1
|
Espinosa de Los Monteros-Zúñiga A, Almazán JL, Martínez-Lorenzana G, Guillen-Paredes MC, Prieto GA, Condés-Lara M, González-Hernández A. The biased OTR ligands -atosiban and carbetocin- differentially inhibit early or late formalin-induced nociception in rats. Neuropharmacology 2025; 275:110487. [PMID: 40324652 DOI: 10.1016/j.neuropharm.2025.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Males are more sensitive to intrathecal oxytocin-induced antinociception than females. This antinociception has been linked to oxytocin receptor (OTR) activation. Canonically, OTR is coupled to Gq but can also activate Gi/o proteins. In males, the formalin test showed that oxytocin prevented early nociception (flinches) via the Gq pathway, whereas long-lasting hypersensitivity was halted by Gi/o activation. Here, we tested the effects of biased OTR ligands carbetocin (Gq) and atosiban (Gi/o) on formalin-induced nociception in male and female Wistar rats. Specifically, we assessed the effects of intrathecal carbetocin and atosiban on early (flinches) and late (paw withdrawal threshold) formalin-induced nociception. Pretreatment with L-368,899 (OTR antagonist), U-73122 (phospholipase C inhibitor), L-NAME (nitric oxide synthase inhibitor), or pertussis toxin (a Gi/o inhibitor) was used to dissect the pathways involved. Furthermore, late activation of Akt, ERK1/2, and S6 ribosomal (S6) protein was tracked in spinal tissue by immunoblotting. Carbetocin prevented early nociception in males, whereas atosiban precluded late nociception in both sexes. The antinociception induced by carbetocin and atosiban was abolished by L-368,899, pointing out the role of OTR. Pretreatment with U-73122 or L-NAME blocked the carbetocin effect, whereas pertussis toxin prevented the atosiban effect. Late hypersensitivity correlated with increased levels of phosphorylated S6 protein in the spinal tissue, an effect partly blocked by atosiban. These data suggest that carbetocin prevents early nociception in males via OTR-Gq, and atosiban blocks late hypersensitivity in both sexes via OTR-Gi/o, implying that OTR-biased activation underlies the sexual dimorphism observed in oxytocin-induced antinociception.
Collapse
Affiliation(s)
- Antonio Espinosa de Los Monteros-Zúñiga
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Jorge Luis Almazán
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Mónica C Guillen-Paredes
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - G Aleph Prieto
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Miguel Condés-Lara
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Abimael González-Hernández
- Departamento de Neurobiología Del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| |
Collapse
|
2
|
Meinung CP, Boi L, Pandamooz S, Mazaud D, Ghézali G, Rouach N, Neumann ID. OXTR-mediated signaling in astrocytes contributes to anxiolysis. Mol Psychiatry 2025; 30:2620-2634. [PMID: 39702695 DOI: 10.1038/s41380-024-02870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Astrocytes are an indispensable part of signal processing within the mammalian brain. Thus, the mode of action of a neuropeptide such as oxytocin (OXT) can only be fully understood considering this integral part of the CNS. Here, we show that OXT regulates astrocytic gene expression, intracellular signaling and specific proteins both in vitro and in vivo. This translates into rapid regulation of astroglial structural and functional properties including cytoskeletal plasticity, coverage of synapses and gap-junction coupling. At the molecular level, we identify the previously undescribed Sp1-Gem signaling cascade as the key driver for these cell type-specific OXT effects. Finally at the behavioral level, we found in vivo that OXT requires astrocytes to exert its well described anxiolytic properties within the hypothalamic paraventricular nucleus. Thus, our study points to OXT receptor-expressing astrocytes as a critical component of the brain OXT system.
Collapse
Affiliation(s)
- Carl-Philipp Meinung
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Laura Boi
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Sareh Pandamooz
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - David Mazaud
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Grégory Ghézali
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Gao T, Ying Z, Yang Y, Xu X. Effects of estrogen on social recognition and oxytocin regulating synaptic plasticity. Physiol Behav 2025; 293:114843. [PMID: 39952542 DOI: 10.1016/j.physbeh.2025.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Estrogens play an important role in the regulation of female social recognition; however, their mechanisms have not yet been elucidated. The present study established a mouse model of adolescent ovariectomy (Ovx) supplemented with a physiological dose of estradiol benzoate (EB, 10 µg/kg). Familiar-novel individual identification, urine odor discrimination, and social memory behaviors were assessed after adulthood. The results showed that Ovx-induced impairment of individual identification, urine odor discrimination, and social memory 24 h after testing were significantly improved by EB supplementation. Meanwhile, EB restored 17β-estradiol (17β-E2) and oxytocin (OT) levels in the brain and serum of Ovx females. EB upregulated the expression level of OT receptor (OTR) protein and increased the numbers of ERα-ir and ERβ-ir cell in the medial amygdala (MeA). Electrophysiological studies further showed that OT (10 and 100 nM) promoted the induction and maintenance of long-term potentiation (LTP) in CA2 region of the hippocampal slices in vitro, which could be abolished by pretreatment with OTR antagonist l-368,899. 17β-E2 (10 nM) not only promoted LTP, but also synergistically enhanced the promotion effect of 10 nM OT on LTP, which was eliminated by pretreatment with ERs antagonists ICI182780. These results suggest that estrogen promotes the OT system in the MeA and synergistically promotes OT increasing the synaptic plasticity of the hippocampus through ERs, which enhances social odor discrimination and social memory, and ultimately improves social recognition in female mice.
