1
|
Yang Y, Hu Y, Yang Y, Liu Q, Zheng P, Yang Z, Duan B, He J, Li W, Li D, Zheng X, Wang M, Fu Y, Long Q, Ma Y. Tumor Vaccine Exploiting Membranes with Influenza Virus-Induced Immunogenic Cell Death to Decorate Polylactic Coglycolic Acid Nanoparticles. ACS NANO 2025; 19:3115-3134. [PMID: 39806805 DOI: 10.1021/acsnano.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Immunogenic cell death (ICD) of tumor cells, which is characterized by releasing immunostimulatory "find me" and "eat me" signals, expressing proinflammatory cytokines and providing personalized and broad-spectrum tumor antigens draws increasing attention in developing a tumor vaccine. In this study, we aimed to investigate whether the influenza virus (IAV) is efficient enough to induce ICD in tumor cells and an extra modification of IAV components such as hemeagglutinin (HA) will be helpful for the ICD-induced cells to elicit robust antitumor effects; in addition, to evaluate whether the membrane-engineering polylactic coglycolic acid nanoparticles (PLGA NPs) simulating ICD immune stimulation mechanisms hold the potential to be a promising vaccine candidate, a mouse melanoma cell line (B16-F10 cell) was infected with IAV rescued by the reverse genetic system, and the prepared cells and membrane-modified PLGA NPs were used separately to immunize the melanoma-bearing mice. IAV-infected tumor cells exhibit dying status, releasing high mobility group box-1 (HMGB1) and adenosine triphosphate (ATP), and exposing calreticulin (CRT), IAV hemeagglutinin (HA), and tumor antigens like tyrosinase-related protein 2 (TRP2). IAV-induced ICD cells enhance biomass-derived carbon (BMDCs) migration, antigen uptake, cross-presentation, and maturation in vitro. Furthermore, immunization with IAV-induced ICD cells effectively suppressed tumor growth in melanoma-bearing mice. The isolated cell membrane inherited the immunological characteristics from the ICD cells and elicited robust antitumor immune responses through decorating PLGA NPs loading with a tumor-specific helper T-cell peptide and supplemented with ATP in a hydrogel system. This study indicated a promising strategy for developing cell-based and personalized tumor vaccines through fully taking advantage of the immune stimulation mechanisms of ICD occurrence in tumor cells, IAV modification, and nanoscale delivery.
Collapse
Affiliation(s)
- Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- Yunnan University, Kunming 650091, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- Kunming Medical University, Kunming 650500, China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- Kunming Medical University, Kunming 650500, China
| | - Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- Kunming Medical University, Kunming 650500, China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming 650000, China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Kunming 650031, China
| |
Collapse
|
2
|
Chicken Mesenchymal Stem Cells and Their Applications: A Mini Review. Animals (Basel) 2021; 11:ani11071883. [PMID: 34202772 PMCID: PMC8300106 DOI: 10.3390/ani11071883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Mesenchymal stem cells (MSCs) are multipotent stem cells that are capable of differentiation into bone, muscle, fat, and closely related lineages and express unique and specific cell surface markers. They can be used as an avian culture model to better understand osteogenic, adipogenic, and myogenic pathways. Moreover, MSCs could also be used as a model to study various developmental and physiological processes in avian and other species. To obtain a comprehensive overview of this topic, the keywords “mesenchymal stem cells”, “chicken”, “disease”, “chicken dermatitis”, “viral infections in chicken”, and “antibiotics in chicken” were searched in WOS and PUBMED databases to obtain relevant information. Abstract Mesenchymal stem cells (MSCs) are multipotent progenitor cells that adhere to plastic; express the specific markers CD29, CD44, CD73, CD90, and CD105; and produce cytokines and growth factors supporting and regulating hematopoiesis. MSCs have capacity for differentiating into osteocytes, chondrocytes, adipocytes, and myocytes. They are useful for research toward better understanding the pathogenic potential of the infectious bursal disease virus, mineralization during osteogenesis, and interactions between MSCs as a feeder layer to other cells. MSCs are also important for immunomodulatory cell therapy, can provide a suitable strategy model for coculture with pathogens causing dermatitis disorders in chickens, can be cultured in vitro with probiotics and prebiotics with a view to eliminate the feeding of antibiotic growth promoters, and offer cell-based meat production. Moreover, bone marrow-derived MSCs (BM-MSCs) in coculture with hematopoietic progenitor/stem cells (HPCs/HSCs) can support expansion and regulation of the hematopoiesis process using the 3D-culture system in future research in chickens. MSCs’ several advantages, including ready availability, strong proliferation, and immune modulatory properties make them a suitable model in the field of stem cell research. This review summarizes current knowledge about the general characterization of MSCs and their application in chicken as a model organism.
