1
|
Niechoda A, Roslan M, Milewska K, Szoka P, Maciorowska K, Holownia A. Signalling Pathways of Inflammation and Cancer in Human Mononuclear Cells: Effect of Nanoparticle Air Pollutants. Cells 2024; 13:1367. [PMID: 39195257 PMCID: PMC11352816 DOI: 10.3390/cells13161367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Fine inhalable particulate matter (PM) triggers an inflammatory response in the airways and activates mononuclear cells, mediators of tissue homeostasis, and tumour-promoting inflammation. We have assessed ex vivo responses of human monocytes and monocyte-derived macrophages to standardised air pollutants: carbon black, urban dust, and nanoparticulate carbon black, focusing on their pro-inflammatory and DNA-damaging properties. None of the PM (100 μg/mL/24 h) was significantly toxic to the cells, aside from inducing oxidative stress, fractional DNA damage, and inhibiting phagocytosis. TNFα was only slightly increased. PM nanoparticles increase the expression and activate DNA-damage-related histone H2A.X as well as pro-inflammatory NF-κB. We have shown that the urban dust stimulates the pathway of DNA damage/repair via the selective post-translational phosphorylation of H2A.X while nanoparticulate carbon black increases inflammation via activation of NF-κB. Moreover, the inflammatory response to lipopolysaccharide was significantly stronger in macrophages pre-exposed to urban dust or nanoparticulate carbon black. Our data show that airborne nanoparticles induce PM-specific, epigenetic alterations in the subsets of cultured mononuclear cells, which may be quantified using binary fluorescence scatterplots. Such changes intercede with inflammatory signalling and highlight important molecular and cell-specific epigenetic mechanisms of tumour-promoting inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Holownia
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (A.N.); (M.R.); (K.M.); (P.S.); (K.M.)
| |
Collapse
|
2
|
Rodriguez-Iturbe B. Environmental stress and hypertension: the disregarded role of HSP70. J Hum Hypertens 2024; 38:538-541. [PMID: 38773240 DOI: 10.1038/s41371-024-00917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, Mexico.
| |
Collapse
|
3
|
Barutcu AR, Black MB, Samuel R, Slattery S, McMullen PD, Nong A. Integrating gene expression and splicing dynamics across dose-response oxidative modulators. Front Genet 2024; 15:1389095. [PMID: 38846964 PMCID: PMC11155298 DOI: 10.3389/fgene.2024.1389095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Toxicological risk assessment increasingly utilizes transcriptomics to derive point of departure (POD) and modes of action (MOA) for chemicals. One essential biological process that allows a single gene to generate several different RNA isoforms is called alternative splicing. To comprehensively assess the role of splicing dysregulation in toxicological evaluation and elucidate its potential as a complementary endpoint, we performed RNA-seq on A549 cells treated with five oxidative stress modulators across a wide dose range. Differential gene expression (DGE) showed limited pathway enrichment except at high concentrations. However, alternative splicing analysis revealed variable intron retention events affecting diverse pathways for all chemicals in the absence of significant expression changes. For instance, diazinon elicited negligible gene expression changes but progressive increase in the number of intron retention events, suggesting splicing alterations precede expression responses. Benchmark dose modeling of intron retention data highlighted relevant pathways overlooked by expression analysis. Systematic integration of splicing datasets should be a useful addition to the toxicogenomic toolkit. Combining both modalities paint a more complete picture of transcriptomic dose-responses. Overall, evaluating intron retention dynamics afforded by toxicogenomics may provide biomarkers that can enhance chemical risk assessment and regulatory decision making. This work highlights splicing-aware toxicogenomics as a possible additional tool for examining cellular responses.
Collapse
|
4
|
Niechoda A, Roslan J, Maciorowska K, Rosłan M, Ejsmont K, Holownia A. Oxidative stress and activation of H2A.X in lung alveolar epithelial cells (A549) by nanoparticulate carbon black. Respir Physiol Neurobiol 2023; 316:104140. [PMID: 37586603 DOI: 10.1016/j.resp.2023.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Fine airborne particulate matter enter the respiratory system, induce oxidative stress and initiate DNA damage. The aim of our study was the estimation of cell viability, oxidative stress, DNA damage, cell cycle alterations and activation of histone H2A.X. Experiments were done on lung alveolar epithelial (A549) cells grown for 24 h with 200 µg mL-1 coarse carbon black (CB), or nanoparticulate CB (NPCB). Neither CB nor glutathione depletion altered cell viability, growth rates, and H2A.X expression while NPCB decreased cell viability, increased oxidative stress and DNA damage. The cell cycle was blocked at G0/G1. NPCB but not CB increased expression and activation of H2A.X at mRNA and protein levels. Co-expression data point to γH2A.X as a major NPCB target, and show the interdependence of γH2A.X and oxidative stress. We conclude, that NPCB increases γ-H2A.X expression in A549 cells at mRNA and protein levels and stimulates H2A.X (Ser139), phosphorylation, associated with oxidative stress, the DNA damage response and G1 cell cycle arrest.