Collapse
Affiliation(s)
- Tongtong Gao
- College of Life Science, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Zhangxin Ying
- College of Life Science, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Yani Yang
- College of Life Science, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Xiaohong Xu
- College of Life Science, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China.
| |
Collapse
|
4
|
Rigney N, Horie K, Guo JD, Blumenthal SA, Johnson ZV, Young LJ. Neural connectivity of oxytocin receptor-expressing neurons in the nucleus accumbens and their role in social attachment. Horm Behav 2025; 171:105726. [PMID: 40153918 DOI: 10.1016/j.yhbeh.2025.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Oxytocin receptor (OXTR) activity in the nucleus accumbens (NAc) is critical for pair bonding in prairie voles. Oxtr knockdown or pharmacological blockade in this region prevents mating-induced partner preferences, while overexpression facilitates bonding. However, no prior work has selectively interrogated or manipulated Oxtr-expressing neurons during dynamic bonding behaviors. We have developed an Oxtr-P2A-Cre prairie vole line that enables direct access to specific Oxtr neural populations. We utilized Oxtr-P2A-Cre prairie voles to express inhibitory DREADDs selectively in OXTR-expressing NAc neurons. Inhibiting NAc OXTR cells during initial cohabitation did not affect subsequent partner preference formation; however, inhibition during partner preference testing increased partner-directed huddling behavior, revealing a complex role for these neurons in social interactions. Using a viral tracing approach, we found that NAc OXTR-expressing neurons receive prominent inputs from the medial prefrontal cortex, hippocampus, thalamus, and hypothalamus, while projecting strongly to the ventral pallidum, ventral tegmental area, and lateral hypothalamus. Our cell-type-specific manipulation reveals how oxytocin receptor signaling in the NAc may modulate emotional state and facilitate the complex social behaviors underlying monogamous pair bonding. This Cre-recombinase approach demonstrates the utility of cell-type-specific targeting for elucidating oxytocin neural circuit mechanisms regulating emotional and social behavior in prairie voles.
Collapse
Affiliation(s)
- Nicole Rigney
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Kengo Horie
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ji-Dong Guo
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Sarah A Blumenthal
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Zachary V Johnson
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Zhang X, Wu Z, Yang S, Wang Y, Hu S, Ji Y, Zhang Q, Bu Y, Jiang C, Huang J, Wang H, Wang D, Huang C, Jiang P, Liu C, Yang X, Yang C, Yang L, Jiang R. CD38-mediated oxytocin signaling in paraventricular nucleus contributes to empathic pain. Neuropharmacology 2025; 267:110301. [PMID: 39814130 DOI: 10.1016/j.neuropharm.2025.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Empathy plays a crucial role in social communication and the perception of affective states and behavioral processes. In this study, we observed that empathic interaction with a mouse experiencing pain resulted in decreased mechanical pain thresholds and anxiety-like behaviors in its bystander, though the underlying mechanisms remain unknown. We demonstrated that CD38 expression in the paraventricular nucleus (PVN) was upregulated during empathic pain, and the pain and emotions of CD38 knockout (CD38KO) mice as bystanders were not affected. Furthermore, fiber photometry recordings indicated that calcium activities of PVN neurons were increased during empathic pain. Interestingly, direct chemogenetic inhibition of PVN neurons attenuated the hyperalgesia and anxiety-like behaviors associated with empathic pain. In contrast, activating PVN neurons through chemogenetics in CD38KO mice induced hyperalgesia and anxiety-like effects in empathic pain. Oxytocin levels in PVN were upregulated during empathic pain, while CD38KO mice inhibit the upregulation in OXT levels, confirming that CD38 is involved in releasing brain OXT and that the CD38-OXT system in the PVN plays a role in empathic pain. Collectively, CD38-mediated oxytocin signaling in PVN is closely linked to empathic pain through its effect on the activation of PVN neurons, and it could be viable targets for novel empathic behavior interventions.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Anesthesiology, The People's Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Rugao, 226500, China; Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yawei Ji
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuchen Bu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chenqi Jiang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jingyao Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haoran Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Jiang
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Nanjing, 212000, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaolin Yang
- Department of Anesthesiology, The People's Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Rugao, 226500, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Riyue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Borland JM. A review of the effects of different types of social behaviors on the recruitment of neuropeptides and neurotransmitters in the nucleus accumbens. Front Neuroendocrinol 2025; 77:101175. [PMID: 39892577 DOI: 10.1016/j.yfrne.2025.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
