1
|
Nallakumarasamy A, Shrivastava S, Rangarajan RV, Jeyaraman N, Devadas AG, Ramasubramanian S, Jeyaraman M. Optimizing bone marrow harvesting sites for enhanced mesenchymal stem cell yield and efficacy in knee osteoarthritis treatment. World J Methodol 2025; 15:101458. [DOI: 10.5662/wjm.v15.i2.101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Abstract
Knee osteoarthritis (OA) is a debilitating condition with limited long-term treatment options. The therapeutic potential of mesenchymal stem cells (MSCs), particularly those derived from bone marrow aspirate concentrate, has garnered attention for cartilage repair in OA. While the iliac crest is the traditional site for bone marrow harvesting (BMH), associated morbidity has prompted the exploration of alternative sites such as the proximal tibia, distal femur, and proximal humerus. This paper reviews the impact of different harvesting sites on mesenchymal stem cell (MSC) yield, viability, and regenerative potential, emphasizing their relevance in knee OA treatment. The iliac crest consistently offers the highest MSC yield, but alternative sites within the surgical field of knee procedures offer comparable MSC characteristics with reduced morbidity. The integration of harvesting techniques into existing knee surgeries, such as total knee arthroplasty, provides a less invasive approach while maintaining therapeutic efficacy. However, variability in MSC yield from these alternative sites underscores the need for further research to standardize techniques and optimize clinical outcomes. Future directions include large-scale comparative studies, advanced characterization of MSCs, and the development of personalized harvesting strategies. Ultimately, the findings suggest that optimizing the site of BMH can significantly influence the quality of MSC-based therapies for knee OA, enhancing their clinical utility and patient outcomes.
Collapse
Affiliation(s)
- Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Ravi Velamoor Rangarajan
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Avinash Gandi Devadas
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
2
|
Prithiviraj S, Garcia Garcia A, Linderfalk K, Yiguang B, Ferveur S, Falck LN, Subramaniam A, Mohlin S, Hidalgo Gil D, Dupard SJ, Zacharaki D, Raina DB, Bourgine PE. Compositional editing of extracellular matrices by CRISPR/Cas9 engineering of human mesenchymal stem cell lines. eLife 2025; 13:RP96941. [PMID: 40152921 PMCID: PMC11952750 DOI: 10.7554/elife.96941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Tissue engineering strategies predominantly rely on the production of living substitutes, whereby implanted cells actively participate in the regenerative process. Beyond cost and delayed graft availability, the patient-specific performance of engineered tissues poses serious concerns on their clinical translation ability. A more exciting paradigm consists in exploiting cell-laid, engineered extracellular matrices (eECMs), which can be used as off-the-shelf materials. Here, the regenerative capacity solely relies on the preservation of the eECM structure and embedded signals to instruct an endogenous repair. We recently described the possibility to exploit custom human stem cell lines for eECM manufacturing. In addition to the conferred standardization, the availability of such cell lines opened avenues for the design of tailored eECMs by applying dedicated genetic tools. In this study, we demonstrated the exploitation of CRISPR/Cas9 as a high precision system for editing the composition and function of eECMs. Human mesenchymal stromal/stem cell (hMSC) lines were modified to knock out vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) and assessed for their capacity to generate osteoinductive cartilage matrices. We report the successful editing of hMSCs, subsequently leading to targeted VEGF and RUNX2-knockout cartilage eECMs. Despite the absence of VEGF, eECMs retained full capacity to instruct ectopic endochondral ossification. Conversely, RUNX2-edited eECMs exhibited impaired hypertrophy, reduced ectopic ossification, and superior cartilage repair in a rat osteochondral defect. In summary, our approach can be harnessed to identify the necessary eECM factors driving endogenous repair. Our work paves the road toward the compositional eECMs editing and their exploitation in broad regenerative contexts.
Collapse
Affiliation(s)
- Sujeethkumar Prithiviraj
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Alejandro Garcia Garcia
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Karin Linderfalk
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Bai Yiguang
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College NanchongSichuanChina
| | - Sonia Ferveur
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Ludvig Nilsén Falck
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund UniversityLundSweden
| | | | - Sofie Mohlin
- Division of Pediatrics, Clinical Sciences, Translational Cancer Research, Lund University Cancer Center at Medicon VillageLundSweden
| | - David Hidalgo Gil
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Steven J Dupard
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Dimitra Zacharaki
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Deepak Bushan Raina
- The Faculty of Medicine, Department of Clinical Sciences Lund, OrthopedicsLundSweden
| | - Paul E Bourgine
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| |
Collapse
|
3
|
Sadiasa A, Werkmeister JA, Gurung S, Gargett CE. Steps towards the clinical application of endometrial and menstrual fluid mesenchymal stem cells for the treatment of gynecological disorders. Expert Opin Biol Ther 2025; 25:285-307. [PMID: 39925343 DOI: 10.1080/14712598.2025.2465826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The human endometrium is a highly regenerative tissue that contains mesenchymal stem/stromal cells (MSCs). These MSCs are sourced via office-based biopsies and menstrual fluid, providing a less invasive and readily available option for cell-based therapies. This review provides an update on endometrial-derived MSCs as a treatment option for gynecological diseases. AREAS COVERED This narrative review covers the characterization and therapeutic mechanisms of endometrium biopsy-derived MSCs (eMSCs) and menstrual fluid-derived mesenchymal stromal cells (MenSCs), highlighting similarities and differences. It also covers studies of their application in preclinical animal models and in clinical trials as potential cell-based therapies for gynecological diseases. EXPERT OPINION eMSCs and MenSCs from a homologous tissue source have the potential to promote regenerative activity as a treatment for gynecological diseases. Both eMSCs and MenSCs demonstrate therapeutic benefits through their paracrine activity in tissue regeneration, immunomodulation, angiogenesis, and mitigating fibrosis. Further research is essential to establish standardized isolation and characterization protocols, particularly for heterogeneous MenSCs, and to fully understand their mechanisms of action. Implementing SUSD2 magnetic bead sorting for purifying eMSCs from endometrial tissues and menstrual fluid is crucial for their use in future cell-based therapies. Optimization of production, storage, and delivery methods will maximize their therapeutic effectiveness.