Collapse
Affiliation(s)
- A Niechoda
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-222, Poland
| | - J Roslan
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-222, Poland
| | - K Maciorowska
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-222, Poland
| | - M Rosłan
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-222, Poland
| | - K Ejsmont
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-222, Poland
| | - A Holownia
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-222, Poland.
| |
Collapse
|
5
|
Rodolpho JMDA, Godoy KFD, Brassolatti P, Fragelli BDDL, Camillo L, Castro CAD, Assis M, Speglich C, Longo E, Anibal FDF. Carbon Black CB-EDA Nanoparticles in Macrophages: Changes in the Oxidative Stress Pathway and in Apoptosis Signaling. Biomedicines 2023; 11:1643. [PMID: 37371738 DOI: 10.3390/biomedicines11061643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 06/29/2023] Open
Abstract
The influence of black carbon nanoparticles on J774.A1 murine cells was investigated with the objective of exploring the cytotoxicity of black carbon functionalized with ethylenediamine CB-EDA. The results showed that CB-EDA has a cytotoxic profile for J774.A1 macrophages in a time- and dose-dependent manner. When phagocytosed by the macrophage, CB-EDA triggers a mechanism that leads to apoptosis. In this process, there is an increase in oxidative stress pathways due to the activation of nitric oxide and then ROS. This causes an imbalance in redox function and a disruption of membrane integrity that occurs due to high levels of LDH, in addition to favoring the release of the pro-inflammatory cytokines IL-6, IL-12, and tumor necrosis factor (TNF) in an attempt to modulate the cell. However, these stimuli are not sufficient to repair the cell and the level of mitochondrial integrity is affected, causing a decrease in cell viability. This mechanism may be correlated with the activation of the caspasse-3 pathway, which, when compromised, cleaves and induces cells death via apoptosis, either through early or late apoptosis. In view of this, the potential for cell damage was investigated by analyzing the oxidative and inflammatory profile in the macrophage lineage J774.A1 and identifying potential mechanisms and metabolic pathways connected to these processes when cells were exposed to NP CB-EDA for both 24 h and 48 h.
Collapse
Affiliation(s)
- Joice Margareth de Almeida Rodolpho
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Krissia Franco de Godoy
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Patricia Brassolatti
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Bruna Dias de Lima Fragelli
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Luciana Camillo
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Cynthia Aparecida de Castro
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Marcelo Assis
- Department of Analytical and Physical Chemistry, University Jaume I (UJI), 12006 Castelló, Spain
- Centro de Desenvolvimento de Materiais Funcionais, Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Carlos Speglich
- Centro de Pesquisa Leopoldo Américo Miguez de Mello CENPES/Petrobras, Rio de Janeiro 21941-915, Brazil
| | - Elson Longo
- Centro de Desenvolvimento de Materiais Funcionais, Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Fernanda de Freitas Anibal
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| |
Collapse
|
6
|
Xiong X, Dou J, Shi J, Ren Y, Wang C, Zhang Y, Cui Y. RAGE inhibition alleviates lipopolysaccharides-induced lung injury via directly suppressing autophagic apoptosis of type II alveolar epithelial cells. Respir Res 2023; 24:24. [PMID: 36691012 PMCID: PMC9872382 DOI: 10.1186/s12931-023-02332-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Advanced glycation end product receptor (RAGE) acts as a receptor of pro-inflammatory ligands and is highly expressed in alveolar epithelial cells (AECs). Autophagy in AECs has received much attention recently. However, the roles of autophagy and RAGE in the pathogenesis of acute lung injury remain unclear. Therefore, this study aimed to explore whether RAGE activation signals take part in the dysfunction of alveolar epithelial barrier through autophagic death. METHODS Acute