There is a lack of understanding of the neural mechanisms regulating the rewarding effects of social interactions. A significant contributor to this lack of clarity is the diversity of social behaviors and animal models utilized to investigate mechanisms. Other sources of the lack of clarity are the diversity of brain regions that can regulate social reward and the diversity of signaling pathways that regulate reward. To provide some clarity into the mechanisms of social reward, this review focused on the brain region most implicated in reward for multiple stimuli, the nucleus accumbens, and surveyed (systematically reviewed) studies that investigated the relationship between social interaction and five signaling systems implicated in the regulation of reward and social behavior: oxytocin, vasopressin, serotonin, opioids and endocannabinoids. Moreover, all of these studies were organized by the type of social behavior studied: affiliative interactions, play behavior, aggression, social defeat, sex behavior, pair-bonding, parental behavior and social isolation. From this survey and organization, this review concludes that oxytocin, endocannabinoids and mu-opioid receptors in the nucleus accumbens positively regulate the rewarding social behaviors, and kappa-opioid receptors negatively regulate the rewarding social behaviors. The opposite profile is observed for these signaling systems for the aversive social behaviors. More studies are needed to investigate the directional role of the serotonin system in the nucleus accumbens in the regulation of many types of social behaviors, and vasopressin likely does not act in the nucleus accumbens in the regulation of the valence of social behaviors. Many of these different signaling systems are also interdependent of one another in the regulation of different types of social behaviors. Finally, the interaction of these signaling systems with dopamine in the nucleus accumbens is briefly discussed.
Collapse
|
7
|
Xing C, Yu X. Oxytocin and autism: Insights from clinical trials and animal models. Curr Opin Neurobiol 2025; 92:103015. [PMID: 40157057 DOI: 10.1016/j.conb.2025.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
Autism spectrum disorder is a highly heritable and heterogeneous neurodevelopmental disorder, characterized by impaired social interactions and repetitive behaviors. Despite its complex etiology, increasing evidence has linked autism to the oxytocin system. The oxytocin peptide has long been known as the "social hormone," and has been shown to increase attention to social cues, elevate salience of socially relevant stimuli, and increase learning and reward in social situations. Reduced oxytocin levels and mutations in the oxytocin system have been reported in autism patients, while exogenously delivered oxytocin has been shown to alleviate social interaction deficits in both patients and animal models. Here, we summarize the results of recent clinical trials using oxytocin nasal spray to treat individuals with autism, as well as studies of autism animal models with oxytocin system deficits, and the rescue of their social behavior deficits by oxytocin. Finally, we discuss factors influencing clinical outcomes and reflect on future directions.
Collapse
Affiliation(s)
- Chuan Xing
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Autism Research Center of Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
8
|
Camerino C. The Dynamicity of the Oxytocin Receptor in the Brain May Trigger Sensory Deficits in Autism Spectrum Disorder. Curr Issues Mol Biol 2025; 47:61. [PMID: 39852176 PMCID: PMC11763978 DOI: 10.3390/cimb47010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Sensory processing abnormalities have been noted since the first clinical description of autism in 1940. However, it was not until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 that sensory challenges were considered as symptoms of autism spectrum disorder (ASD). Multisensory processing is of paramount importance in building a perceptual and cognitive representation of reality. For this reason, deficits in multisensory integration may be a characteristic of ASD. The neurohormone oxytocin (Oxt) is involved in the etiology of ASD, and there are several ongoing clinical trials regarding Oxt administration in ASD patients. Recent studies indicate that Oxt triggers muscle contraction modulating thermogenesis, while abnormal thermoregulation results in sensory deficits, as in ASD. Activation of the Oxt system through exposure to cold stress regulates the expression of oxytocin receptor (Oxtr) in the brain and circulating Oxt, and if this mechanism is pathologically disrupted, it can lead to sensory processing abnormalities since Oxt acts as a master gene that regulates thermogenesis. This review will describe the sensory deficits characteristic of ASD together with the recent theories regarding how the modulation of Oxt/Oxtr in the brain influences sensory processing in ASD.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Xiao S, Fischer H, Ebner NC, Rukh G, Dang J, Westberg L, Schiöth HB. Oxytocin pathway gene variation and corticostriatal resting-state functional connectivity. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 20:100255. [PMID: 39211730 PMCID: PMC11357861 DOI: 10.1016/j.cpnec.2024.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic variations in single nucleotide polymorphisms (SNPs) within oxytocin pathway genes have been linked to social behavior and neurodevelopmental conditions. However, the neurobiological mechanisms underlying these associations remain elusive. In this study, we investigated the relationship between variations of 10 SNPs in oxytocin pathway genes and resting-state functional connectivity among 55 independent components using a large sample from the UK Biobank (N ≈ 30,000). Our findings revealed that individuals with the GG genotype at rs4813627 within the oxytocin structural gene (OXT) exhibited weaker resting-state functional connectivity in the corticostriatal circuit compared to those with the GA/AA genotypes. Empirical evidence has linked the GG genotype at OXT rs4813627 with a behavioral tendency of insensitivity to others. These results inform the neural mechanisms by which oxytocin-related genetic factors can influence social behavior.