Collapse
Affiliation(s)
- Alexander Sadiasa
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
An W, Zhang W, Qi J, Xu W, Long Y, Qin H, Yao K. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising strategy for treating retinal degenerative diseases. Mol Med 2025; 31:75. [PMID: 39984849 PMCID: PMC11846226 DOI: 10.1186/s10020-025-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic strategy in regenerative medicine, demonstrating significant potential for clinical applications. Evidence suggests that MSCs not only exhibit multipotent differentiation potential but also exert critical therapeutic effects in retinal degenerative diseases via robust paracrine mechanisms. MSCs protect retinal cells from degenerative damage by modulating inflammation, inhibiting apoptosis, alleviating oxidative stress, and suppressing cell death pathways. Furthermore, MSCs contribute to retinal structural and functional stability by facilitating vascular remodeling and donating mitochondria to retinal cells. Of particular interest, MSC-derived exosomes have gained widespread attention as a compelling cell-free therapy. Owing to their potent anti-inflammatory, anti-apoptotic, and vascular-stabilizing properties, exosomes show significant promise for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yushan Long
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
5
|
Golchin A, Shams F, Moradi F, Sadrabadi AE, Parviz S, Alipour S, Ranjbarvan P, Hemmati Y, Rahnama M, Rasmi Y, Aziz SGG. Single-cell Technology in Stem Cell Research. Curr Stem Cell Res Ther 2025; 20:9-32. [PMID: 38243989 DOI: 10.2174/011574888x265479231127065541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing on the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Moradi
- Department of Tissue Engineering, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Shima Parviz
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Hemmati
- Department of Prosthodontics, Dental Faculty, Urmia University of Medical Science, Urmia, Iran
| | - Maryam Rahnama
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Wu KC, Chang YH, Ding DC, Lin SZ. Mesenchymal Stromal Cells for Aging Cartilage Regeneration: A Review. Int J Mol Sci 2024; 25:12911. [PMID: 39684619 PMCID: PMC11641625 DOI: 10.3390/ijms252312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cartilage degeneration is a key feature of aging and osteoarthritis, characterized by the progressive deterioration of joint function, pain, and limited mobility. Current treatments focus on symptom relief, not cartilage regeneration. Mesenchymal stromal cells (MSCs) offer a promising therapeutic option due to their capability to differentiate into chondrocytes, modulate inflammation, and promote tissue regeneration. This review explores the potential of MSCs for cartilage regeneration, examining their biological properties, action mechanisms, and applications in preclinical and clinical settings. MSCs derived from bone marrow, adipose tissue, and other sources can self-renew and differentiate into multiple cell types. In aging cartilage, they aid in tissue regeneration by secreting growth factors and cytokines that enhance repair and modulate immune responses. Recent preclinical studies show that MSCs can restore cartilage integrity, reduce inflammation, and improve joint function, although clinical translation remains challenging due to limitations such as cell viability, scalability, and regulatory concerns. Advancements in MSC delivery, including scaffold-based approaches and engineered exosomes, may improve therapeutic effectiveness. Potential risks, such as tumorigenicity and immune rejection, are also discussed, emphasizing the need for optimized treatment protocols and large-scale clinical trials to develop effective, minimally invasive therapies for cartilage regeneration.
Collapse
Affiliation(s)
- Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
7
|
Opretzka LCF, Pinto CD, Santos JRDJ, de Lima AA, Soares MBP, Villarreal CF. Mesenchymal stem cell-derived cell-free technologies: a patent landscape. Biotechnol Lett 2024; 46:907-924. [PMID: 38900338 DOI: 10.1007/s10529-024-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Mesenchymal stem/stromal cells (MSC) play a pivotal role in regenerative therapies. Recent studies show that factors secreted by MSC can replicate their biological activity, driving the emergence of cell-free therapy, likely to surpass stem cell therapy. Patents are an objective measure of R&D and innovation activities, and patent mapping allows us to verify the state of the art and technology, anticipate trends, and identify emerging lines of research. This review performed a search on Derwent World Patents Index™ and retrieved 269 patent families related to the MSC-derived cell-free products. Analysis reveals an exponential increase in patents from the mid-2010s, primarily focusing on exosomes. The patent's contents offer a great diversity of applications and associated technologies by using the products as medicinal agents or drug delivery systems. Nevertheless, numerous application branches remain unexplored, suggesting vast potential for cell-free technologies alone or combined with other approaches.
Collapse
Affiliation(s)
| | - Cláudio Damasceno Pinto
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
| | | | - Alyne Almeida de Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
- Institute of Advanced Systems in Health, SENAI CIMATEC, Salvador, Bahia, 41650-010, Brazil
| | - Cristiane Flora Villarreal
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, 40170-115, Brazil.
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
8
|
Liu L, Liu D. Bioengineered mesenchymal stem cell-derived exosomes: emerging strategies for diabetic wound healing. BURNS & TRAUMA 2024; 12:tkae030. [PMID: 39015252 PMCID: PMC11250359 DOI: 10.1093/burnst/tkae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/10/2024] [Indexed: 07/18/2024]
Abstract
Diabetic wounds are among the most common complications of diabetes mellitus and their healing process can be delayed due to persistent inflammatory reactions, bacterial infections, damaged vascularization and impaired cell proliferation, which casts a blight on patients'health and quality of life. Therefore, new strategies to accelerate diabetic wound healing are being positively explored. Exosomes derived from mesenchymal stem cells (MSC-Exos) can inherit the therapeutic and reparative abilities of stem cells and play a crucial role in diabetic wound healing. However, poor targeting, low concentrations of therapeutic molecules, easy removal from wounds and limited yield of MSC-Exos are challenging for clinical applications. Bioengineering techniques have recently gained attention for their ability to enhance the efficacy and yield of MSC-Exos. In this review, we summarise the role of MSC-Exos in diabetic wound healing and focus on three bioengineering strategies, namely, parental MSC-Exos engineering, direct MSC-Exos engineering and MSC-Exos combined with biomaterials. Furthermore, the application of bioengineered MSC-Exos in diabetic wound healing is reviewed. Finally, we discuss the future prospects of bioengineered MSC-Exos, providing new insights into the exploration of therapeutic strategies.
