1
|
Lee KH, Won SJ, Oyinloye P, Shi L. Unlocking the Potential of High-Quality Dopamine Transporter Pharmacological Data: Advancing Robust Machine Learning-Based QSAR Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583803. [PMID: 38558976 PMCID: PMC10979915 DOI: 10.1101/2024.03.06.583803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The dopamine transporter (DAT) plays a critical role in the central nervous system and has been implicated in numerous psychiatric disorders. The ligand-based approaches are instrumental to decipher the structure-activity relationship (SAR) of DAT ligands, especially the quantitative SAR (QSAR) modeling. By gathering and analyzing data from literature and databases, we systematically assemble a diverse range of ligands binding to DAT, aiming to discern the general features of DAT ligands and uncover the chemical space for potential novel DAT ligand scaffolds. The aggregation of DAT pharmacological activity data, particularly from databases like ChEMBL, provides a foundation for constructing robust QSAR models. The compilation and meticulous filtering of these data, establishing high-quality training datasets with specific divisions of pharmacological assays and data types, along with the application of QSAR modeling, prove to be a promising strategy for navigating the pertinent chemical space. Through a systematic comparison of DAT QSAR models using training datasets from various ChEMBL releases, we underscore the positive impact of enhanced data set quality and increased data set size on the predictive power of DAT QSAR models.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sung Joon Won
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Precious Oyinloye
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
2
|
Mereu M, Chun LE, Prisinzano TE, Newman AH, Katz JL, Tanda G. The unique psychostimulant profile of (±)-modafinil: investigation of behavioral and neurochemical effects in mice. Eur J Neurosci 2016; 45:167-174. [PMID: 27545285 DOI: 10.1111/ejn.13376] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/08/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022]
Abstract
Blockade of dopamine (DA) reuptake via the dopamine transporter (DAT) is a primary mechanism identified as underlying the therapeutic actions of (±)-modafinil (modafinil) and its R-enantiomer, armodafinil. Herein, we explored the neurochemical and behavioral actions of modafinil to better characterize its psychostimulant profile. Swiss-Webster mice were implanted with microdialysis probes in the nucleus accumbens shell (NAS) or core (NAC) to evaluate changes in DA levels related to acute reinforcing actions of drugs of abuse. Additionally, subjective effects were studied in mice trained to discriminate 10 mg/kg cocaine (i.p.) from saline. Modafinil (17-300 mg/kg, i.p.) significantly increased NAS and NAC DA levels that at the highest doses reached ~300% at 1 h, and lasted > 6 h in duration. These elevated DA levels did not show statistically significant regional differences between the NAS and NAC. Modafinil produced cocaine-like subjective effects at 56-100 mg/kg when administered at 5 and 60 min before the start of the session, and enhanced cocaine effects when the two were administered in combination. Despite sharing subjective effects with cocaine, modafinil's psychostimulant profile was unique compared to that of cocaine and like compounds. Modafinil had lower potency and efficacy than cocaine in stimulating NAS DA. In addition, the cocaine-like subjective effects of modafinil were obtained at lower doses and earlier onset times than expected based on its dopaminergic effects. These studies suggest that although inhibition of DA reuptake may be a primary mechanism underlying modafinil's therapeutic actions, non DA-dependent actions may be playing a role in its psychostimulant profile.