lung injury animal models were established using C57BL/6 and Ager gene knockout (Ager -/- mice) mice in this study. A549 cells and primary type II alveolar epithelial (ATII) cells were treated with siRNA to reduce Ager gene expression. Autophagy was inhibited by 3-methyladenine (3-MA). Lung injury was assessed by histopathological examination. Cell viability was estimated by cell counting kit-8 (CCK-8) assay. The serum and bronchoalveolar lavage fluid (BALF) levels of interleukin (IL)-6, IL-8 and soluble RAGE (sRAGE) were evaluated by Enzyme-linked immunosorbent assay (ELISA). The involvement of RAGE signals, autophagy and apoptosis was assessed using western blots, immunohistochemistry, immunofluorescence, transmission electron microscopy and TUNEL test. RESULTS The expression of RAGE was promoted by lipopolysaccharide (LPS), which was associated with activation of autophagy both in mice lung tissues and A549 cells as well as primary ATII cells. sRAGE in BALF was positively correlated with IL-6 and IL-8 levels. Compared with the wild-type mice, inflammation and apoptosis in lung tissues were alleviated in Ager-/- mice. Persistently activated autophagy contributed to cell apoptosis, whereas the inhibition of autophagy by 3-MA protected lungs from damage. In addition, Ager knockdown inhibited LPS-induced autophagy activation and attenuated lung injury. In vitro, knockdown of RAGE significantly suppressed the activation of LPS-induced autophagy and apoptosis of A549 and primary ATII cells. Furthermore, RAGE activated the downstream STAT3 signaling pathway. CONCLUSION RAGE plays an essential role in the pathogenesis of ATII cells injury. Our results suggested that RAGE inhibition alleviated LPS-induced lung injury by directly suppressing autophagic apoptosis of alveolar epithelial cells.
Collapse
Affiliation(s)
- Xi Xiong
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Jiaying Dou
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Jingyi Shi
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Yuqian Ren
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Chunxia Wang
- grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.415625.10000 0004 0467 3069Clinical Research Unit, Shanghai Children’s Hospital, Shanghai, 200062 China
| | - Yucai Zhang
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Yun Cui
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| |
Collapse
|
7
|
Jiang W, Chu H, Li Z, Ge J, Wang X, Jiang J, Xiao Q, Meng Q, Lou Y, Hao W, Wei X. Integrated proteomic analysis to explore the molecular regulation mechanism of IL-33 mRNA increased by black carbon in the human endothelial cell line EA.hy926. ENVIRONMENTAL TOXICOLOGY 2022; 37:2434-2444. [PMID: 35776887 DOI: 10.1002/tox.23608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Black carbon (BC) correlates with the occurrence and progression of atherosclerosis and other cardiovascular diseases. Increasing evidence has demonstrated that BC could impair vascular endothelial cells, but the underlying mechanisms remain obscure. It is known that IL-33 exerts a significant biological role in cardiovascular disease, but little is known about the molecular regulation of IL-33 expression at present. We first found that BC significantly increased IL-33 mRNA in EA.hy926 cells in a concentration and time-dependent manner, and we conducted this study to explore its underlying mechanism. We identified that BC induced mitochondrial damage and suppressed autophagy function in EA.hy926 cells, as evidenced by elevation of the aspartate aminotransferase (GOT2), reactive oxygen species (ROS) and p62, and the reduction of mitochondrial membrane potential (ΔΨm). However, ROS cannot induce IL-33 mRNA-production in BC-exposed EA.hy926 cells. Further, experiments revealed that BC could promote IL-33 mRNA production through the PI3K/Akt/AP-1 and p38/AP-1 signaling pathways. It is concluded that BC could induce oxidative stress and suppress autophagy function in endothelial cells. This study also provided evidence that the pro-cardiovascular-diseases properties of BC may be due to its ability to stimulate the PI3K/AKT/AP-1 and p38/AP-1 pathway, further activate IL-33 and ultimately result in a local vascular inflammation.