Collapse
Affiliation(s)
- Lihua Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, P.R. China
- Huankui Academy, Nanchang University, Xuefu Road, Honggutan District, Nanchang, Jiangxi, 330006, P.R. China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
9
|
Hill ABT, Murphy YM, Polkoff KM, Edwards L, Walker DM, Moatti A, Greenbaum A, Piedrahita JA. A gene edited pig model for studying LGR5 + stem cells: implications for future applications in tissue regeneration and biomedical research. Front Genome Ed 2024; 6:1401163. [PMID: 38903529 PMCID: PMC11187295 DOI: 10.3389/fgeed.2024.1401163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Recent advancements in genome editing techniques, notably CRISPR-Cas9 and TALENs, have marked a transformative era in biomedical research, significantly enhancing our understanding of disease mechanisms and helping develop novel therapies. These technologies have been instrumental in creating precise animal models for use in stem cell research and regenerative medicine. For instance, we have developed a transgenic pig model to enable the investigation of LGR5-expressing cells. The model was designed to induce the expression of H2B-GFP under the regulatory control of the LGR5 promoter via CRISPR/Cas9-mediated gene knock-in. Notably, advancements in stem cell research have identified distinct subpopulations of LGR5-expressing cells within adult human, mouse, and pig tissues. LGR5, a leucine-rich repeat-containing G protein-coupled receptor, enhances WNT signaling and these LGR5+ subpopulations demonstrate varied roles and anatomical distributions, underscoring the necessity for suitable translational models. This transgenic pig model facilitates the tracking of LGR5-expressing cells and has provided valuable insights into the roles of these cells across different tissues and species. For instance, in pulmonary tissue, Lgr5+ cells in mice are predominantly located in alveolar compartments, driving alveolar differentiation of epithelial progenitors via Wnt pathway activation. In contrast, in pigs and humans, these cells are situated in a unique sub-basal position adjacent to the airway epithelium. In fetal stages a pattern of LGR5 expression during lung bud tip formation is evident in humans and pigs but is lacking in mice. Species differences with respect to LGR5 expression have also been observed in the skin, intestines, and cochlea further reinforcing the need for careful selection of appropriate translational animal models. This paper discusses the potential utility of the LGR5+ pig model in exploring the role of LGR5+ cells in tissue development and regeneration with the goal of translating these findings into human and animal clinical applications.
Collapse
Affiliation(s)
- Amanda B. T. Hill
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Yanet M. Murphy
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Kathryn M. Polkoff
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Laura Edwards
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Derek M. Walker
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Adele Moatti
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, NC, United States
| | - Alon Greenbaum
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, NC, United States
| | - Jorge A. Piedrahita
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
10
|
Shimizu Y, Ntege EH, Inoue Y, Matsuura N, Sunami H, Sowa Y. Optimizing mesenchymal stem cell extracellular vesicles for chronic wound healing: Bioengineering, standardization, and safety. Regen Ther 2024; 26:260-274. [PMID: 38978963 PMCID: PMC11228664 DOI: 10.1016/j.reth.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Chronic wounds represent a significant global burden, afflicting millions with debilitating complications. Despite standard care, impaired healing persists due to factors like persistent inflammation and impaired tissue regeneration. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) offer an innovative regenerative medicine approach, delivering stem cell-derived therapeutic cargo in engineered nanoscale delivery systems. This review examines pioneering bioengineering strategies to engineer MSC-EVs into precision nanotherapeutics for chronic wounds. Emerging technologies like CRISPR gene editing, microfluidic manufacturing, and biomimetic delivery systems are highlighted for their potential to enhance MSC-EV targeting, optimize therapeutic cargo enrichment, and ensure consistent clinical-grade production. However, key hurdles remain, including batch variability, rigorous safety assessment for potential tumorigenicity, immunogenicity, and biodistribution profiling. Crucially, collaborative frameworks harmonizing regulatory science with bioengineering and patient advocacy hold the key to expediting global clinical translation. By overcoming these challenges, engineered MSC-EVs could catalyze a new era of off-the-shelf regenerative therapies, restoring hope and healing for millions afflicted by non-healing wounds.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| |
Collapse
|
11
|
Wang Y, Dong H, Dong T, Zhao L, Fan W, Zhang Y, Yao W. Treatment of cytokine release syndrome-induced vascular endothelial injury using mesenchymal stem cells. Mol Cell Biochem 2024; 479:1149-1164. [PMID: 37392343 DOI: 10.1007/s11010-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023]
Abstract
Cytokine release syndrome (CRS) is an acute systemic inflammatory reaction in which hyperactivated immune cells suddenly release a large amount of cytokines, leading to exaggerated inflammatory responses, multiple organ dysfunction, and even death. Although palliative treatment strategies have significantly reduced the overall mortality, novel targeted treatment regimens with superior therapy efficacy are urgently needed. Vascular endothelial cells (ECs) are important target cells of systemic inflammation, and their destruction is considered to be the initiating event underlying many serious complications of CRS. Mesenchymal stem/stromal cells (MSCs) are multipotent cells with self-renewing differentiation capacity and immunomodulatory properties. MSC transplantation can effectively suppress the activation of immune cells, reduce the bulk release of cytokines, and repair damaged tissues and organs. Here, we review the molecular mechanisms underlying CRS-induced vascular endothelial injury and discuss potential treatments using MSCs. Preclinical studies demonstrate that MSC therapy can effectively repair endothelium damage and thus reduce the incidence and severity of ensuing CRS-induced complications. This review highlights the therapeutic role of MSCs in fighting against CRS-induced EC damage, and summarizes the possible therapeutic formulations of MSCs for improved efficacy in future clinical trials.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Health Science Center, Yangtze University, Jingzhou, China
| | - Haibo Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Tengyun Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Lulu Zhao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Wen Fan
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China.
| | - Yu Zhang
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin, China.