Collapse
Affiliation(s)
- Shanshan Xiao
- Department of Psychology, Stockholm University, Campus Albano house 4, Albanovägen, SE-114 19, Stockholm, Sweden
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC, Husargatan 3, 75124, Uppsala, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Campus Albano house 4, Albanovägen, SE-114 19, Stockholm, Sweden
- Stockholm University Brain Imaging Centre (SUBIC), SE-106 91, Stockholm, Sweden
- Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18 A, SE-171 77, Stockholm, Sweden
| | - Natalie C. Ebner
- Department of Psychology, University of Florida, P.O. Box 112250, Gainesville, FL, 32611-2250, USA
- Cognitive Aging and Memory Program, Clinical Translational Research Program (CAM-CTRP), University of Florida, 2004 Mowry Road, Gainesville, FL, 32611, USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive Gainesville, FL, 32610, USA
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC, Husargatan 3, 75124, Uppsala, Sweden
| | - Junhua Dang
- Institute of Social Psychology, School of Humanities and Social Sciences, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Box 431, SE-405 30, Gothenburg, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC, Husargatan 3, 75124, Uppsala, Sweden
| |
Collapse
|
10
|
Scarboro SM, López MF, Becker HC. Role of oxytocin and vasopressin in alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:23-57. [PMID: 39523056 DOI: 10.1016/bs.irn.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Published works highlight the role of neuropeptides in both the development and treatment of AUD. Closely related hypothalamic neuropeptides, oxytocin (OT) and vasopressin (VP), initially recognized for their physiological hormone effects, are increasingly acknowledged for their behavioral influences. Studies consistently demonstrate that OT and VP impact alcohol consumption and related behaviors, implicating them in the neurobiology of addiction. Moreover, stress is a pivotal risk factor for alcohol use and relapse, with OT and VP playing an integral role in the body's stress response system. While previous work has explored the interaction of OT and VP with other substances of abuse, this review focuses on their roles in alcohol-associated behaviors specifically to better understand the role of OT and VP in AUD. Here we synthesize recent preclinical and clinical literature examining changes in OT and VP protein and receptor expression in response to alcohol, as well as research investigating the effects of modulating these systems on alcohol-related behaviors. This review aims to deepen the understanding of OT and VP in the context of AUD with the goal of facilitating future research and enhancing treatment outcomes.
Collapse
Affiliation(s)
- Sutton M Scarboro
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Marcelo F López
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States; RHJ Veterans Administartion Health Care System, Charleston, SC, United States.
| |
Collapse
|
11
|
Francesconi W, Olivera-Pasilio V, Berton F, Olson SL, Chudoba R, Monroy LM, Krabichler Q, Grinevich V, Dabrowska J. Like sisters but not twins - vasopressin and oxytocin excite BNST neurons via cell type-specific expression of oxytocin receptor to reduce anxious arousal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611656. [PMID: 39282380 PMCID: PMC11398521 DOI: 10.1101/2024.09.06.611656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Interoceptive signals dynamically interact with the environment to shape appropriate defensive behaviors. Hypothalamic hormones arginine-vasopressin (AVP) and oxytocin (OT) regulate physiological states, including water and electrolyte balance, circadian rhythmicity, and defensive behaviors. Both AVP and OT neurons project to dorsolateral bed nucleus of stria terminalis (BNSTDL), which expresses oxytocin receptors (OTR) and vasopressin receptors and mediates fear responses. However, understanding the integrated role of neurohypophysial hormones is complicated by the cross-reactivity of AVP and OT and their mutual receptor promiscuity. Here, we provide evidence that the effects of neurohypophysial hormones on BNST excitability are driven by input specificity and cell type-specific receptor selectivity. We show that OTR-expressing BNSTDL neurons, excited by hypothalamic OT and AVP inputs via OTR, play a major role in regulating BNSTDL excitability, overcoming threat avoidance, and reducing threat-elicited anxious arousal. Therefore, OTR-BNSTDL neurons are perfectly suited to drive the dynamic interactions balancing external threat risk and physiological needs.