Collapse
|
3
|
Adhikari R, Chen C, Waters E, West FD, Kim WK. Isolation and Differentiation of Mesenchymal Stem Cells From Broiler Chicken Compact Bones. Front Physiol 2019; 9:1892. [PMID: 30723419 PMCID: PMC6350342 DOI: 10.3389/fphys.2018.01892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Chicken mesenchymal stem cells (MSCs) can be used as an avian culture model to better understand osteogenic, adipogenic, and myogenic pathways and to identify unique bioactive nutrients and molecules which can promote or inhibit these pathways. MSCs could also be used as a model to study various developmental, physiological, and therapeutic processes in avian and other species. MSCs are multipotent stem cells that are capable of differentiation into bone, muscle, fat, and closely related lineages and express unique and specific cell surface markers. MSCs have been isolated from numerous sources including human, mouse, rabbit, and chicken with potential clinical and agricultural applications. MSCs from chicken compact bones have not been isolated and characterized yet. In this study, MSCs were isolated from compact bones of the femur and tibia of day-old male broiler chicks to investigate the biological characteristics of the isolated cells. Isolated cells took 8–10 days to expand, demonstrated a monolayer growth pattern and were plastic adherent. Putative MSCs were spindle-shaped with elongated ends and showed rapid proliferation. MSCs demonstrated osteoblastic, adipocytic, and myogenic differentiation when induced with specific differentiation media. Cell surface markers for MSCs such as CD90, CD105, CD73, CD44 were detected positive and CD31, CD34, and CD45 cells were detected negative by PCR assay. The results suggest that MSCs isolated from broiler compact bones (cBMSCs) possess similar biological characteristics as MSCs isolated from other chicken tissue sources.
Collapse
Affiliation(s)
- Roshan Adhikari
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Elizabeth Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Rose WA, Okragly AJ, Hu NN, Daniels MR, Martin AP, Koh YT, Kikly K, Benschop RJ. Interleukin-33 Contributes Toward Loss of Tolerance by Promoting B-Cell-Activating Factor of the Tumor-Necrosis-Factor Family (BAFF)-Dependent Autoantibody Production. Front Immunol 2018; 9:2871. [PMID: 30574145 PMCID: PMC6292404 DOI: 10.3389/fimmu.2018.02871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/21/2018] [Indexed: 01/13/2023] Open
Abstract
Breaking tolerance is a key event leading to autoimmunity, but the exact mechanisms responsible for this remain uncertain. Here we show that the alarmin IL-33 is able to drive the generation of autoantibodies through induction of the B cell survival factor BAFF. A temporary, short-term increase in IL-33 results in a primary (IgM) response to self-antigens. This transient DNA-specific autoantibody response was dependent on the induction of BAFF. Notably, radiation resistant cells and not myeloid cells, such as neutrophils or dendritic cells were the major source of BAFF and were critical in driving the autoantibody response. Chronic exposure to IL-33 elicited dramatic increases in BAFF levels and resulted in elevated numbers of B and T follicular helper cells as well as germinal center formation. We also observed class-switching from an IgM to an IgG DNA-specific autoantibody response. Collectively, the results provide novel insights into a potential mechanism for breaking immune-tolerance via IL-33-mediated induction of BAFF.
Collapse
Affiliation(s)
- William A Rose
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Angela J Okragly
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Ningjie N Hu
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Montanea R Daniels
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Andrea P Martin
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Yi Ting Koh
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Kristine Kikly
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Robert J Benschop
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|