| | - Weiqi Yao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
12
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
13
|
Kim Y, An SB, Lee SH, Lee JJ, Kim SB, Ahn JC, Hwang DY, Han I. Enhanced Intervertebral Disc Repair via Genetically Engineered Mesenchymal Stem Cells with Tetracycline Regulatory System. Int J Mol Sci 2023; 24:16024. [PMID: 38003216 PMCID: PMC10671788 DOI: 10.3390/ijms242216024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic potential of Mesenchymal stem cells (MSCs) for the treatment of Intervertebral disc (IVD) degeneration can be enhanced by amplifying specific cytokines and proteins. This study aimed to investigate the therapeutic potential of tetracycline-off system-engineered tonsil-derived mesenchymal stem cells (ToMSC-Tetoff-TGFβ1-IGF1-BMP7) for treating intervertebral disc (IVD) degeneration. ToMSCs were isolated from a tonsillectomy patient and genetically modified with four distinct plasmids via CRISPR/Cas9-mediated knock-in gene editing. Transgene expression was confirmed through immunofluorescence, western blots, and an enzyme-linked immunosorbent assay for transforming growth factor beta 1 (TGFβ1) protein secretion, and the effect of MSC-TetOff-TGFβ1-IGF1-BMP7 on disc injury was assessed in a rat model. The ToMSC-Tetoff-TGFβ1-IGF1-BMP7 treatment exhibited superior therapeutic effects compared to ToMSC-TGFβ1, and ToMSC-SDF1α implantation groups, stimulating the regeneration of nucleus pulposus (NP) cells crucial for IVD. The treatment showed potential to restore the structural integrity of the extracellular matrix (ECM) by upregulating key molecules such as aggrecan and type II collagen. It also exhibited anti-inflammatory properties and reduced pain-inducing neuropeptides. ToMSC-Tetoff-TGFβ1-IGF1-BMP7 holds promise as a novel treatment for IVD degeneration. It appears to promote NP cell regeneration, restore ECM structure, suppress inflammation, and reduce pain. However, more research and clinical trials are required to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Yeji Kim
- Research Competency Milestones Program of School of Medicine, CHA University School of Medicine, Seongnam-si 13496, Republic of Korea;
| | - Seong Bae An
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| | - Sang-Hyuk Lee
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
| | - Jong Joo Lee
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea;
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Republic of Korea
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Jae-Cheul Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Dong-Youn Hwang
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
- Department of Microbiology, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| |
Collapse
|
14
|
Shams F, Pourjabbar B, Hashemi N, Farahmandian N, Golchin A, Nuoroozi G, Rahimpour A. Current progress in engineered and nano-engineered mesenchymal stem cells for cancer: From mechanisms to therapy. Biomed Pharmacother 2023; 167:115505. [PMID: 37716113 DOI: 10.1016/j.biopha.2023.115505] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as self-renewing multipotent stromal cells, have been considered promising agents for cancer treatment. A large number of studies have demonstrated the valuable properties of MSC-based treatment, such as low immunogenicity and intrinsic tumor-trophic migratory properties. To enhance the potency of MSCs for therapeutic purposes, equipping MSCs with targeted delivery functions using genetic engineering is highly beneficial. Genetically engineered MSCs can express tumor suppressor agents such as pro-apoptotic, anti-proliferative, anti-angiogenic factors and act as ideal delivery vehicles. MSCs can also be loaded with nanoparticle drugs for increased efficacy and externally moderated targeting. Moreover, exosomes secreted by MSCs have important physiological properties, so they can contribute to intercellular communication and transfer cargo into targeted tumor cells. The precise role of genetically modified MSCs in tumor environments is still up for debate, but the beginning of clinical trials has been confirmed by promising results from preclinical investigations of MSC-based gene therapy for a wide range of malignancies. This review highlights the advanced techniques of engineering/nano-engineering and MSC-derived exosomes in tumor-targeted therapy.
Collapse
Affiliation(s)
- Forough Shams
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Navid Farahmandian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157993313, Iran; Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia 57157993313, Islamic Republic of Iran
| | - Ghader Nuoroozi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Huerta CT, Ortiz YY, Liu ZJ, Velazquez OC. Methods and Limitations of Augmenting Mesenchymal Stem Cells for Therapeutic Applications. Adv Wound Care (New Rochelle) 2023; 12:467-481. [PMID: 36301919 PMCID: PMC10254976 DOI: 10.1089/wound.2022.0107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Significance: Given their capacity for self-renewal, multilineage differentiation, and immunomodulatory potential, mesenchymal stem cells (MSCs) represent a promising modality of clinical therapy for both regenerative medicine and immune diseases. In this study, we review the key approaches and popular methods utilized to boost potency and modify functions of MSCs for clinical purposes as well as their associated limitations. Recent Advances: Several major domains of cell modification strategies are currently employed by investigators to overcome these deficits and augment the therapeutic potential of MSCs. Priming MSCs with soluble factors or pharmacologic agents as well as manipulating oxygen availability in culture have been demonstrated to be effective biochemical methods to augment MSC potential. Distinct genetic and epigenetic methods have emerged in recent years to modify the genetic expression of target proteins and factors thereby modulating MSCs capacity for differentiation, migration, and proliferation. Physical methods utilizing three-dimensional culture methods and alternative cell delivery systems and scaffolds can be used to recapitulate the native MSC niche and augment their engraftment and viability for in vivo models. Critical Issues: Unmodified MSCs have demonstrated only modest benefits in many preclinical and clinical studies due to issues with cell engraftment, viability, heterogeneity, and immunocompatibility between donor and recipient. Furthermore, unmodified MSCs can have low inherent therapeutic potential for which intensive research over the past few decades has been dedicated to improving cell functionality and potency.
Collapse
Affiliation(s)
- Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yulexi Y. Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
16
|
Dashtaki ME, Ghasemi S. CRISPR/Cas9-based Gene Therapies for Fighting Drug Resistance Mediated by Cancer Stem Cells. Curr Gene Ther 2023; 23:41-50. [PMID: 36056851 DOI: 10.2174/1566523222666220831161225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are cancer-initiating cells found in most tumors and hematological cancers. CSCs are involved in cells progression, recurrence of tumors, and drug resistance. Current therapies have been focused on treating the mass of tumor cells and cannot eradicate the CSCs. CSCs drug-specific targeting is considered as an approach to precisely target these cells. Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene-editing systems are making progress and showing promise in the cancer research field. One of the attractive applications of CRISPR/Cas9 as one approach of gene therapy is targeting the critical genes involved in drug resistance and maintenance of CSCs. The synergistic effects of gene editing as a novel gene therapy approach and traditional therapeutic methods, including chemotherapy, can resolve drug resistance challenges and regression of the cancers. This review article considers different aspects of CRISPR/Cas9 ability in the study and targeting of CSCs with the intention to investigate their application in drug resistance.