Collapse
Affiliation(s)
- Walter Francesconi
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Valentina Olivera-Pasilio
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA
| | - Fulvia Berton
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Susan L. Olson
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Rachel Chudoba
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Lorena M. Monroy
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Neuroscience Program, Lake Forest College, Lake Forest, IL, 60045, USA
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Joanna Dabrowska
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| |
Collapse
|
12
|
Rae M, Gomes I, Spelta LEW, Bailey A, Marcourakis T, Devi L, Camarini R. Environmental enrichment enhances ethanol preference over social reward in male swiss mice: Involvement of oxytocin-dopamine interactions. Neuropharmacology 2024; 253:109971. [PMID: 38705568 PMCID: PMC11145911 DOI: 10.1016/j.neuropharm.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.
Collapse
Affiliation(s)
- Mariana Rae
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Lidia Emmanuela Wiazowski Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Lakshmi Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
13
|
Horn AJ, Cole S, Nazarloo HP, Nazarloo P, Davis JM, Carrier D, Bryan C, Carter CS. Severe PTSD is marked by reduced oxytocin and elevated vasopressin. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100236. [PMID: 38764609 PMCID: PMC11101686 DOI: 10.1016/j.cpnec.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024] Open
Abstract
Neuroendocrine analyses of posttraumatic stress disorder (PTSD) have generally focused on hypothalamic-pituitary-adrenal (HPA) axis alterations. In the present analyses, we examine two additional neuroendocrine factors that have been previously implicated in biological stress responses: oxytocin (OT) and arginine vasopressin (AVP). Here we examined basal neuropeptide status in military veterans clinically diagnosed with PTSD (n = 29) and in two non-traumatized comparison groups with previous stress exposure (n = 11 SWAT trainees and n = 21 ultramarathon runners). PTSD patients showed low levels of plasma OT and high levels of AVP. The ratio of AVP/OT robustly related to PTSD status, and emerged as a statistically plausible mediator of relationships between the number of personal traumatic experiences and subsequent PTSD symptom burden. Over the course of behavioral therapy for PTSD, measures of OT showed a significant but modest normalization. Plasma cortisol levels were not statistically different among the three groups. This study suggests that AVP/OT ratios may represent a neuroendocrine predictor of severe PTSD, as well as a potential treatment response biomarker.
Collapse
Affiliation(s)
| | - Steve Cole
- UCLA School of Medicine, Department of Psychiatry & Biobehavioral Sciences, Los Angeles, CA, USA
| | | | | | - John M. Davis
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - David Carrier
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Craig Bryan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
14
|
Frodella CM, Pruett SB, Ross MK, Kaplan BLF. Oxytocin and Vasopressin Gene Expression in the Brain as Potential Biomarkers for Cannabidiol Therapeutic Efficacy. Biomedicines 2024; 12:1273. [PMID: 38927480 PMCID: PMC11200880 DOI: 10.3390/biomedicines12061273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Over the last several years, there has been increased interest in cannabidiol (CBD) to treat various ailments such as pain, anxiety, insomnia, and inflammation. The potential for CBD as an anti-inflammatory therapy has come, in part, from its demonstrated ability to suppress neuroinflammation in autoimmune diseases, such as the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). The increased use of CBD strongly suggests that more research is necessary to elucidate its safety and efficacy and determine the mechanisms by which it acts. Thus, we conducted two separate studies. In the first, RNA sequencing (RNA-Seq) analysis of brains of female mice undergoing EAE in the presence and absence of CBD was conducted to identify potential genes that mediated its neuroprotective effects when efficacious. In the second, we assessed some of the same genes in male and female mice treated with CBD in the absence of an immune stimulus. Together, these data showed that CBD modestly increased oxytocin (Oxt) and arginine vasopressin (vasopressin, Avp) gene expression in the brains of mice, regardless of whether there was active inflammation. Overall, these data suggest that Oxt and Avp might act as biomarkers for CBD exposure.
