1
|
Wei YH, Lin F. Barcodes based on nucleic acid sequences: Applications and challenges (Review). Mol Med Rep 2025; 32:187. [PMID: 40314098 PMCID: PMC12076290 DOI: 10.3892/mmr.2025.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/04/2025] [Indexed: 05/03/2025] Open
Abstract
Cells are the fundamental structural and functional units of living organisms and the study of these entities has remained a central focus throughout the history of biological sciences. Traditional cell research techniques, including fluorescent protein tagging and microscopy, have provided preliminary insights into the lineage history and clonal relationships between progenitor and descendant cells. However, these techniques exhibit inherent limitations in tracking the full developmental trajectory of cells and elucidating their heterogeneity, including sensitivity, stability and barcode drift. In developmental biology, nucleic acid barcode technology has introduced an innovative approach to cell lineage tracing. By assigning unique barcodes to individual cells, researchers can accurately identify and trace the origin and differentiation pathways of cells at various developmental stages, thereby illuminating the dynamic processes underlying tissue development and organogenesis. In cancer research, nucleic acid barcoding has played a pivotal role in analyzing the clonal architecture of tumor cells, exploring their heterogeneity and resistance mechanisms and enhancing our understanding of cancer evolution and inter‑clonal interactions. Furthermore, nucleic acid barcodes play a crucial role in stem cell research, enabling the tracking of stem cells from diverse origins and their derived progeny. This has offered novel perspectives on the mechanisms of stem cell self‑renewal and differentiation. The present review presented a comprehensive examination of the principles, applications and challenges associated with nucleic acid barcode technology.
Collapse
Affiliation(s)
- Ying Hong Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
2
|
Wojtowicz EE, Mistry JJ, Uzun V, Hellmich C, Scoones A, Chin DW, Kettyle LM, Grasso F, Lord AM, Wright DJ, Etherington GJ, Woll PS, Belderbos ME, Bowles KM, Nerlov C, Haerty W, Bystrykh LV, Jacobsen SEW, Rushworth SA, Macaulay IC. Panhematopoietic RNA barcoding enables kinetic measurements of nucleate and anucleate lineages and the activation of myeloid clones following acute platelet depletion. Genome Biol 2023; 24:152. [PMID: 37370129 PMCID: PMC10294477 DOI: 10.1186/s13059-023-02976-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Platelets and erythrocytes constitute over 95% of all hematopoietic stem cell output. However, the clonal dynamics of HSC contribution to these lineages remains largely unexplored. RESULTS We use lentiviral genetic labeling of mouse hematopoietic stem cells to quantify output from all lineages, nucleate, and anucleate, simultaneously linking these with stem and progenitor cell transcriptomic phenotypes using single-cell RNA-sequencing. We observe dynamic shifts of clonal behaviors through time in same-animal peripheral blood and demonstrate that acute platelet depletion shifts the output of multipotent hematopoietic stem cells to the exclusive production of platelets. Additionally, we observe the emergence of new myeloid-biased clones, which support short- and long-term production of blood cells. CONCLUSIONS Our approach enables kinetic studies of multi-lineage output in the peripheral blood and transcriptional heterogeneity of individual hematopoietic stem cells. Our results give a unique insight into hematopoietic stem cell reactivation upon platelet depletion and of clonal dynamics in both steady state and under stress.
Collapse
Affiliation(s)
- Edyta E Wojtowicz
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Jayna J Mistry
- Earlham Institute, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Vladimir Uzun
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Charlotte Hellmich
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Anita Scoones
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Desmond W Chin
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Laura M Kettyle
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Francesca Grasso
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Allegra M Lord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Petter S Woll
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Leonid V Bystrykh
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Sten Eirik W Jacobsen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | | | - Iain C Macaulay
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| |
Collapse
|
3
|
Safi F, Dhapola P, Erlandsson E, Ulfsson LG, Calderón AS, Böiers C, Karlsson G. In vitro clonal multilineage differentiation of distinct murine hematopoietic progenitor populations. STAR Protoc 2023; 4:101965. [PMID: 36633951 PMCID: PMC9843257 DOI: 10.1016/j.xpro.2022.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Here we describe an in vitro co-culture system that can differentiate hematopoietic progenitor populations to all major hematopoietic lineages at clonal level. We present both a sensitive single-cell switch-culture system as well as a less laborious alternative barcoding protocol more convenient for larger cell numbers. Importantly, generation of all lineages from single long-term hematopoietic stem cells are described, following 21 days of culture. This protocol represents an efficient tool for validation experiments for single-cell genomics data. For complete details on the use and execution of this protocol, please refer to Safi et al. (2022).1.