Collapse
Affiliation(s)
- Masoumeh Eliyasi Dashtaki
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
17
|
Thongboonkerd V, Kanlaya R. The divergent roles of exosomes in kidney diseases: Pathogenesis, diagnostics, prognostics and therapeutics. Int J Biochem Cell Biol 2022; 149:106262. [PMID: 35787447 DOI: 10.1016/j.biocel.2022.106262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Exosomes are the self-packed nanoscale vesicles (nanovesicles) derived from late endosomes and released from the cells to the extracellular milieu. Exosomal biogenesis is based on endosomal pathway to form the nanovesicles surrounded by membrane originated from plasma membranes of the parental cells. During biogenesis, exosomes selectively encapsulate an array of biomolecules (proteins, nucleic acids, lipids, metabolites, etc.), thereby conveying diverse messages for cell-cell communications. Once released, these exosomal contents trigger signaling and trafficking that play roles in cell growth, development, immune responses, homeostasis, remodeling, etc. Recent advances in exosomal research have provided a wealth of useful information that enhances our knowledge on the roles for exosomes in pathogenic mechanisms of human diseases involving a wide variety of organ systems. In the kidney, exosomes play divergent roles, ranging from pathogenesis to therapeutics, based on their original sources and type of interventions. Herein, we summarize and update the current knowledge on the divergent roles of exosomes involving the pathogenesis, diagnostics, prognostics, and therapeutics in various groups of kidney diseases, including acute kidney injury, immune-mediated kidney diseases (e.g., IgA nephropathy, lupus nephritis, membranous nephropathy, focal segmental glomerulosclerosis), chronic kidney disease (caused by diabetic nephropathy and others), renal cell carcinoma, nephrolithiasis, kidney transplantation and related complications, and polycystic kidney disease. Finally, the future perspectives on research in this area are discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
18
|
Shams F, Bayat H, Mohammadian O, Mahboudi S, Vahidnezhad H, Soosanabadi M, Rahimpour A. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BIOIMPACTS 2022; 12:371-391. [PMID: 35975201 PMCID: PMC9376165 DOI: 10.34172/bi.2022.23871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
![]()
Introduction: Clustered regularly interspaced short palindromic repeat and its associated protein (CRISPR-Cas)-based technologies generate targeted modifications in host genome by inducing site-specific double-strand breaks (DSBs) that can serve as a substrate for homology-directed repair (HDR) in both in vitro and in vivo models. HDR pathway could enhance incorporation of exogenous DNA templates into the CRISPR-Cas9-mediated DSB site. Owing to low rate of HDR pathway, the efficiency of accurate genome editing is diminished. Enhancing the efficiency of HDR can provide fast, easy, and accurate technologies based on CRISPR-Cas9 technologies.
Methods: The current study presents an overview of attempts conducted on the precise genome editing strategies based on small molecules and modified CRISPR-Cas9 systems.
Results: In order to increase HDR rate in targeted cells, several logical strategies have been introduced such as generating CRISPR effector chimeric proteins, anti-CRISPR proteins, modified Cas9 with donor template, and using validated synthetic or natural small molecules for either inhibiting non-homologous end joining (NHEJ), stimulating HDR, or synchronizing cell cycle. Recently, high-throughput screening methods have been applied for identification of small molecules which along with the CRISPR system can regulate precise genome editing through HDR.
Conclusion: The stimulation of HDR components or inhibiting NHEJ can increase the accuracy of CRISPR-Cas-mediated engineering systems. Generating chimeric programmable endonucleases provide this opportunity to direct DNA template close proximity of CRISPR-Cas-mediated DSB. Small molecules and their derivatives can also proficiently block or activate certain DNA repair pathways and bring up novel perspectives for increasing HDR efficiency, especially in human cells. Further, high throughput screening of small molecule libraries could result in more discoveries of promising chemicals that improve HDR efficiency and CRISPR-Cas9 systems.
Collapse
Affiliation(s)
- Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Bayat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mohammadian
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mahboudi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohsen Soosanabadi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Azam Rahimpour
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Upregulation of CD14 in mesenchymal stromal cells accelerates lipopolysaccharide-induced response and enhances antibacterial properties. iScience 2022; 25:103759. [PMID: 35141503 PMCID: PMC8814754 DOI: 10.1016/j.isci.2022.103759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/04/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have broad-ranging therapeutic properties, including the ability to inhibit bacterial growth and resolve infection. However, the genetic mechanisms regulating these antibacterial properties in MSCs are largely unknown. Here, we utilized a systems-based approach to compare MSCs from different genetic backgrounds that displayed differences in antibacterial activity. Although both MSCs satisfied traditional MSC-defining criteria, comparative transcriptomics and quantitative membrane proteomics revealed two unique molecular profiles. The antibacterial MSCs responded rapidly to bacterial lipopolysaccharide (LPS) and had elevated levels of the LPS co-receptor CD14. CRISPR-mediated overexpression of endogenous CD14 in MSCs resulted in faster LPS response and enhanced antibacterial activity. Single-cell RNA sequencing of CD14-upregulated MSCs revealed a shift in transcriptional ground state and a more uniform LPS-induced response. Our results highlight the impact of genetic background on MSC phenotypic diversity and demonstrate that overexpression of CD14 can prime these cells to be more responsive to bacterial challenge. MSCs from different genetic backgrounds have distinct responses to bacteria Upregulating CD14 in MSCs enhances LPS-induced response and antibacterial traits CD14 upregulation homogenizes MSC transcriptional profiles across individual cells
Collapse
|
20
|
Shams F, Golchin A, Azari A, Mohammadi Amirabad L, Zarein F, Khosravi A, Ardeshirylajimi A. Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep 2022; 49:1389-1412. [PMID: 34716502 PMCID: PMC8555726 DOI: 10.1007/s11033-021-06876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Currently, nanoscale materials and scaffolds carrying antitumor agents to the tumor target site are practical approaches for cancer treatment. Immunotherapy is a modern approach to cancer treatment in which the body's immune system adjusts to deal with cancer cells. Immuno-engineering is a new branch of regenerative medicine-based therapies that uses engineering principles by using biological tools to stimulate the immune system. Therefore, this branch's final aim is to regulate distribution, release, and simultaneous placement of several immune factors at the tumor site, so then upgrade the current treatment methods and subsequently improve the immune system's handling. In this paper, recent research and prospects of nanotechnology-based cancer immunotherapy have been presented and discussed. Furthermore, different encouraging nanotechnology-based plans for targeting various innate and adaptive immune systems will also be discussed. Due to novel views in nanotechnology strategies, this field can address some biological obstacles, although studies are ongoing.
Collapse
Affiliation(s)
- Forough Shams
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Arezo Azari
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Atiyeh Khosravi
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- SinaCell Research and Product Center, Tehran, Iran
| |
Collapse
|
21
|
Karakaş N, Üçüncüoğlu S, Uludağ D, Karaoğlan BS, Shah K, Öztürk G. Mesenchymal Stem Cell-Based COVID-19 Therapy: Bioengineering Perspectives. Cells 2022; 11:465. [PMID: 35159275 PMCID: PMC8834073 DOI: 10.3390/cells11030465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) are currently utilized in clinics for pulmonary inflammatory diseases, including acute respiratory distress syndrome and acute lung injury. Given that MSCs offer a promising treatment against COVID-19, they are being used against COVID-19 in more than 70 clinical trials with promising findings. Genetically engineered MSCs offer promising therapeutic options in pulmonary diseases. However, their potential has not been explored yet. In this review, we provide perspectives on the functionally modified MSCs that can be developed and harnessed for COVID-19 therapy. Options to manage the SARS-CoV-2 infection and its variants using various bioengineering tools to increase the therapeutic efficacy of MSCs are highlighted.