Collapse
Affiliation(s)
- Wanyu Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Zekang Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Xiaoyun Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Yaxin Lou
- Medical and Health Analytical Center of Peking University, Beijing, People's Republic of China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| |
Collapse
|
8
|
Speca S, Dubuquoy C, Rousseaux C, Chavatte P, Desreumaux P, Spagnolo P. GED-0507 attenuates lung fibrosis by counteracting myofibroblast transdifferentiation in vivo and in vitro. PLoS One 2021; 16:e0257281. [PMID: 34529707 PMCID: PMC8445472 DOI: 10.1371/journal.pone.0257281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
The development of more effective, better tolerated drug treatments for progressive pulmonary fibrosis (of which idiopathic pulmonary fibrosis is the most common and severe form) is a research priority. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is a key regulator of inflammation and fibrosis and therefore represents a potential therapeutic target. However, the use of synthetic PPAR-γ agonists may be limited by their potentially severe adverse effects. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, we have demonstrated that the non-racemic selective PPAR-γ modulator GED-0507 is able to reduce body weight loss, ameliorate clinical and histological features of pulmonary fibrosis, and increase survival rate without any safety concerns. Here, we focused on the biomolecular effects of GED-0507 on various inflammatory/fibrotic pathways. We demonstrated that preventive and therapeutic administration of GED-0507 reduced the BLM-induced mRNA expression of several markers of fibrosis, including transforming growth factor (TGF)-β, alpha-smooth muscle actin, collagen and fibronectin as well as epithelial-to-mesenchymal transition (EMT) and expression of mucin 5B. The beneficial effect of GED-0507 on pulmonary fibrosis was confirmed in vitro by its ability to control TGFβ-induced myofibroblast activation in the A549 human alveolar epithelial cell line, the MRC-5 lung fibroblast line, and primary human lung fibroblasts. Compared with the US Food and Drug Administration-approved antifibrotic drugs pirfenidone and nintedanib, GED-0507 displayed greater antifibrotic activity by controlling alveolar epithelial cell dysfunction, EMT, and extracellular matrix remodeling. In conclusion, GED-0507 demonstrated potent antifibrotic properties and might be a promising drug candidate for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Silvia Speca
- Univ. Lille, INSERM, U1286 –Infinite–Institute for Translational Research in Inflammation, Lille, France
- * E-mail: (PS); (SS)
| | | | | | - Philippe Chavatte
- Univ. Lille, INSERM, U1286 –Infinite–Institute for Translational Research in Inflammation, Lille, France
- Laboratoire de Pharmacie Clinique, Faculté des Sciences Pharmaceutiques et Biologiques, Lille, France
| | - Pierre Desreumaux
- Univ. Lille, INSERM, U1286 –Infinite–Institute for Translational Research in Inflammation, Lille, France
- Hepato-Gastroenterology Department, CHU Lille, Lille, France
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- * E-mail: (PS); (SS)
| |
Collapse
|
9
|
Dlamini MB, Gao Z, Jiang L, Geng C, Li Q, Shi X, Liu Y, Cao J. The crosstalk between mitochondrial dysfunction and endoplasmic reticulum stress promoted ATF4-mediated mitophagy induced by hexavalent chromium. ENVIRONMENTAL TOXICOLOGY 2021; 36:1162-1172. [PMID: 33650752 DOI: 10.1002/tox.23115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Chromium (Cr) compounds are markedly toxic and carcinogenic. Previously, we found that Cr (VI) induced autophagy in A549 cells. Here, the effect of mitochondrial dysfunction and endoplasmic reticulum (ER) stress on inducing mitophagy was investigated in both A549 and H1299 cells. Exposure to Cr (VI) for 6 h significantly enhanced reactive oxygen species (ROS) production and reduced mitochondrial membrane potential (MMP). Transmission electron microscopy showed that Cr (VI) induced mitochondrial morphological changes, such as, mitochondrial swelling and vacuolization. The elevated expression of GRP78 and p-PERK suggested that Cr (VI) resulted in ER stress. Both mitochondrial dysfunction and ER stress played an important role in Cr (VI)-induced mitophagy, as the mitochondrial function inhibitor, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) induced PINK1 and PARK2 and increased the expression of GRP78 and p-PERK while the levels of Cr (VI)-induced PINK1, PARK2, LC3-II were reduced after ER stress inhibitor, phenylbutyric acid (4PBA) pretreatment. When A549 cells were treated with CCCP and 4-PBA simultaneously, CCCP-induced expressions of PINK1, PARK2 and LC3-II decreased significantly compared with that of only CCCP-treated cells, indicating that there was a crosstalk between mitochondria and ER in inducing mitophagy. Additionally, the crosstalk between mitochondrial dysfunction and ER stress modulated the expression of Cr (VI)-induced ATF4, which resulted in mitophagy. Collectively, our data demonstrated that Cr (VI)-induced mitophagy mediated by ATF4 via the crosstalk between ER stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mongameli B Dlamini
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Chengyan Geng