Collapse
Affiliation(s)
- Fatemeh Safi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Parashar Dhapola
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Eva Erlandsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Ariana S Calderón
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Umeki Y, Ogawa N, Uegaki Y, Saga K, Kaneda Y, Nimura K. DNA barcoding and gene expression recording reveal the presence of cancer cells with unique properties during tumor progression. Cell Mol Life Sci 2023; 80:17. [PMID: 36564568 PMCID: PMC9789022 DOI: 10.1007/s00018-022-04640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 12/25/2022]
Abstract
Tumors comprise diverse cancer cell populations with specific capabilities for adaptation to the tumor microenvironment, resistance to anticancer treatments, and metastatic dissemination. However, whether these populations are pre-existing in cancer cells or stochastically appear during tumor growth remains unclear. Here, we show the heterogeneous behaviors of cancer cells regarding response to anticancer drug treatments, formation of lung metastases, and expression of transcription factors related to cancer stem-like cells using a DNA barcoding and gene expression recording system. B16F10 cells maintained clonal diversity after treatment with HVJ-E, a UV-irradiated Sendai virus, and the anticancer drug dacarbazine. PBS treatment of the primary tumor and intravenous injection of B16F10 cells resulted in metastases formed from clones of multiple cell lineages. Conversely, BL6 and 4T1 cells developed spontaneous lung metastases by a small number of clones. Notably, an identical clone of 4T1 cells developed lung metastases in different mice, suggesting the existence of cells with high metastatic potential. Cas9-based transcription recording analysis in a human prostate cancer cell line revealed that specific cells express POU5F1 in response to an anticancer drug and sphere formation. Our findings provide insights into the diversity of cancer cells during tumor progression.
Collapse
Affiliation(s)
- Yuka Umeki
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Noriaki Ogawa
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Yuko Uegaki
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Kotaro Saga
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
5
|
Serrano A, Berthelet J, Naik SH, Merino D. Mastering the use of cellular barcoding to explore cancer heterogeneity. Nat Rev Cancer 2022; 22:609-624. [PMID: 35982229 DOI: 10.1038/s41568-022-00500-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
Tumours are often composed of a multitude of malignant clones that are genomically unique, and only a few of them may have the ability to escape cancer therapy and grow as symptomatic lesions. As a result, tumours with a large degree of genomic diversity have a higher chance of leading to patient death. However, clonal fate can be driven by non-genomic features. In this context, new technologies are emerging not only to track the spatiotemporal fate of individual cells and their progeny but also to study their molecular features using various omics analysis. In particular, the recent development of cellular barcoding facilitates the labelling of tens to millions of cancer clones and enables the identification of the complex mechanisms associated with clonal fate in different microenvironments and in response to therapy. In this Review, we highlight the recent discoveries made using lentiviral-based cellular barcoding techniques, namely genetic and optical barcoding. We also emphasize the strengths and limitations of each of these technologies and discuss some of the key concepts that must be taken into consideration when one is designing barcoding experiments. Finally, we suggest new directions to further improve the use of these technologies in cancer research.
Collapse
Affiliation(s)
- Antonin Serrano
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean Berthelet
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Shalin H Naik
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Chen C, Liao Y, Peng G. Connecting past and present: single-cell lineage tracing. Protein Cell 2022; 13:790-807. [PMID: 35441356 PMCID: PMC9237189 DOI: 10.1007/s13238-022-00913-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/06/2022] [Indexed: 01/16/2023] Open
Abstract
Central to the core principle of cell theory, depicting cells' history, state and fate is a fundamental goal in modern biology. By leveraging clonal analysis and single-cell RNA-seq technologies, single-cell lineage tracing provides new opportunities to interrogate both cell states and lineage histories. During the past few years, many strategies to achieve lineage tracing at single-cell resolution have been developed, and three of them (integration barcodes, polylox barcodes, and CRISPR barcodes) are noteworthy as they are amenable in experimentally tractable systems. Although the above strategies have been demonstrated in animal development and stem cell research, much care and effort are still required to implement these methods. Here we review the development of single-cell lineage tracing, major characteristics of the cell barcoding strategies, applications, as well as technical considerations and limitations, providing a guide to choose or improve the single-cell barcoding lineage tracing.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanxin Liao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangdun Peng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Hadj Abed L, Tak T, Cosgrove J, Perié L. CellDestiny: A RShiny application for the visualization and analysis of single-cell lineage tracing data. Front Med (Lausanne) 2022; 9:919345. [PMID: 36275810 PMCID: PMC9581332 DOI: 10.3389/fmed.2022.919345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Single-cell lineage tracing permits the labeling of individual cells with a heritable marker to follow the fate of each cell's progeny. Over the last twenty years, several single-cell lineage tracing methods have emerged, enabling major discoveries in developmental biology, oncology and gene therapies. Analytical tools are needed to draw meaningful conclusions from lineage tracing measurements, which are characterized by high variability, sparsity and technical noise. However, the single cell lineage tracing field lacks versatile and easy-to-use tools for standardized and reproducible analyses, in particular tools accessible to biologists. Here we present CellDestiny, a RShiny app and associated web application developed for experimentalists without coding skills to perform visualization and analysis of single cell lineage-tracing datasets through a graphical user interface. We demonstrate the functionality of CellDestiny through the analysis of (i) lentiviral barcoding datasets of murine hematopoietic progenitors; (ii) published integration site data from Wiskott-Aldrich Symdrome patients undergoing gene-therapy treatment; and (iii) simultaneous barcoding and transcriptomic analysis of murine hematopoietic progenitor differentiation in vitro. In summary, CellDestiny is an easy-to-use and versatile toolkit that enables biologists to visualize and analyze single-cell lineage tracing data.