Collapse
Affiliation(s)
- Nihal Karakaş
- Department of Medical Biology, School of Medicine, İstanbul Medipol University, İstanbul 34810, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul 34810, Turkey; (S.Ü.); (D.U.); (B.S.K.); (G.Ö.)
| | - Süleyman Üçüncüoğlu
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul 34810, Turkey; (S.Ü.); (D.U.); (B.S.K.); (G.Ö.)
- Department of Biophysics, International School of Medicine, İstanbul Medipol University, İstanbul 34810, Turkey
| | - Damla Uludağ
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul 34810, Turkey; (S.Ü.); (D.U.); (B.S.K.); (G.Ö.)
- Graduate School for Health Sciences, Medical Biology and Genetics Program, İstanbul Medipol University, İstanbul 34810, Turkey
| | - Birnur Sinem Karaoğlan
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul 34810, Turkey; (S.Ü.); (D.U.); (B.S.K.); (G.Ö.)
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapies, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul 34810, Turkey; (S.Ü.); (D.U.); (B.S.K.); (G.Ö.)
- Department of Physiology, International School of Medicine, İstanbul Medipol University, İstanbul 34810, Turkey
| |
Collapse
|
22
|
Golchin A, Shams F, Basiri A, Ranjbarvan P, Kiani S, Sarkhosh-Inanlou R, Ardeshirylajimi A, Gholizadeh-Ghaleh Aziz S, Sadigh S, Rasmi Y. Combination Therapy of Stem Cell-derived Exosomes and Biomaterials in the Wound Healing. Stem Cell Rev Rep 2022; 18:1892-1911. [PMID: 35080745 DOI: 10.1007/s12015-021-10309-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Wound healing is a serious obstacle due to the complexity of evaluation and management. While novel approaches to promoting chronic wound healing are of critical interest at the moment, several studies have demonstrated that combination therapy is critical for the treatment of a variety of diseases, particularly chronic wounds. Among the various approaches that have been proposed for wound care, regenerative medicine-based methods have garnered the most attention. As is well known, regenerative medicine's three primary tools are gene/cell therapy, biomaterials, and tissue engineering. Multifunctional biomaterials composed of synthetic and natural components are highly advantageous for exosome carriers, which utilizing them is an exciting wound healing method. Recently, stem cell-secreted exosomes and certain biomaterials have been identified as critical components of the wound healing process, and their combination therapy appears to produce significant results. This paper presents a review of literature and perspectives on the use of stem cell-derived exosomes and biomaterials in wound healing, particularly chronic wounds, and discusses the possibility of future clinical applications.
Collapse
Affiliation(s)
- Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in MedicineShahid, Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Ranjbarvan
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Roya Sarkhosh-Inanlou
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sanaz Sadigh
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
23
|
Bagno LL, Salerno AG, Balkan W, Hare JM. Mechanism of Action of Mesenchymal Stem Cells (MSCs): impact of delivery method. Expert Opin Biol Ther 2021; 22:449-463. [PMID: 34882517 DOI: 10.1080/14712598.2022.2016695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs; AKA mesenchymal stem cells) stimulate healing and reduce inflammation. Promising therapeutic responses are seen in many late-phase clinical trials, but others have not satisfied their primary endpoints, making translation of MSCs into clinical practice difficult. These inconsistencies may be related to the route of MSC delivery, lack of product optimization, or varying background therapies received in clinical trials over time. AREAS COVERED Here we discuss the different routes of MSC delivery, highlighting the proposed mechanism(s) of therapeutic action as well as potential safety concerns. PubMed search criteria used: MSC plus: local administration; routes of administration; delivery methods; mechanism of action; therapy in different diseases. EXPERT OPINION Direct injection of MSCs using a controlled local delivery approach appears to have benefits in certain disease states, but further studies are required to make definitive conclusions regarding the superiority of one delivery method over another.
Collapse
Affiliation(s)
- Luiza L Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alessandro G Salerno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami
| |
Collapse
|
24
|
Bone Allografts: Products and Clinical Applications in Iran. JOURNAL OF RESEARCH IN APPLIED AND BASIC MEDICAL SCIENCES 2021. [DOI: 10.52547/rabms.7.2.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Raes L, Pille M, Harizaj A, Goetgeluk G, Van Hoeck J, Stremersch S, Fraire JC, Brans T, de Jong OG, Maas-Bakker R, Mastrobattista E, Vader P, De Smedt SC, Vandekerckhove B, Raemdonck K, Braeckmans K. Cas9 RNP transfection by vapor nanobubble photoporation for ex vivo cell engineering. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:696-707. [PMID: 34589287 PMCID: PMC8463438 DOI: 10.1016/j.omtn.2021.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/13/2021] [Indexed: 01/18/2023]
Abstract
The CRISPR-Cas9 technology represents a powerful tool for genome engineering in eukaryotic cells, advancing both fundamental research and therapeutic strategies. Despite the enormous potential of the technology, efficient and direct intracellular delivery of Cas9 ribonucleoprotein (RNP) complexes in target cells poses a significant hurdle, especially in refractive primary cells. In the present work, vapor nanobubble (VNB) photoporation was explored for Cas9 RNP transfection in a variety of cell types. Proof of concept was first demonstrated in H1299-EGFP cells, before proceeding to hard-to-transfect stem cells and T cells. Gene knock-out levels over 80% and up to 60% were obtained for H1299 cells and mesenchymal stem cells, respectively. In these cell types, the unique possibility of VNB photoporation to knock out genes according to user-defined spatial patterns was demonstrated as well. Next, effective targeting of the programmed cell death 1 receptor and Wiskott-Aldrich syndrome gene in primary human T cells was demonstrated, reaching gene knock-out levels of 25% and 34%, respectively. With a throughput of >200,000 T cells per second, VNB photoporation is a scalable and versatile intracellular delivery method that holds great promise for CRISPR-Cas9-mediated ex vivo engineering of cell therapy products.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jelter Van Hoeck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stephan Stremersch
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Juan C. Fraire
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Olivier Gerrit de Jong
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Roel Maas-Bakker
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Pieter Vader
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Stefaan C. De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, University Hospital Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Corresponding author: Kevin Braeckmans, Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.E-mail:
| |
Collapse
|
26
|
Saha S, Chakrabarti S, Singh PK, Poddar J, Satapathi S, Saini S, Kakar SS, Roy P. Physiological Relevance of Angiotensin Converting Enzyme 2 As a Metabolic Linker and Therapeutic Implication of Mesenchymal Stem Cells in COVID-19 and Hypertension. Stem Cell Rev Rep 2021; 17:132-143. [PMID: 32748331 PMCID: PMC7397455 DOI: 10.1007/s12015-020-10012-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome corona virus - 2 (SARS-CoV-2) is a single stranded RNA virus and responsible for infecting human being. In many cases the individual may remain asymptomatic. Some recently reported studies revealed that individuals of elderly age group and with pre-existing medical conditions such as hypertension, diabetes mellitus had severe consequences, even may lead to death. However, it is not clearly delineated whether hypertension itself or associated comorbidities or antihypertensive therapy contributes to the grave prognosis of COVID-19 infections. This review is aimed to decipher the exact mechanisms involved at molecular level from existing evidence and as reported. It has been reported that SARS-CoV-2 enters into the host cell through interaction between conserved residues of viral spike protein and angiotensin converting enzyme 2 (ACE2) receptor which is highly expressed in host's cardiac and pulmonary cells and finally transmembrane protease, serine-2 (TMPRSS2), helps in priming of the surface protein. Subsequently, symptom related to multi organ involvement is primarily contributed by cytokine storm. Although various clinical trials are being conducted on renin- angiotensin- system inhibitor, till to date there is no standard treatment protocol approved for critically ill COVID-19 positive cases with pre-existing hypertension. Recently, several studies are carried out to document the safety and efficacy outcome of mesenchymal stem cell transplantation based on its immunomodulatory and regenerative properties. Therefore, identification of future novel therapeutics in the form of mesenchymal stem cell either alone or in combination with pharmacological approach could be recommended for combating SARS-CoV-2 which might be dreadful to debilitating elderly people. Graphical Abstract.