Collapse
Affiliation(s)
- Christa M. Frodella
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (C.M.F.); (S.B.P.); (M.K.R.)
| | - Stephen B. Pruett
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (C.M.F.); (S.B.P.); (M.K.R.)
| | - Matthew K. Ross
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (C.M.F.); (S.B.P.); (M.K.R.)
| | - Barbara L. F. Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
15
|
Nisbett KE, Vendruscolo LF, Koob GF. µ-Opioid receptor antagonism facilitates the anxiolytic-like effect of oxytocin in mice. Transl Psychiatry 2024; 14:125. [PMID: 38413576 PMCID: PMC10899625 DOI: 10.1038/s41398-024-02830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Mood and anxiety disorders are leading causes of disability worldwide and are major contributors to the global burden of diseases. Neuropeptides, such as oxytocin and opioid peptides, are important for emotion regulation. Previous studies have demonstrated that oxytocin reduced depression- and anxiety-like behavior in male and female mice, and opioid receptor activation reduced depression-like behavior. However, it remains unclear whether the endogenous opioid system interacts with the oxytocin system to facilitate emotion regulation in male and female mice. We hypothesized that opioid receptor blockade would inhibit the anxiolytic- and antidepressant-like effects of oxytocin. In this study, we systemically administered naloxone, a preferential μ-opioid receptor antagonist, and then intracerebroventricularly administered oxytocin. We then tested mice on the elevated zero maze and the tail suspension tests, respective tests of anxiety- and depression-like behavior. Contrary to our initial hypothesis, naloxone potentiated the anxiolytic-like, but not the antidepressant-like, effect of oxytocin. Using a selective μ-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2, and a selective κ-opioid receptor antagonist, norbinaltorphimine, we demonstrate that μ-opioid receptor blockade potentiated the anxiolytic-like effect of oxytocin, whereas κ-opioid receptor blockade inhibited the oxytocin-induced anxiolytic-like effects. The present results suggest that endogenous opioids can regulate the oxytocin system to modulate anxiety-like behavior. Potential clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Khalin E Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA.
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
16
|
Castagno AN, Spaiardi P, Trucco A, Maniezzi C, Raffin F, Mancini M, Nicois A, Cazzola J, Pedrinazzi M, Del Papa P, Pisani A, Talpo F, Biella GR. Oxytocin Modifies the Excitability and the Action Potential Shape of the Hippocampal CA1 GABAergic Interneurons. Int J Mol Sci 2024; 25:2613. [PMID: 38473860 DOI: 10.3390/ijms25052613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Oxytocin (OT) is a neuropeptide that modulates social-related behavior and cognition in the central nervous system of mammals. In the CA1 area of the hippocampus, the indirect effects of the OT on the pyramidal neurons and their role in information processing have been elucidated. However, limited data are available concerning the direct modulation exerted by OT on the CA1 interneurons (INs) expressing the oxytocin receptor (OTR). Here, we demonstrated that TGOT (Thr4,Gly7-oxytocin), a selective OTR agonist, affects not only the membrane potential and the firing frequency but also the neuronal excitability and the shape of the action potentials (APs) of these INs in mice. Furthermore, we constructed linear mixed-effects models (LMMs) to unravel the dependencies between the AP parameters and the firing frequency, also considering how TGOT can interact with them to strengthen or weaken these influences. Our analyses indicate that OT regulates the functionality of the CA1 GABAergic INs through different and independent mechanisms. Specifically, the increase in neuronal firing rate can be attributed to the depolarizing effect on the membrane potential and the related enhancement in cellular excitability by the peptide. In contrast, the significant changes in the AP shape are directly linked to oxytocinergic modulation. Importantly, these alterations in AP shape are not associated with the TGOT-induced increase in neuronal firing rate, being themselves critical for signal processing.
Collapse
Affiliation(s)
- Antonio Nicolas Castagno
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- INFN-Pavia Section, 27100 Pavia, Italy
| | - Arianna Trucco
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Claudia Maniezzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Alessandro Nicois
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Jessica Cazzola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Matilda Pedrinazzi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Paola Del Papa
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- INFN-Pavia Section, 27100 Pavia, Italy
| |
Collapse
|
17
|
Babington S, Tilbrook AJ, Maloney SK, Fernandes JN, Crowley TM, Ding L, Fox AH, Zhang S, Kho EA, Cozzolino D, Mahony TJ, Blache D. Finding biomarkers of experience in animals. J Anim Sci Biotechnol 2024; 15:28. [PMID: 38374201 PMCID: PMC10877933 DOI: 10.1186/s40104-023-00989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024] Open
Abstract
At a time when there is a growing public interest in animal welfare, it is critical to have objective means to assess the way that an animal experiences a situation. Objectivity is critical to ensure appropriate animal welfare outcomes. Existing behavioural, physiological, and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes. But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal, from negative to positive. In this review, we draw from the knowledge of human biomedical science to propose a list of candidate biological markers (biomarkers) that should reflect the experiential state of non-human animals. The proposed biomarkers can be classified on their main function as endocrine, oxidative stress, non-coding molecular, and thermobiological markers. We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.