Collapse
Affiliation(s)
- Louisa Hadj Abed
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
- Centre de Bio-Informatique, MINES ParisTech, Institut Curie, PSL University, Paris, France
| | - Tamar Tak
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Jason Cosgrove
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| |
Collapse
|
8
|
Gotzhein F, Aranyossy T, Thielecke L, Sonntag T, Thaden V, Fehse B, Müller I, Glauche I, Cornils K. The Reconstitution Dynamics of Cultivated Hematopoietic Stem Cells and Progenitors Is Independent of Age. Int J Mol Sci 2022; 23:ijms23063160. [PMID: 35328579 PMCID: PMC8948791 DOI: 10.3390/ijms23063160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) represents the only curative treatment option for numerous hematologic malignancies. While the influence of donor age and the composition of the graft have already been examined in clinical and preclinical studies, little information is available on the extent to which different hematological subpopulations contribute to the dynamics of the reconstitution process and on whether and how these contributions are altered with age. In a murine model of HSCT, we therefore simultaneously tracked different cultivated and transduced hematopoietic stem and progenitor cell (HSPC) populations using a multicolor-coded barcode system (BC32). We studied a series of age-matched and age-mismatched transplantations and compared the influence of age on the reconstitution dynamics. We show that reconstitution from these cultured and assembled grafts was substantially driven by hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) independent of age. The reconstitution patterns were polyclonal and stable in all age groups independently of the variability between individual animals, with higher output rates from MPPs than from HSCs. Our experiments suggest that the dynamics of reconstitution and the contribution of cultured and individually transduced HSPC subpopulations are largely independent of age. Our findings support ongoing efforts to expand the application of HSCT in older individuals as a promising strategy to combat hematological diseases, including gene therapy applications.
Collapse
Affiliation(s)
- Frauke Gotzhein
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Tim Aranyossy
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.A.); (T.S.); (B.F.)
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.T.); (I.G.)
| | - Tanja Sonntag
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.A.); (T.S.); (B.F.)
| | - Vanessa Thaden
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.A.); (T.S.); (B.F.)
| | - Ingo Müller
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.T.); (I.G.)
| | - Kerstin Cornils
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-7410-52721
| |
Collapse
|
9
|
Ferrari S, Beretta S, Jacob A, Cittaro D, Albano L, Merelli I, Naldini L, Genovese P. BAR-Seq clonal tracking of gene-edited cells. Nat Protoc 2021; 16:2991-3025. [PMID: 34031609 DOI: 10.1038/s41596-021-00529-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/26/2021] [Indexed: 02/04/2023]
Abstract
Gene editing by engineered nucleases has revolutionized the field of gene therapy by enabling targeted and precise modification of the genome. However, the limited availability of methods for clonal tracking of edited cells has resulted in a paucity of information on the diversity, abundance and behavior of engineered clones. Here we detail the wet laboratory and bioinformatic BAR-Seq pipeline, a strategy for clonal tracking of cells harboring homology-directed targeted integration of a barcoding cassette. We present the BAR-Seq web application, an online, freely available and easy-to-use software that allows performing clonal tracking analyses on raw sequencing data without any computational resources or advanced bioinformatic skills. BAR-Seq can be applied to most editing strategies, and we describe its use to investigate the clonal dynamics of human edited hematopoietic stem/progenitor cells in xenotransplanted hosts. Notably, BAR-Seq may be applied in both basic and translational research contexts to investigate the biology of edited cells and stringently compare editing protocols at a clonal level. Our BAR-Seq pipeline allows library preparation and validation in a few days and clonal analyses of edited cell populations in 1 week.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milano-Bicocca University, Monza, Italy
| | - Davide Cittaro
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatric Oncology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Adair JE, Enstrom MR. A key toolbox for cellular barcoding analysis. NATURE COMPUTATIONAL SCIENCE 2021; 1:251-252. [PMID: 38217171 DOI: 10.1038/s43588-021-00062-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Affiliation(s)
- Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Division of Medical Oncology, University of Washington, Seattle, WA, USA.