Collapse
Affiliation(s)
- Maddalena Mereu
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Lauren E Chun
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, USA
| | - Amy H Newman
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, USA.,Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Jonathan L Katz
- Psychobiology Section, Molecular Neuropsychiatry Research Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medications Discovery Branch, Department of Health and Human Services, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, USA
| |
Collapse
|
3
|
Kohut SJ, Hiranita T, Hong SK, Ebbs AL, Tronci V, Green J, Garcés-Ramírez L, Chun LE, Mereu M, Newman AH, Katz JL, Tanda G. Preference for distinct functional conformations of the dopamine transporter alters the relationship between subjective effects of cocaine and stimulation of mesolimbic dopamine. Biol Psychiatry 2014; 76:802-9. [PMID: 24853388 PMCID: PMC4353924 DOI: 10.1016/j.biopsych.2014.03.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Subjective effects of cocaine are mediated primarily by dopamine (DA) transporter (DAT) blockade. The present study assessed the hypothesis that different DAT conformational equilibria regulate differences in cocaine-like subjective effects and extracellular DA induced by diverse DA-uptake inhibitors (DUIs). METHODS The relationship between cocaine-like subjective effects and stimulation of mesolimbic DA levels by standard DUIs (cocaine, methylphenidate, WIN35,428) and atypical DUIs (benztropine analogs: AHN1-055, AHN2-005, JHW007) was investigated using cocaine discrimination and DA microdialysis procedures in rats. RESULTS All drugs stimulated DA levels with different maxima and time courses. Standard DUIs, which preferentially bind outward-facing DAT conformations, fully substituted for cocaine, consistently producing cocaine-like subjective effects at DA levels of 100-125% over basal values, regardless of dose or pretreatment time. The atypical DUIs, with DAT binding minimally affected by DAT conformation, produced inconsistent cocaine-like subjective effects. Full effects were obtained, if at all, only at a few doses and pretreatment times and at DA levels 600-700% greater than basal values. Importantly, the linear, time-independent, relationship between cocaine-like subjective effects and DA stimulation obtained with standard DUIs was not obtained with the atypical DUIs. CONCLUSIONS These results suggest a time-related desensitization process underlying the reduced cocaine subjective effects of atypical DUIs that may be differentially induced by the binding modalities identified using molecular approaches. Since the DAT is the target of several drugs for treating neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder, these results help to identify safe and effective medications with minimal cocaine-like subjective effects that contribute to abuse liability.
Collapse
Affiliation(s)
- Stephen J Kohut
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Takato Hiranita
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Soo-Kyung Hong
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Aaron L Ebbs
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Valeria Tronci
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Jennifer Green
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Linda Garcés-Ramírez
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México
| | - Lauren E Chun
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Maddalena Mereu
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Amy H Newman
- Medicinal Chemistry Sections, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland; Medications Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Jonathan L Katz
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland
| | - Gianluigi Tanda
- Psychobiology, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland; Medications Development Program, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse/Intramural Research Program/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland.
| |
Collapse
|
4
|
Pramod AB, Foster J, Carvelli L, Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspects Med 2013; 34:197-219. [PMID: 23506866 DOI: 10.1016/j.mam.2012.07.002] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/03/2012] [Indexed: 02/08/2023]
Abstract
The SLC6 family of secondary active transporters are integral membrane solute carrier proteins characterized by the Na(+)-dependent translocation of small amino acid or amino acid-like substrates. SLC6 transporters, which include the serotonin, dopamine, norepinephrine, GABA, taurine, creatine, as well as amino acid transporters, are associated with a number of human diseases and disorders making this family a critical target for therapeutic development. In addition, several members of this family are directly involved in the action of drugs of abuse such as cocaine, amphetamines, and ecstasy. Recent advances providing structural insight into this family have vastly accelerated our ability to study these proteins and their involvement in complex biological processes.
Collapse
Affiliation(s)
- Akula Bala Pramod
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, United States
| | | | | | | |
Collapse
|
5
|
Tanda G, Li SM, Mereu M, Thomas AM, Ebbs AL, Chun LE, Tronci V, Green JL, Zou MF, Kopajtic TA, Newman AH, Katz JL. Relations between stimulation of mesolimbic dopamine and place conditioning in rats produced by cocaine or drugs that are tolerant to dopamine transporter conformational change. Psychopharmacology (Berl) 2013; 229:307-21. [PMID: 23612854 PMCID: PMC3758386 DOI: 10.1007/s00213-013-3109-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Dopamine transporter (DAT) conformation plays a role in the effectiveness of cocaine-like and other DAT inhibitors. Cocaine-like stimulants are intolerant to DAT conformation changes having decreased potency in cells transfected with DAT constructs that face the cytosol compared to wild-type DAT. In contrast, analogs of benztropine (BZT) are among compounds that are less affected by DAT conformational change. METHODS We compared the displacement of radioligand binding to various mammalian CNS sites, acute stimulation of accumbens shell dopamine levels, and place conditioning in rats among cocaine and four BZT analogs with Cl substitutions on the diphenyl-ether system including two with carboalkoxy substitutions at the 2-position of the tropane ring. RESULTS Binding assays confirmed high-affinity and selectivity for the DAT with the BZT analogs which also produced significant stimulation of mesolimbic dopamine efflux. Because BZT analogs produced temporal patterns of extracellular dopamine levels different from those by cocaine (3-10 mg/kg, i.p.), the place conditioning produced by BZT analogs and cocaine was compared at doses and times at which both the increase in dopamine levels and rates of increase were similar to those produced by an effective dose of cocaine. Despite this equilibration, none of the BZT analogs tested produced significant place conditioning. CONCLUSIONS The present results extend previous findings suggesting that cocaine-like actions are dependent on a binding equilibrium that favors the outward conformational state of the DAT. In contrast, BZT analogs with reduced dependence on DAT conformation have reduced cocaine-like behavioral effects and may prove useful in development of medications for stimulant abuse.