Collapse
Affiliation(s)
- Sarah Babington
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alan J Tilbrook
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jill N Fernandes
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Geelong, VIC, 3217, Australia
- Poultry Hub Australia, University of New England, Armidale, NSW, 2350, Australia
| | - Luoyang Ding
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Song Zhang
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Elise A Kho
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Timothy J Mahony
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dominique Blache
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Fam J, Holmes N, Westbrook RF. Stimulating oxytocin receptors in the basolateral amygdala enhances stimulus processing: Differential and consistent effects for stimuli paired with fear versus sucrose in extinction and reversal learning. Psychoneuroendocrinology 2024; 160:106917. [PMID: 38071877 DOI: 10.1016/j.psyneuen.2023.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024]
Abstract
Oxytocin (OT) influences a range of social behaviors by enhancing the salience of social cues and regulating the expression of specific social behaviors (e.g., maternal care versus defensive aggression). We previously showed that stimulating OT receptors in the basolateral amygdala of rats also enhanced the salience of fear conditioned stimuli: relative to rats given vehicle infusions, rats infused with [Thr4,Gly7]-oxytocin (TGOT), a selective OT receptor agonist, showed greater discrimination between a cue predictive of danger, and one that signaled safety. In the present series of experiments using male rats, the effects of OT receptor activation in the basolateral amygdala on stimulus processing were examined further using conditioning protocols that consist of changes in stimulus-outcome contingencies (i.e., extinction and reversal), and with stimuli paired with aversive (i.e., foot shock) and appetitive (i.e., sucrose) outcomes. It was revealed that the effects of OTR stimulation diverge for aversive and appetitive learning - enhancing the former but not the latter. However, across both types of learning, OTR stimulation enhanced the detection of conditioned stimuli. Overall, these results are consistent with an emerging view of OT's effects on stimulus salience; facilitating the detection of meaningful stimuli while reducing responding to those that are irrelevant.
Collapse
Affiliation(s)
- Justine Fam
- School of Psychology, University of New South Wales, Australia.
| | - Nathan Holmes
- School of Psychology, University of New South Wales, Australia
| | | |
Collapse
|
19
|
Piotrowska D, Potasiewicz A, Popik P, Nikiforuk A. Pro-social and pro-cognitive effects of LIT-001, a novel oxytocin receptor agonist in a neurodevelopmental model of schizophrenia. Eur Neuropsychopharmacol 2024; 78:30-42. [PMID: 37866191 DOI: 10.1016/j.euroneuro.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Social and cognitive dysfunctions are the most persistent symptoms of schizophrenia. Since oxytocin (OXT) is known to play a role in social functions and modulates cognitive processes, we investigated the effects of a novel, nonpeptide, selective OXT receptor agonist, LIT-001, in a neurodevelopmental model of schizophrenia. Administration of methylazoxymethanol acetate (MAM; 22 mg/kg) on the 17th day of rat pregnancy is known to cause developmental disturbances of the brain, which lead to schizophrenia-like symptomatology in the offspring. Here, we examined the effects of acutely administered LIT-001 (1, 3, and 10 mg/kg) in MAM-exposed males and females on social behaviour, communication and cognition. We report that MAM-treated adult male and female rats displayed reduced social behaviour, ultrasonic communication and novel object recognition test performance. LIT-001 partially reversed these deficits, increasing the total social interaction time and the number of 'positive', highly-modulated 50 kHz ultrasonic calls in male rats. The compound ameliorated MAM-induced deficits in object discrimination in both sexes. Present results confirm the pro-social activity of LIT-001 and demonstrate its pro-cognitive effects following acute administration.