| | - Mark R Enstrom
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
11
|
Suryawanshi GW, Khamaikawin W, Wen J, Shimizu S, Arokium H, Xie Y, Wang E, Kim S, Choi H, Zhang C, Yu H, Presson AP, Kim N, An DS, Chen ISY, Kim S. The clonal repopulation of HSPC gene modified with anti-HIV-1 RNAi is not affected by preexisting HIV-1 infection. SCIENCE ADVANCES 2020; 6:eaay9206. [PMID: 32766447 PMCID: PMC7385479 DOI: 10.1126/sciadv.aay9206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/09/2020] [Indexed: 05/11/2023]
Abstract
Despite advances in hematopoietic stem/progenitor cell (HSPC) transplant for HIV-1-infected patients, the impact of a preexisting HIV-1 infection on the engraftment and clonal repopulation of HSPCs remains poorly understood. We have developed a long terminal repeat indexing-mediated integration site sequencing (LTRi-Seq) method that provides a multiplexed clonal quantitation of both anti-HIV-1 RNAi (RNA interference) gene-modified and control vector-modified cell populations, together with HIV-1-infected cells-all within the same animal. In our HIV-1-preinfected humanized mice, both therapeutic and control HSPCs repopulated efficiently without abnormalities. Although the HIV-1-mediated selection of anti-HIV-1 RNAi-modified clones was evident in HIV-1-infected mice, the organ-to-organ and intra-organ clonal distributions in infected mice were indistinguishable from those in uninfected mice. HIV-1-infected cells showed clonal patterns distinct from those of HSPCs. Our data demonstrate that, despite the substantial impact of HIV-1 infection on CD4+ T cells, HSPC repopulation remains polyclonal, thus supporting the use of HSPC transplant for anti-HIV treatment.
Collapse
Affiliation(s)
- Gajendra W. Suryawanshi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Wannisa Khamaikawin
- UCLA AIDS Institute, Los Angeles, CA 90095, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Saki Shimizu
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Hubert Arokium
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Yiming Xie
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Eugene Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shihyoung Kim
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Hyewon Choi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA AIDS Institute, Los Angeles, CA 90095, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Chong Zhang
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84108, USA
| | - Hannah Yu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Angela P. Presson
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84108, USA
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Biosciences and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong-Sung An
- UCLA AIDS Institute, Los Angeles, CA 90095, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Irvin S. Y. Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- UCLA AIDS Institute, Los Angeles, CA 90095, USA
- Division of Hematology-Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Sanggu Kim
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Bramlett C, Jiang D, Nogalska A, Eerdeng J, Contreras J, Lu R. Clonal tracking using embedded viral barcoding and high-throughput sequencing. Nat Protoc 2020; 15:1436-1458. [PMID: 32132718 PMCID: PMC7427513 DOI: 10.1038/s41596-019-0290-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/21/2019] [Indexed: 11/09/2022]
Abstract
Embedded viral barcoding in combination with high-throughput sequencing is a powerful technology with which to track single-cell clones. It can provide clonal-level insights into cellular proliferation, development, differentiation, migration, and treatment efficacy. Here, we present a detailed protocol for a viral barcoding procedure that includes the creation of barcode libraries, the viral delivery of barcodes, the recovery of barcodes, and the computational analysis of barcode sequencing data. The entire procedure can be completed within a few weeks. This barcoding method requires cells to be susceptible to viral transduction. It provides high sensitivity and throughput, and enables precise quantification of cellular progeny. It is cost efficient and does not require any advanced skills. It can also be easily adapted to many types of applications, including both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Charles Bramlett
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Du Jiang
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Anna Nogalska
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Jiya Eerdeng
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Contreras
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Rong Lu
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Pyo DH, Hong HK, Lee WY, Cho YB. Patient-derived cancer modeling for precision medicine in colorectal cancer: beyond the cancer cell line. Cancer Biol Ther 2020; 21:495-502. [PMID: 32208894 DOI: 10.1080/15384047.2020.1738907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since effective immunotherapeutic agents such as immune checkpoint blockade to treat cancer have emerged, the need for reliable preclinical cancer models that can evaluate and discover such drugs became stronger than ever before. The traditional preclinical cancer model using a cancer cell line has several limitations to recapitulate intra-tumor heterogeneity and in-vivo tumor activity including interactions between tumor-microenvironment. In this review, we will go over various preclinical cancer models recently discovered including patient-derived xenografts, humanized mice, organoids, organotypic-tumor spheroids, and organ-on-a-chip models. Moreover, we will discuss the future directions of preclinical cancer research.