Collapse
Affiliation(s)
- Gianluigi Tanda
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Su Min Li
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Maddalena Mereu
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Alexandra M. Thomas
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Aaron L. Ebbs
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | | | - Valeria Tronci
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Jennifer L. Green
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Mu-Fa Zou
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Theresa A. Kopajtic
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Jonathan L. Katz
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| |
Collapse
|
6
|
Reith MEA, Ali S, Hashim A, Sheikh IS, Theddu N, Gaddiraju NV, Mehrotra S, Schmitt KC, Murray TF, Sershen H, Unterwald EM, Davis FA. Novel C-1 substituted cocaine analogs unlike cocaine or benztropine. J Pharmacol Exp Ther 2012; 343:413-25. [PMID: 22895898 PMCID: PMC3477221 DOI: 10.1124/jpet.112.193771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/02/2012] [Indexed: 12/17/2022] Open
Abstract
Despite a wealth of information on cocaine-like compounds, there is no information on cocaine analogs with substitutions at C-1. Here, we report on (R)-(-)-cocaine analogs with various C-1 substituents: methyl (2), ethyl (3), n-propyl (4), n-pentyl (5), and phenyl (6). Analog 2 was equipotent to cocaine as an inhibitor of the dopamine transporter (DAT), whereas 3 and 6 were 3- and 10-fold more potent, respectively. None of the analogs, however, stimulated mouse locomotor activity, in contrast to cocaine. Pharmacokinetic assays showed compound 2 occupied mouse brain rapidly, as cocaine itself; moreover, 2 and 6 were behaviorally active in mice in the forced-swim test model of depression and the conditioned place preference test. Analog 2 was a weaker inhibitor of voltage-dependent Na+ channels than cocaine, although 6 was more potent than cocaine, highlighting the need to assay future C-1 analogs for this activity. Receptorome screening indicated few significant binding targets other than the monoamine transporters. Benztropine-like "atypical" DAT inhibitors are known to display reduced cocaine-like locomotor stimulation, presumably by their propensity to interact with an inward-facing transporter conformation. However, 2 and 6, like cocaine, but unlike benztropine, exhibited preferential interaction with an outward-facing conformation upon docking in our DAT homology model. In summary, C-1 cocaine analogs are not cocaine-like in that they are not stimulatory in vivo. However, they are not benztropine-like in binding mechanism and seem to interact with the DAT similarly to cocaine. The present data warrant further consideration of these novel cocaine analogs for antidepressant or cocaine substitution potential.
Collapse
Affiliation(s)
- Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, 450 E 29th Street, Alexandria Building Room 803, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Loland CJ, Mereu M, Okunola OM, Cao J, Prisinzano TE, Mazier S, Kopajtic T, Shi L, Katz JL, Tanda G, Newman AH. R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol Psychiatry 2012; 72:405-13. [PMID: 22537794 PMCID: PMC3413742 DOI: 10.1016/j.biopsych.2012.03.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/24/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND (±)-Modafinil has piqued interest as a treatment for attention-deficit/hyperactivity disorder and stimulant dependence. The R-enantiomer of modafinil might have unique pharmacological properties that should be further investigated. METHODS (±)-Modafinil and its R-(-)- and S-(+)-enantiomers were synthesized and tested for inhibition of [(3)H] dopamine (DA) uptake and [(3)H]WIN 35428 binding in human dopamine transporter (DAT) wild-type and mutants with altered conformational equilibria. Data were compared with cocaine and the atypical DA uptake inhibitor, JHW 007. R- and S-modafinil were also evaluated in microdialysis studies in the mouse nucleus accumbens shell and in a cocaine discrimination procedure. RESULTS (±)-, R-, and S-modafinil bind to the DAT and inhibit DA uptake less potently than cocaine, with R-modafinil having approximately threefold higher affinity than its S-enantiomer. Molecular docking studies revealed subtle differences in binding modes for the enantiomers. R-modafinil was significantly less potent in the DAT Y156F mutant compared with wild-type DAT, whereas S-modafinil was affected less. Studies with the Y335A DAT mutant showed that the R- and S-enantiomers tolerated the inward-facing conformation better than cocaine, which was further supported by [2-(trimethylammonium)ethyl]-methanethiosulfonate reactivity on the DAT E2C I159C. Microdialysis studies demonstrated that both R- and S-modafinil produced increases in extracellular DA concentrations in the nucleus accumbens shell less efficaciously than cocaine and with a longer duration of action. Both enantiomers fully substituted in mice trained to discriminate cocaine from saline. CONCLUSIONS R-modafinil displays an in vitro profile different from cocaine. Future trials with R-modafinil as a substitute therapy with the potential benefit of cognitive enhancement for psychostimulant addiction are warranted.