Collapse
Affiliation(s)
- Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar (deemed to be) University, Mullana, Haryana, India
| | - Praveen Kumar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India
| | - Jit Poddar
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar (deemed to be) University, Mullana, Haryana, India
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Surendra Saini
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Sham S Kakar
- Department of Physiology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40292, USA
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
| |
Collapse
|
27
|
Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol 2021; 14:24. [PMID: 33579329 PMCID: PMC7880217 DOI: 10.1186/s13045-021-01037-x] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have been intensely investigated for clinical applications within the last decades. However, the majority of registered clinical trials applying MSC therapy for diverse human diseases have fallen short of expectations, despite the encouraging pre-clinical outcomes in varied animal disease models. This can be attributable to inconsistent criteria for MSCs identity across studies and their inherited heterogeneity. Nowadays, with the emergence of advanced biological techniques and substantial improvements in bio-engineered materials, strategies have been developed to overcome clinical challenges in MSC application. Here in this review, we will discuss the major challenges of MSC therapies in clinical application, the factors impacting the diversity of MSCs, the potential approaches that modify MSC products with the highest therapeutic potential, and finally the usage of MSCs for COVID-19 pandemic disease.
Collapse
|
28
|
Basiri A, Mansouri F, Azari A, Ranjbarvan P, Zarein F, Heidari A, Golchin A. Stem Cell Therapy Potency in Personalizing Severe COVID-19 Treatment. Stem Cell Rev Rep 2021; 17:193-213. [PMID: 33511518 PMCID: PMC7842180 DOI: 10.1007/s12015-020-10110-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Currently, there are no specific and efficient vaccines or drugs for COVID-19, particularly in severe cases. A wide range of variations in the clinical symptoms of different patients attributed to genomic differences. Therefore, personalized treatments seem to play a critical role in improving these symptoms and even similar conditions. Prompted by the uncertainties in the area of COVID-19 therapies, we reviewed the published papers and concepts to gather and provide useful information to clinicians and researchers interested in personalized medicine and cell-based therapy. One novel aspect of this study focuses on the potential application of personalized medicine in treating severe cases of COVID-19. However, it is theoretical, as any real-world examples of the use of genuinely personalized medicine have not existed yet. Nevertheless, we know that stem cells, especially MSCs, have immune-modulatory effects and can be stored for future personalized medicine applications. This theory has been conjugated with some evidence that we review in the present study. Besides, we discuss the importance of personalized medicine and its possible aspects in COVID-19 treatment, then review the cell-based therapy studies for COVID-19 with a particular focus on stem cell-based therapies as a primary personalized tool medicine. However, the idea of cell-based therapy has not been accepted by several scientific communities due to some concerns of lack of satisfactory clinical studies; still, the MSCs and their clinical outcomes have been revealed the safety and potency of this therapeutic approach in several diseases, especially in the immune-mediated inflammatory diseases and some incurable diseases. Promising outcomes have resulted in that clinical studies are going to continue.
Collapse
Affiliation(s)
- Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Mansouri
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Arezo Azari
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Ranjbarvan
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fateme Zarein
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Nanobiotechnology, faculty of biological sciences, Tarbiat Modares University, Tehran, Iran
| | - Arash Heidari
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
29
|
Gholizadeh-Ghaleh Aziz S, Alipour S, Ranjbarvan P, Azari A, Babaei G, Golchin A. Critical roles of TLRs on the polarization of mesenchymal stem cells for cell therapy of viral infections: a notice for COVID-19 treatment. COMPARATIVE CLINICAL PATHOLOGY 2021; 30:119-128. [PMID: 33551714 PMCID: PMC7846495 DOI: 10.1007/s00580-021-03209-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs), as one of the leading cell-based therapy, have provided a strong link between clinical investigation and basic research. MSCs have been successfully employed in treating graft versus host disease (GvHD), autoimmune disease, and several other diseases, particularly with high immune activity. Recently, MSCs have attracted attention to treating untreatable viral infections such as severe coronavirus disease 2019 (COVID-19). Given that the Toll-like receptors (TLRs) are directly able to detect internal and external hazard signals, and their stimulation has an intense effect on the ability to grow, differentiate, migrate, and maintain MSCs, it seems stimulation of these receptors can have a direct impact on the interaction of MSCs and immune cells, altering the ability to modify immune system responses. Hence, this mini-review focused on TLRs' critical roles in the polarization of MSCs for developing MSC-based therapy in viral infections. Consequently, according to the literature review, a polarization process, mediated by TLRs concerning anti-inflammatory and proinflammatory phenotype, may be considered for MSC-therapy against viral infections.