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Gao Z, Mei J, Yan X, Jiang L, Geng C, Li Q, Shi X, Liu Y, Cao J. Cr (VI) induced mitophagy via the interaction of HMGA2 and PARK2. Toxicol Lett 2020; 333:261-268. [PMID: 32866567 DOI: 10.1016/j.toxlet.2020.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/23/2020] [Indexed: 01/18/2023]
Abstract
Chromium (Cr) (VI) is a proven toxin, mutagen and carcinogen. Here, the role of high mobility group A2 (HMGA2) mediating Cr (VI)-induced mitophagy was investigated. Cr (VI)-treatment caused the formation of double membrane autophagic vesicles (AVs) engulfing mitochondria and increased the expression of PINK1, PARK2, LC3 as well as HMGA2 particularly in mitochondria in A549 cells. Silencing of HMGA2 by siRNA decreased expression of PINK1, PARK2 and LC3 II especially in mitochondria, while over-expression of HMGA2 increased the expression of them in A549 cells. It indicated that HMGA2 played a critical role in Cr (VI)-induced mitophagy. Most importantly, the results of co-immunoprecipitation showed for the first time that HMGA2 could bind to PARK2 in mitochondria to activate the mitophagy pathway. In BALB/c mice, Cr (VI) increased the expression of PINK1 and PARK2 in lung tissues. Furthermore, over-expression of HMGA2 in BALB/c mice by transfection of plasmid HMGA2 significantly increased the levels of PINK1, PARK2 and LC3 II in lung tissues. Collectively, our data demonstrated that HMGA2 plays an important role in Cr (VI)-induced mitophagy through direct interaction with PARK2 in A549 cells and lung tissue.
Collapse
Affiliation(s)
- Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Junjie Mei
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Xiaona Yan
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Chengyan Geng
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
11
|
Martínez-García GG, Mariño G. Autophagy role in environmental pollutants exposure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:257-291. [PMID: 32620245 DOI: 10.1016/bs.pmbts.2020.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last decades, the potential harmfulness derived from the exposure to environmental pollutants has been largely demonstrated, with associated damages ranging from geno- and cyto-toxicity to tissue malfunction and alterations in organism physiology. Autophagy is an evolutionarily-conserved cellular mechanism essential for cellular homeostasis, which contributes to protect cells from a wide variety of intracellular and extracellular stressors. Due to its pivotal importance, its correct functioning is directly linked to cell, tissue and organismal fitness. Environmental pollutants, particularly industrial compounds, are able to impact autophagic flux, either by increasing it as a protective response, by blocking it, or by switching its protective role toward a pro-cell death mechanism. Thus, the understanding of the effects of chemicals exposure on autophagy has become highly relevant, offering new potential approaches for risk assessment, protection and preventive measures to counteract the detrimental effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Gemma G Martínez-García
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Guillermo Mariño
- Laboratorio "Autofagia y Metabolismo", Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
12
|
Lukaszewicz A, Niechoda A, Zarzecki M, Cwiklinska M, Holownia A. Co-expression of Hsp70 Protein and Autophagy Marker Protein LC3 in A549 Cells and THP1 Cells Exposed to Nanoparticles of Air Pollution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1271:61-68. [PMID: 31925751 DOI: 10.1007/5584_2019_474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability of air particulate matter (PM) to cause reactive oxygen species-driven protein damage is associated with both COPD and lung cancer, but the mechanisms are unsettled. In this study, we investigated the co-expression of Hsp70 and the autophagy marker protein LC3 in A549 cells (alveolar epithelial cell line) and THP-1 cells (monocyte/macrophage cells) grown in media supplemented with 100 μg/mL of four types of PM: carbon black (CB), urban dust (UD), nanoparticulate CB (NPCB), and nanoparticulate CB coated with benzo(a)pyrene (NPCB-BaP). Fluorescent monoclonal antibodies and flow cytometry were used to assess the expression and co-expression of HSP70 and LC3 proteins. Hsp70 expression was significantly increased by all PM, while LC3 was decreased by CB in A549 cells, unchanged by CB and UD in THP-1 cells and increased by NPCB and NPCB-BaP in both cell types. All PMs increased the Hsp70/LC3 ratio in binary scatterplots; the relationship was positive and linear, which may reflect chaperone-dependent autophagy. The UD was the only PM type that affected the slopes of the spatial trend lines and altered binary patterns of Hsp70/LC3 distribution in THP1 cells. These findings provide an insight into the molecular mechanisms regulating proteostasis in PM-exposed cells through the chaperone-autophagy system in the cytoplasm.
Collapse
Affiliation(s)
- A Lukaszewicz
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland.
| | - A Niechoda
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - M Zarzecki
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - M Cwiklinska
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - A Holownia
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|