Collapse
Affiliation(s)
- Dae Hee Pyo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
14
|
Quantitative distribution of patient-derived leukemia clones in murine xenografts revealed by cellular barcodes. Leukemia 2019; 34:1669-1674. [PMID: 31852987 PMCID: PMC8075919 DOI: 10.1038/s41375-019-0695-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
|
15
|
Belderbos ME, Jacobs S, Koster TK, Ausema A, Weersing E, Zwart E, de Haan G, Bystrykh LV. Donor-to-Donor Heterogeneity in the Clonal Dynamics of Transplanted Human Cord Blood Stem Cells in Murine Xenografts. Biol Blood Marrow Transplant 2019; 26:16-25. [PMID: 31494231 DOI: 10.1016/j.bbmt.2019.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023]
Abstract
Umbilical cord blood (UCB) provides an alternative source of hematopoietic stem cells (HSCs) for allogeneic transplantation. Administration of sufficient donor HSCs is critical to restore recipient hematopoiesis and to maintain long-term polyclonal blood formation. However, due to lack of unique markers, the frequency of HSCs among UCB CD34+ cells is the subject of ongoing debate, urging for reproducible strategies for their counting. Here, we used cellular barcoding to determine the frequency and clonal dynamics of human UCB HSCs and to determine how data analysis methods affect these parameters. We transplanted lentivirally barcoded CD34+ cells from 20 UCB donors into Nod/Scid/IL2Ry-/- (NSG) mice (n = 30). Twelve recipients (of 8 UCB donors) engrafted with >1% GFP+ cells, allowing for clonal analysis by multiplexed barcode deep sequencing. Using multiple definitions of clonal diversity and strategies for data filtering, we demonstrate that differences in data analysis can change clonal counts by several orders of magnitude and propose methods to improve their consistency. Using these methods, we show that the frequency of NSG-repopulating cells was low (median ∼1 HSC/104 CD34+ UCB cells) and could vary up to 10-fold between donors. Clonal patterns in blood became increasingly consistent over time, likely reflecting initial output of transient progenitors, followed by long-term HSCs with stable hierarchies. The majority of long-term clones displayed multilineage output, yet clones with lymphoid- or myeloid-biased output were also observed. Altogether, this study uncovers substantial interdonor and analysis-induced variability in the frequency of UCB CD34+ clones that contribute to post-transplant hematopoiesis. As clone tracing is increasingly relevant, we urge for universal and transparent methods to count HSC clones during normal aging and upon transplantation.
Collapse
Affiliation(s)
- Mirjam E Belderbos
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands; Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands.
| | - Sabrina Jacobs
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Taco K Koster
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Albertina Ausema
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Ellen Weersing
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Erik Zwart
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Gerald de Haan
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Leonid V Bystrykh
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Bigildeev AE, Pilunov AM, Sats NV, Surin VL, Shipounova IN, Petinati NA, Logacheva MD, Fedotova AV, Kasyanov AS, Artyukhov AS, Dashinimaev EB, Drize NJ. Clonal Composition of Human Multipotent Mesenchymal Stromal Cells: Application of Genetic Barcodes in Research. BIOCHEMISTRY. BIOKHIMIIA 2019; 84:250-262. [PMID: 31221063 DOI: 10.1134/s0006297919030076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Clonal composition of human multipotent mesenchymal stromal cells (MMSCs) labeled with lentiviral vectors carrying genetic barcodes was studied. MMSCs were transduced with a cloned library of self-inactivating lentiviral vectors carrying 667 unique barcodes. At each cell culture passage, 120 cells were plated one cell per well in 96-well plates. The efficiency of cloning and labeling of the clonogenic cells was determined. DNA was extracted from the cell-derived colonies, and the barcodes were identified by Sanger sequencing. Also, DNA was extracted from the total MMSC population at each passage to analyze the diversity and representation of barcodes by deep sequencing using the Illumina platform. It was shown that the portion of MMSCs labeled with the lentiviral vectors remained stable in the passaged cells. Because of the high multiplicity of infection, the labeling procedure could decrease the proliferative potential of MMSCs. Identification of barcodes in individual cell clones confirmed the polyclonal character of the MMSC population. Clonal composition of MMSCs changed significantly with the passages due to the depletion of proliferative potential of most cells. Large clones were found at the first passage; at later passages, many small clones with a limited proliferative potential were detected in the population. The results of deep sequencing confirmed changes in the clonal composition of MMSCs. The polyclonal MMSC population contained only a small number of cells with a high proliferative potential, some of which could be stem cells. MMSCs with a high proliferative potential were detected more often in the earliest passages. In this regard, we would recommend to use MMSCs of early passages for regenerative medicine applications based on cell proliferation.