Collapse
|
8
|
Kopajtic TA, Liu Y, Surratt CK, Donovan DM, Newman AH, Katz JL. Dopamine transporter-dependent and -independent striatal binding of the benztropine analog JHW 007, a cocaine antagonist with low abuse liability. J Pharmacol Exp Ther 2010; 335:703-14. [PMID: 20855444 PMCID: PMC3202473 DOI: 10.1124/jpet.110.171629] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/16/2010] [Indexed: 11/22/2022] Open
Abstract
The benztropine analog N-(n-butyl)-3α-[bis(4'-fluorophenyl)methoxy]-tropane (JHW 007) displays high affinity for the dopamine transporter (DAT), but unlike typical DAT ligands, has relatively low abuse liability and blocks the effects of cocaine, including its self-administration. To determine sites responsible for the cocaine antagonist effects of JHW 007, its in vitro binding was compared with that of methyl (1R,2S,3S,5S)-3-(4-fluorophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (WIN 35428) in rats, mice, and human DAT (hDAT)-transfected cells. A one-site model, with K(d) values of 4.21 (rat) and 8.99 nM (mouse) best fit the [(3)H]WIN 35428 data. [(3)H]JHW 007 binding best fit a two-site model (rat, 7.40/4400 nM; mouse, 8.18/2750 nM), although a one-site fit was observed with hDAT membranes (43.7 nM). Drugs selective for the norepinephrine and serotonin transporters had relatively low affinity in competition with [(3)H]JHW 007 binding, as did drugs selective for other sites identified previously as potential JHW 007 binding sites. The association of [(3)H]WIN 35428 best fit a one-phase model, whereas the association of [(3)H]JHW 007 best fit a two-phase model in all tissues. Because cocaine antagonist effects of JHW 007 have been observed previously soon after injection, its rapid association observed here may contribute to those effects. Multiple [(3)H]JHW 007 binding sites were obtained in tissue from mice lacking the DAT, suggesting these as yet unidentified sites as potential contributors to the cocaine antagonist effects of JHW 007. Unlike WIN 35428, the binding of JHW 007 was Na(+)-independent. This feature of JHW 007 has been linked to the conformational status of the DAT, which in turn may contribute to the antagonism of cocaine.
Collapse
Affiliation(s)
- Theresa A. Kopajtic
- Psychobiology (T.A.K., J.L.K.) and Medicinal Chemistry (A.H.N.) Sections, Medications Discovery Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (Y.L., C.K.S.); and Animal and Natural Resources Institute, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland (D.M.D.)
| | - Yi Liu
- Psychobiology (T.A.K., J.L.K.) and Medicinal Chemistry (A.H.N.) Sections, Medications Discovery Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (Y.L., C.K.S.); and Animal and Natural Resources Institute, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland (D.M.D.)
| | - Christopher K. Surratt
- Psychobiology (T.A.K., J.L.K.) and Medicinal Chemistry (A.H.N.) Sections, Medications Discovery Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (Y.L., C.K.S.); and Animal and Natural Resources Institute, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland (D.M.D.)
| | - David M. Donovan
- Psychobiology (T.A.K., J.L.K.) and Medicinal Chemistry (A.H.N.) Sections, Medications Discovery Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (Y.L., C.K.S.); and Animal and Natural Resources Institute, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland (D.M.D.)
| | - Amy H. Newman
- Psychobiology (T.A.K., J.L.K.) and Medicinal Chemistry (A.H.N.) Sections, Medications Discovery Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (Y.L., C.K.S.); and Animal and Natural Resources Institute, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland (D.M.D.)