Collapse
Affiliation(s)
- Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahriar Alipour
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Arezo Azari
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
30
|
Banjanin B, Schneider RK. Mesenchymal Stromal Cells as a Cellular Target in Myeloid Malignancy: Chances and Challenges in the Genome Editing of Stromal Alterations. Front Genome Ed 2021; 2:618308. [PMID: 34713241 PMCID: PMC8525402 DOI: 10.3389/fgeed.2020.618308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
The contribution of bone marrow stromal cells to the pathogenesis and therapy response of myeloid malignancies has gained significant attention over the last decade. Evidence suggests that the bone marrow stroma should not be neglected in the design of novel, targeted-therapies. In terms of gene-editing, the focus of gene therapies has mainly been on correcting mutations in hematopoietic cells. Here, we outline why alterations in the stroma should also be taken into consideration in the design of novel therapeutic strategies but also outline the challenges in specifically targeting mesenchymal stromal cells in myeloid malignancies caused by somatic and germline mutations.
Collapse
Affiliation(s)
- Bella Banjanin
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Rebekka K. Schneider
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
- Department of Cell Biology, Faculty of Medicine, Institute for Biomedical Engineering, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
31
|
Bilayer Scaffolds for Interface Tissue Engineering and Regenerative Medicine: A Systematic Reviews. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:83-113. [PMID: 33931833 DOI: 10.1007/5584_2021_637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE This systematic review focus on the application of bilayer scaffolds as an engaging structure for the engineering of multilayered tissues, including vascular and osteochondral tissues, skin, nerve, and urinary bladder. This article provides a concise literature review of different types of bilayer scaffolds to understand their efficacy in targeted tissue engineering. METHODS To this aim, electronic search in the English language was performed in PMC, NBCI, and PubMed from April 2008 to December 2019 based on the PRISMA guidelines. Animal studies, including the "bilayer scaffold" and at least one of the following items were examined: osteochondral tissue, bone, skin, neural tissue, urinary bladder, vascular system. The articles which didn't include "tissue engineering" and just in vitro studies were excluded. RESULTS Totally, 600 articles were evaluated; related articles were 145, and 35 full-text English articles met all the criteria. Fifteen articles in soft tissue engineering and twenty items in hard tissue engineering were the results of this exploration. Based on selected papers, it was revealed that the bilayer scaffolds were used in the regeneration of the multilayered tissues. The highest multilayered tissue regeneration has been achieved when bilayer scaffolds were used with mesenchymal stem cells and differentiation medium before implanting. Among the studies being reported in this review, bone marrow mesenchymal stem cells are the most studied mesenchymal stem cells. Among different kinds of multilayer tissue, the bilayer scaffold has been most used in osteochondral tissue engineering in which collagen and PLGA have been the most frequently used biomaterials. After osteochondral tissue engineering, bilayer scaffolds were widely used in skin tissue engineering. CONCLUSION The current review aimed to manifest the researcher and surgeons to use a more sophisticated bilayer scaffold in combinations of appropriate stem cells, and different can improve multilayer tissue regeneration. This systematic review can pave a way to design a suitable bilayer scaffold for a specific target tissue and conjunction with proper stem cells.
Collapse
|
32
|
Kuscu C, Kuscu C, Bajwa A, Eason JD, Maluf D, Mas VR. Applications of CRISPR technologies in transplantation. Am J Transplant 2020; 20:3285-3293. [PMID: 32484284 PMCID: PMC8109183 DOI: 10.1111/ajt.16095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 01/25/2023]
Abstract
In transplantation, the ever-increasing number of an organ's demand and long-term graft dysfunction constitute some of the major problems. Therefore, alternative solutions to increase the quantity and quality of the organ supply for transplantation are desired. On this subject, revolutionary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology holds enormous potential for the scientific community with its expanding toolbox. In this minireview, we summarize the history and mechanism of CRISPR/Cas9 systems and explore its potential applications in cellular- and organ-level transplantation. The last part of this review includes future opportunities as well as the challenges in the transplantation field.
Collapse
Affiliation(s)
- Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - James D. Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Daniel Maluf
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Valeria R. Mas
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
33
|
Singh VK, Mishra A, Singh S, Kumar P, Singh M, Jagannath C, Khan A. Emerging Prevention and Treatment Strategies to Control COVID-19. Pathogens 2020; 9:E501. [PMID: 32585805 PMCID: PMC7350294 DOI: 10.3390/pathogens9060501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has now become a serious global threat after inflicting more than 8 million infections and 425,000 deaths in less than 6 months. Currently, no definitive treatment or prevention therapy exists for COVID-19. The unprecedented rise of this pandemic has rapidly fueled research efforts to discover and develop new vaccines and treatment strategies against this novel coronavirus. While hundreds of vaccines/therapeutics are still in the preclinical or early stage of clinical development, a few of them have shown promising results in controlling the infection. Here, in this review, we discuss the promising vaccines and treatment options for COVID-19, their challenges, and potential alternative strategies.
Collapse
Affiliation(s)
- Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (C.J.)
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (C.J.)
| | - Shubhra Singh
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.S.); (M.S.)
| | - Premranjan Kumar
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Manisha Singh
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.S.); (M.S.)
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (C.J.)
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (C.J.)
| |
Collapse
|
34
|
Abstract
"COVID-19" is the word that certainly isn't forgotten by everybody who lives in the first half of the twenty-first century. COVID-19, as a pandemic, has led many researchers from different biomedical fields to find solutions or treatments to manage the pandemic. However, no standard treatment for this disease has been discovered to date. Probably, preventing the severe acute respiratory infection form of COVID-19 as the most dangerous phase of this disease can be helpful for the treatment and reduction of the death rate. In this regard, mesenchymal stem cells (MSCs)-based immunomodulation treatment has been proposed as a suitable therapeutic approach and several clinical trials have begun. Recently, MSCs according to their immunomodulatory and regenerative properties attract attention in clinical trials. After the intravenous transplantation of MSCs, a significant population of cells accumulates in the lung, which they alongside immunomodulatory effect could protect alveolar epithelial cells, reclaim the pulmonary microenvironment, prevent pulmonary fibrosis, and cure lung dysfunction. Given the uncertainties in this area, we reviewed reported clinical trials and hypotheses to provide useful information to researchers and those interested in stem cell therapy. In this study, we considered this new approach to improve patient's immunological responses to COVID-19 using MSCs and discussed the aspects of this proposed treatment. However, currently, there are no approved MSC-based approaches for the prevention and/or treatment of COVID-19 patients but clinical trials ongoing.
Collapse
Affiliation(s)
- Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Science, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- SinaCell Research and Product Center, Tehran, Iran.
| |
Collapse
|