Collapse
Affiliation(s)
- A E Bigildeev
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| | - A M Pilunov
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - N V Sats
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - V L Surin
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - I N Shipounova
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - N A Petinati
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - M D Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - A V Fedotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - A S Kasyanov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A S Artyukhov
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117997, Russia
| | - E B Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - N J Drize
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| |
Collapse
|
17
|
|
18
|
Aalam SMM, Beer PA, Kannan N. Assays for functionally defined normal and malignant mammary stem cells. Adv Cancer Res 2019; 141:129-174. [PMID: 30691682 DOI: 10.1016/bs.acr.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of rare, heterogeneous self-renewing stem cells with shared developmental and molecular features within epithelial components of mammary gland and breast cancers has provided a conceptual framework to understand cellular composition of these tissues and mechanisms that control their number. These normal mammary epithelial stem cells (MaSCs) and breast cancer stem cells (BCSCs) were identified and analyzed using transplant assays (namely mammary repopulating unit (MRU) assay, mammary tumor-initiating cell (TIC) assay), which reveal their latent ability to regenerate respective normal and malignant epithelial tissues with self-renewing units displaying hierarchical cellular differentiation over multiple generations in recipient mice. "Next-generation" methods using "barcoded" normal and malignant mammary cells, with the help of next-generation sequencing (NGS) technology, have revealed hidden complexity and heterogeneous growth potential of MaSCs and BCSCs. Several single markers or combinations of markers have been reported to prospectively enrich MaSCs and BCSCs. Such markers and the extent to which they enrich for MaSCs and BCSCs activity require a critical appraisal. Also, knowledge of the functional assays and their limitations and harmonious reporting of results is a prerequisite to improve our understanding of MaSCs and BCSCs. This chapter describes evolution of the concept of MaSCs and BCSCs, and specific methodologies to investigate them.
Collapse
Affiliation(s)
- Syed Mohammed Musheer Aalam
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Philip Anthony Beer
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States; Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Nagarajan Kannan
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
19
|
Keller RR, Gunther EJ. Evolution of Relapse-Proficient Subclones Constrained by Collateral Sensitivity to Oncogene Overdose in Wnt-Driven Mammary Cancer. Cell Rep 2019; 26:893-905.e4. [PMID: 30673612 PMCID: PMC6382077 DOI: 10.1016/j.celrep.2018.12.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Targeted cancer therapeutics select for drug-resistant rescue subclones (RSCs), which typically carry rescue mutations that restore oncogenic signaling. Whereas mutations underlying antibiotic resistance frequently burden drug-naive microbes with a fitness cost, it remains unknown whether and how rescue mutations underlying cancer relapse encounter negative selection prior to targeted therapy. Here, using mouse models of reversible, Wnt-driven mam-mary cancer, we uncovered stringent counter-selection against Wnt signaling overdose during the clonal evolution of RSCs. Analyzing recurrent tumors emerging during simulated targeted therapy (Wnt withdrawal) by multi-region DNA sequencing revealed polyclonal relapses comprised of multiple RSCs, which bear distinct but functionally equivalent rescue mutations that converge on sub-maximal Wnt pathway activation. When superimposed on native (i.e., undrugged) signaling, these rescue mutations faced negative selection, indicating that they burden RSCs with a fitness cost before Wnt withdrawal unmasks their selective advantage. Exploiting collateral sensitivity to oncogene overdose may help eliminate RSCs and prevent cancer relapse. Keller and Gunther show that Wnt-driven mammary cancers challenged with simulated targeted therapy (Wnt withdrawal) undergo clonal evolution, which stringently selects for mutations that restore a “just right” level of oncogenic signaling. Therefore, cancer relapses emerge from rare subclones that are encumbered by an untapped vulnerability to oncogene overdose.