| | - Jonathan L. Katz
- Psychobiology (T.A.K., J.L.K.) and Medicinal Chemistry (A.H.N.) Sections, Medications Discovery Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (Y.L., C.K.S.); and Animal and Natural Resources Institute, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland (D.M.D.)
| |
Collapse
|
9
|
Velázquez-Sánchez C, Ferragud A, Murga J, Cardá M, Canales JJ. The high affinity dopamine uptake inhibitor, JHW 007, blocks cocaine-induced reward, locomotor stimulation and sensitization. Eur Neuropsychopharmacol 2010; 20:501-8. [PMID: 20413276 DOI: 10.1016/j.euroneuro.2010.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/12/2010] [Accepted: 03/18/2010] [Indexed: 11/30/2022]
Abstract
The discovery and evaluation of high affinity dopamine transport inhibitors with low abuse liability is an important step toward the development of efficacious medications for cocaine addiction. We examined in mice the behavioural effects of (N-(n-butyl)-3alpha-[bis(4'-fluorophenyl)methoxy]-tropane) (JHW 007), a benztropine (BZT) analogue that blocks dopamine uptake, and assessed its potential to influence the actions of cocaine in clinically-relevant models of cocaine addiction. In the conditioned place preference (CPP) paradigm, JHW 007 exposure did not produce place conditioning within an ample dose range but effectively blocked the CPP induced by cocaine administration. Similarly, in the CPP apparatus JHW 007 treatment failed to stimulate locomotor activity at any dose but dose-dependently suppressed the hyperactivity evoked by cocaine treatment. In locomotor sensitization assays performed in the open field, JHW 007 did not produce sensitized locomotor behaviour when given alone, but it prevented the sensitized component of the locomotor response elicited by subchronic (8-day) cocaine exposure. In the elevated plus maze (EPM), acute treatment with JHW 007, cocaine and combinations of the BZT analogue and cocaine produced an anxiogenic-like profile. Re-test in the EPM following subchronic (8-day) exposure enhanced the anxiogenic-like effect of the same drug treatments. The present findings indicate that JHW 007 exposure counteracts some critical behavioural correlates of cocaine treatment, including conditioned reward, locomotor stimulation and sensitization, and lend support to the further development of BZT analogues as potential replacement medications in cocaine addiction.
Collapse
Affiliation(s)
- C Velázquez-Sánchez
- Biopsychology and Comparative Neuroscience Group, Cavanilles Institute (ICBiBE), University of Valencia-FGUV, Valencia, Spain.
| | | | | | | | | |
Collapse
|
10
|
Tanda G, Newman AH, Katz JL. Discovery of drugs to treat cocaine dependence: behavioral and neurochemical effects of atypical dopamine transport inhibitors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2009; 57:253-89. [PMID: 20230764 PMCID: PMC6768413 DOI: 10.1016/s1054-3589(08)57007-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stimulant drugs acting at the dopamine transporter (DAT), like cocaine, are widely abused, yet effective medical treatments for this abuse have not been found. Analogs of benztropine (BZT) that, like cocaine, act at the DAT have effects that differ from cocaine and in some situations block the behavioral, neurochemical, and reinforcing actions of cocaine. Neurochemical studies of dopamine levels in brain and behavioral studies have demonstrated that BZT analogs have a relatively slow onset and reduced maximal effects compared to cocaine. Pharmacokinetic studies, however, indicated that the BZT analogs rapidly access the brain at concentrations above their in vitro binding affinities, while binding in vivo demonstrates apparent association rates for BZT analogs lower than that for cocaine. Additionally, the off-target effects of these compounds do not fully explain their differences from cocaine. Initial structure-activity studies indicated that BZT analogs bind to DAT differently from cocaine and these differences have been supported by site-directed mutagenesis studies of the DAT. In addition, BZT analog-mediated inhibition of uptake was more resistant to mutations producing inward conformational DAT changes than cocaine analogs. The BZT analogs have provided new insights into the relation between the molecular and behavioral actions of cocaine and the diversity of effects produced by dopamine transport inhibitors. Novel interactions of BZT analogs with the DAT suggest that these drugs may have a pharmacology that would be useful in their development as treatments for cocaine abuse.
Collapse
Affiliation(s)
- Gianluigi Tanda
- Medications Discovery Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|