular networks and their cellular components. Confocal microscopy was used to obtain images of superficial retinal networks. Images were analyzed to assess vessel diameter, vascular length density, branch point density, and the presence of vascular loops, a hallmark of intussusceptive angiogenesis. Both 2 and 3 weeks of hypoxia exposure resulted in a significant increase in the diameters of arterioles and post-arteriole capillaries (p<0.003). After 3 weeks of hypoxia, vascular length density and branch point density were significantly increased in retinas exposed to hypoxia as compared to normoxic controls (p<0.001). The number of vascular loops in the superficial retinal networks was significantly greater in hypoxia-exposed retinas (p < or = 0.001). Our results demonstrate, for the first time, intussusceptive angiogenesis as a tissue-level mechanism of vascular adaptation to chronic systemic hypoxia in the adult mouse retina and contribute to our understanding of hypoxia-induced angiogenesis and microvascular remodeling in the adult animal.
Collapse
Affiliation(s)
- Alyssa C Taylor
- Department of Biomedical Engineering, P.O. Box 800759, UVA Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
12
|
Makanya AN, Djonov V. Parabronchial angioarchitecture in developing and adult chickens. J Appl Physiol (1985) 2009; 106:1959-69. [PMID: 19325026 DOI: 10.1152/japplphysiol.91570.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The avian lung has a highly sophisticated morphology with a complex vascular system. Extant data regarding avian pulmonary angioarchitecture are few and contradictory. We used corrosion casting techniques, light microscopy, as well as scanning and transmission electron microscopy to study the development, topography, and distribution of the parabronchial vasculature in the chicken lung. The arterial system was divisible into three hierarchical generations, all formed external to the parabronchial capillary meshwork. These included the interparabronchial arteries (A1) that ran parallel to the long axes of parabronchi and gave rise to orthogonal parabronchial arteries (A2) that formed arterioles (A3). The arterioles formed capillaries that participated in the formation of the parabronchial mantle. The venous system comprised six hierarchical generations originating from the luminal aspect of the parabronchi, where capillaries converged to form occasional tiny infundibular venules (V6) around infundibulae, or septal venules (V5) between conterminous atria. The confluence of the latter venules formed atrial veins (V4), which gave rise to intraparabronchial veins (V3) that traversed the capillary meshwork to join the interparabronchial veins (V1) directly or via parabronchial veins (V2). The primitive networks inaugurated through sprouting, migration, and fusion of vessels and the basic vascular pattern was already established by the 20th embryonic day, with the arterial system preceding the venous system. Segregation and remodeling of the fine vascular entities occurred through intussusceptive angiogenesis, a process that probably progressed well into the posthatch period. Apposition of endothelial cells to the attenuating epithelial cells of the air capillaries resulted in establishment of the thin blood-gas barrier. Fusion of blood capillaries proceeded through apposition of the anastomosing sprouts, with subsequent thinning of the abutting boundaries and ultimate communication of the lumens. Orthogonal reorientation of the blood capillaries at the air capillary level resulted in a cross-current system at the gas exchange interface.
Collapse
Affiliation(s)
- A N Makanya
- Department of Medicine, Fribourg University, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
13
|
Abstract
Blood vessels and lymphatic vessels form extensive networks that are essential for the transport of fluids, gases, macromolecules and cells within the large and complex bodies of vertebrates. Both of these vascular structures are lined with endothelial cells that integrate functionally into different organs, acquire tissue-specific specialization and retain plasticity; thereby, they permit growth during tissue repair or in disease settings. The angiogenic growth of blood vessels and lymphatic vessels coordinates several biological processes such as cell proliferation, guided migration, differentiation and cell-cell communication.
Collapse
Affiliation(s)
- Ralf H Adams
- Vascular Development Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, UK.
| | | |
Collapse
|
14
|
Makanya AN, Hlushchuk R, Baum O, Velinov N, Ochs M, Djonov V. Microvascular endowment in the developing chicken embryo lung. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1136-46. [PMID: 17244646 DOI: 10.1152/ajplung.00371.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the current study, the contribution of the major angiogenic mechanisms, sprouting and intussusception, to vascular development in the avian lung has been demonstrated. Sprouting guides the emerging vessels to form the primordial vascular plexus, which successively surrounds and encloses the parabronchi. Intussusceptive angiogenesis has an upsurge from embryonic day 15 (E15) and contributes to the remarkably rapid expansion of the capillary plexus. Increased blood flow stimulates formation of pillars (the archetype of intussusception) in rows, their subsequent fusion and concomitant delineation of slender, solitary vascular entities from the disorganized meshwork, thus crafting the organ-specific angioarchitecture. Morphometric investigations revealed that sprouting is preponderant in the early period of development with a peak at E15 but is subsequently supplanted by intussusceptive angiogenesis by the time of hatching. Quantitative RT-PCR revealed that moderate levels of basic FGF (bFGF) and VEGF-A were maintained during the sprouting phase while PDGF-B remained minimal. All three factors were elevated during the intussusceptive phase. Immunohistoreactivity for VEGF was mainly in the epithelial cells, whereas bFGF was confined to the stromal compartment. Temporospatial interplay between sprouting and intussusceptive angiogenesis fabricates a unique vascular angioarchitecture that contributes to the establishment of a highly efficient gas exchange system characteristic of the avian lung.
Collapse
Affiliation(s)
- A N Makanya
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | | | | | | | | | | |
Collapse
|
15
|
Heil M, Eitenmüller I, Schmitz-Rixen T, Schaper W. Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 2006; 10:45-55. [PMID: 16563221 PMCID: PMC3933101 DOI: 10.1111/j.1582-4934.2006.tb00290.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 02/24/2006] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases account for more than half of total mortality before the age of 75 in industrialized countries. To develop therapies promoting the compensatory growth of blood vessels could be superior to palliative surgical interventions. Therefore, much effort has been put into investigating underlying mechanisms. Depending on the initial trigger, growth of blood vessels in adult organisms proceeds via two major processes, angiogenesis and arteriogenesis. While angiogenesis is induced by hypoxia and results in new capillaries, arteriogenesis is induced by physical forces, most importantly fluid shear stress. Consequently, chronically elevated fluid shear stress was found to be the strongest trigger under experimental conditions. Arteriogenesis describes the remodelling of pre-existing arterio-arteriolar anastomoses to completely developed and functional arteries. In both growth processes, enlargement of vascular wall structures was proposed to be covered by proliferation of existing wall cells. Recently, increasing evidence emerges, implicating a pivotal role for circulating cells, above all blood monocytes, in vascular growth processes. Since it has been shown that monocytes/ macrophage release a cocktail of chemokines, growth factors and proteases involved in vascular growth, their contribution seems to be of a paracrine fashion. A similar role is currently discussed for various populations of bone-marrow derived stem cells and endothelial progenitors. In contrast, the initial hypothesis that these cells -after undergoing a (trans-)differentiation- contribute by a structural integration into the growing vessel wall, is increasingly challenged.
Collapse
Affiliation(s)
- M Heil
- Max-Planck-Institute for Heart & Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.
| | | | | | | |
Collapse
|