Collapse
Affiliation(s)
- Ross R Keller
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Edward J Gunther
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
20
|
A clinical perspective on immunoglobulin heavy chain clonal heterogeneity in B cell acute lymphoblastic leukemia. Leuk Res 2018; 75:15-22. [DOI: 10.1016/j.leukres.2018.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
|
21
|
Palm MM, Elemans M, Beltman JB. Heritable tumor cell division rate heterogeneity induces clonal dominance. PLoS Comput Biol 2018; 14:e1005954. [PMID: 29432417 PMCID: PMC5825147 DOI: 10.1371/journal.pcbi.1005954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/23/2018] [Accepted: 01/05/2018] [Indexed: 11/18/2022] Open
Abstract
Tumors consist of a hierarchical population of cells that differ in their phenotype and genotype. This hierarchical organization of cells means that a few clones (i.e., cells and several generations of offspring) are abundant while most are rare, which is called clonal dominance. Such dominance also occurred in published in vitro iterated growth and passage experiments with tumor cells in which genetic barcodes were used for lineage tracing. A potential source for such heterogeneity is that dominant clones derive from cancer stem cells with an unlimited self-renewal capacity. Furthermore, ongoing evolution and selection within the growing population may also induce clonal dominance. To understand how clonal dominance developed in the iterated growth and passage experiments, we built a computational model that accurately simulates these experiments. The model simulations reproduced the clonal dominance that developed in in vitro iterated growth and passage experiments when the division rates vary between cells, due to a combination of initial variation and of ongoing mutational processes. In contrast, the experimental results can neither be reproduced with a model that considers random growth and passage, nor with a model based on cancer stem cells. Altogether, our model suggests that in vitro clonal dominance develops due to selection of fast-dividing clones. Tumors consist of numerous cell populations, i.e., clones, that differ with respect to genotype, and potentially with respect to phenotype, and these populations strongly differ in their size. A limited number of clones tend to dominate tumors, but it remains unclear how this clonal dominance arises. Potential driving mechanisms are the presence of cancer stem cells, which either divide indefinitely of differentiate into cells with a limited division potential, and ongoing evolutionary processes within the tumor. Here we use a computational model to understand how clonal dominance developed during in vitro growth and passage experiments with cancer cells. Incorporating cancer stem cells in this model did not result in a match between simulations and in vitro data. In contrast, by considering all cells to divide indefinitely and division rates to evolve due to the combination of division rate variability and selection by passage, our model closely matches the in vitro data.
Collapse
Affiliation(s)
- Margriet M. Palm
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
- * E-mail:
| | - Marjet Elemans
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Joost B. Beltman
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
22
|
Abstract
In this issue of JEM, Wu et al. (https://doi.org/10.1084/jem.20171341) use genetic barcoding of macaque hematopoietic stem cells to demonstrate that, after transplantation, HSCs are very asymmetrically distributed and uncover a thymus-independent pathway for mature T cell production in the bone marrow.
Collapse
Affiliation(s)
- Mirjam E Belderbos
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Leonid Bystrykh
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Gerald de Haan
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
23
|
Abstract
OPINION STATEMENT The task of surgical research is to improve the efficacy of available surgical therapeutic modalities, develop new ones, and balance this well with favorable functional outcome. Therefore, surgical research is composed of a translational and a clinical component. In translational surgical research, animal models are used to better understand the biology of head and neck cancers, but even more importantly, the biology of changes to the disease and the microenvironment created by surgical interventions. Animal models additionally allow for the development of image-guided surgery systems, novel strategies of intraoperative adjuvant treatment, and patient "avatars" to test innovative anticancer drug combinations. In clinical surgical research, surgical techniques are validated in clinical trials for effectiveness of tumor control and improvement of functional recovery of the patient. In conclusion, surgical research for head and neck cancer is an active field spanning across the entire breadth of basic and clinical science devoted to a better understanding of what surgery does to the disease and to the patient.
Collapse
Affiliation(s)
- Genrich Tolstonog
- Service d'Oto-rhino-laryngologie - Chirurgie cervico-faciale, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (UNIL), Rue du Bugnon 21, 1011, Lausanne, Switzerland.
| | - Christian Simon
- Service d'Oto-rhino-laryngologie - Chirurgie cervico-faciale, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (UNIL), Rue du Bugnon 21, 1011, Lausanne, Switzerland
| |
Collapse
|
24
|
Balani S, Nguyen LV, Eaves CJ. Modeling the process of human tumorigenesis. Nat Commun 2017; 8:15422. [PMID: 28541307 PMCID: PMC5458507 DOI: 10.1038/ncomms15422] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
Modelling the genesis of human cancers is at a scientific turning point. Starting from primary sources of normal human cells, it is now possible to reproducibly generate several types of malignant cell populations. Powerful methods for clonally tracking and manipulating their appearance and progression in serially transplanted immunodeficient mice are also in place. These developments circumvent historic drawbacks inherent in analyses of cancers produced in model organisms, established human malignant cell lines, or highly heterogeneous patient samples. In this review, we survey the advantages, contributions and limitations of current de novo human tumorigenesis strategies and note several exciting prospects on the horizon. A better understanding of the earliest stages of human cancer formation can enable future improvements in early detection, diagnosis and treatment. In this review, the authors summarize the methods enabling de novo tumorigenesis protocols to be applied to human cells and the insights derived from them to date, as well as the exciting and relevant technical developments anticipated to extend even further the utility of these strategies.
Collapse
Affiliation(s)
- Sneha Balani
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Long V. Nguyen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Kristiansen TA, Doyle A, Yuan J. Lentiviral Barcode Labeling and Transplantation of Fetal Liver Hematopoietic Stem and Progenitor Cells. Bio Protoc 2017; 7:e2242. [PMID: 34541235 DOI: 10.21769/bioprotoc.2242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/06/2017] [Accepted: 03/16/2017] [Indexed: 11/02/2022] Open
Abstract
Cellular barcoding enables the dissection of clonal dynamics in heterogeneous cell populations through single cell lineage tracing. The labeling of hematopoietic stem and progenitor cells (HSPCs) with unique and heritable DNA barcodes, makes it possible to resolve donor cell heterogeneity in terms of differentiation potential and lineage bias at the single cell level, through subsequent transplantation and high-throughput sequencing. Furthermore, cellular barcoding allows for bona fide hematopoietic stem cells (HSCs) to be defined based on functional rather than immunophenotypic parameters. This protocol describes the work flow of lentiviral cellular barcoding, tracking 14.5 days post coitum (d.p.c.) fetal liver (FL) Lineage-Sca+cKit+ (LSK) HSPCs following long-term reconstitution (Figure 1) ( Kristiansen et al., 2016 ), but can be adapted to the cell type or time frame of choice. Figure 1.Summary of experimental workflow ( Naik et al., 2013 ).
Collapse
Affiliation(s)
- Trine A Kristiansen
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alexander Doyle
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Clonal selection and asymmetric distribution of human leukemia in murine xenografts revealed by cellular barcoding. Blood 2017; 129:3210-3220. [PMID: 28396495 DOI: 10.1182/blood-2016-12-758250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
Genetic and phenotypic heterogeneity of human leukemia is thought to drive leukemia progression through a Darwinian process of selection and evolution of increasingly malignant clones. However, the lack of markers that uniquely identify individual leukemia clones precludes high-resolution tracing of their clonal dynamics. Here, we use cellular barcoding to analyze the clonal behavior of patient-derived leukemia-propagating cells (LPCs) in murine xenografts. Using a leukemic cell line and diagnostic bone marrow cells from 6 patients with B-progenitor cell acute lymphoblastic leukemia, we demonstrate that patient-derived xenografts were highly polyclonal, consisting of tens to hundreds of LPC clones. The number of clones was stable within xenografts but strongly reduced upon serial transplantation. In contrast to primary recipients, in which clonal composition was highly diverse, clonal composition in serial xenografts was highly similar between recipients of the same donor and reflected donor clonality, supporting a deterministic, clone-size-based model for clonal selection. Quantitative analysis of clonal abundance in several anatomic sites identified 2 types of anatomic asymmetry. First, clones were asymmetrically distributed between different bones. Second, clonal composition in the skeleton significantly differed from extramedullary sites, showing similar numbers but different clone sizes. Altogether, this study shows that cellular barcoding and xenotransplantation providea useful model to study the behavior of patient-derived LPC clones, which provides insights relevant for experimental studies on cancer stem cells and for clinical protocols for the diagnosis and treatment of leukemia.
Collapse
|
27
|
Limitations and challenges of genetic barcode quantification. Sci Rep 2017; 7:43249. [PMID: 28256524 PMCID: PMC5335698 DOI: 10.1038/srep43249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
Genetic barcodes are increasingly used to track individual cells and to quantitatively assess their clonal contributions over time. Although barcode quantification relies entirely on counting sequencing reads, detailed studies about the method’s accuracy are still limited. We report on a systematic investigation of the relation between barcode abundance and resulting read counts after amplification and sequencing using cell-mixtures that contain barcodes with known frequencies (“miniBulks”). We evaluated the influence of protocol modifications to identify potential sources of error and elucidate possible limitations of the quantification approach. Based on these findings we designed an advanced barcode construct (BC32) to improved barcode calling and quantification, and to ensure a sensitive detection of even highly diluted barcodes. Our results emphasize the importance of using curated barcode libraries to obtain interpretable quantitative data and underline the need for rigorous analyses of any utilized barcode library in terms of reliability and reproducibility.
Collapse
|