Collapse
Affiliation(s)
- Diana Piotrowska
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Agnieszka Potasiewicz
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Piotr Popik
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
20
|
Selles MC, Oliveira MM. The Oxytocin Puzzle: Unlocking Alzheimer's Disease. J Alzheimers Dis 2024; 97:1101-1104. [PMID: 38189754 DOI: 10.3233/jad-231127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alzheimer's disease is a multi-factorial disease that disrupts many aspects of human behavior. In this comment, we highlight the work by Koulousakis et al. published in a recent issue of the Journal of Alzheimer's Disease. In this study, the authors tested the therapeutic potential of the neuropeptide oxytocin in a pre-clinical model of Alzheimer's disease and found positive behavioral outcomes on memory assessments. We discuss these findings in the context of oxytocin research in the field of Alzheimer's disease and the literature regarding oxytocin-based therapeutics, including administration protocols and potential underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Maria Clara Selles
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
21
|
Havranek T, Bacova Z, Bakos J. Oxytocin, GABA, and dopamine interplay in autism. Endocr Regul 2024; 58:105-114. [PMID: 38656256 DOI: 10.2478/enr-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Oxytocin plays an important role in brain development and is associated with various neurotransmitter systems in the brain. Abnormalities in the production, secretion, and distribution of oxytocin in the brain, at least during some stages of the development, are critical for the pathogenesis of neuropsychiatric diseases, particularly in the autism spectrum disorder. The etiology of autism includes changes in local sensory and dopaminergic areas of the brain, which are also supplied by the hypothalamic sources of oxytocin. It is very important to understand their mutual relationship. In this review, the relationship of oxytocin with several components of the dopaminergic system, gamma-aminobutyric acid (GABA) inhibitory neurotransmission and their alterations in the autism spectrum disorder is discussed. Special attention has been paid to the results describing a reduced expression of inhibitory GABAergic markers in the brain in the context of dopaminergic areas in various models of autism. It is presumed that the altered GABAergic neurotransmission, due to the absence or dysfunction of oxytocin at certain developmental stages, disinhibits the dopaminergic signaling and contributes to the autism symptoms.
Collapse
Affiliation(s)
- Tomas Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
22
|
Buemann B. Does activation of oxytocinergic reward circuits postpone the decline of the aging brain? Front Psychol 2023; 14:1250745. [PMID: 38222845 PMCID: PMC10786160 DOI: 10.3389/fpsyg.2023.1250745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
Oxytocin supports reproduction by promoting sexual- and nursing behavior. Moreover, it stimulates reproductive organs by different avenues. Oxytocin is released to the blood from terminals of oxytocinergic neurons which project from the hypothalamus to the pituitary gland. Concomitantly, the dendrites of these neurons discharge oxytocin into neighboring areas of the hypothalamus. At this location it affects other neuroendocrine systems by autocrine and paracrine mechanisms. Moreover, sensory processing, affective functions, and reward circuits are influenced by oxytocinergic neurons that reach different sites in the brain. In addition to its facilitating impact on various aspects of reproduction, oxytocin is revealed to possess significant anti-inflammatory, restoring, and tranquilizing properties. This has been demonstrated both in many in-vivo and in-vitro studies. The oxytocin system may therefore have the capacity to alleviate detrimental physiological- and mental stress reactions. Thus, high levels of endogenous oxytocin may counteract inadequate inflammation and malfunctioning of neurons and supportive cells in the brain. A persistent low-grade inflammation increasing with age-referred to as inflammaging-may lead to a cognitive decline but may also predispose to neurodegenerative diseases such as Alzheimer's and Parkinson. Interestingly, animal studies indicate that age-related destructive processes in the body can be postponed by techniques that preserve immune- and stem cell functions in the hypothalamus. It is argued in this article that sexual activity-by its stimulating impact on the oxytocinergic activity in many regions of the brain-has the capacity to delay the onset of age-related cerebral decay. This may also postpone frailty and age-associated diseases in the body. Finally, oxytocin possesses neuroplastic properties that may be applied to expand sexual reward. The release of oxytocin may therefore be further potentiated by learning processes that involves oxytocin itself. It may therefore be profitable to raise the consciousness about the potential health benefits of sexual activity particularly among the seniors.
Collapse
|
23
|
Winter J, Meyer M, Berger I, Royer M, Bianchi M, Kuffner K, Peters S, Stang S, Langgartner D, Hartmann F, Schmidtner AK, Reber SO, Bosch OJ, Bludau A, Slattery DA, van den Burg EH, Jurek B, Neumann ID. Chronic oxytocin-driven alternative splicing of Crfr2α induces anxiety. Mol Psychiatry 2023; 28:4742-4755. [PMID: 34035479 PMCID: PMC10914602 DOI: 10.1038/s41380-021-01141-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 12/26/2022]
Abstract
The neuropeptide oxytocin (OXT) has generated considerable interest as potential treatment for psychiatric disorders, including anxiety and autism spectrum disorders. However, the behavioral and molecular consequences associated with chronic OXT treatment and chronic receptor (OXTR) activation have scarcely been studied, despite the potential therapeutic long-term use of intranasal OXT. Here, we reveal that chronic OXT treatment over two weeks increased anxiety-like behavior in rats, with higher sensitivity in females, contrasting the well-known anxiolytic effect of acute OXT. The increase in anxiety was transient and waned 5 days after the infusion has ended. The behavioral effects of chronic OXT were paralleled by activation of an intracellular signaling pathway, which ultimately led to alternative splicing of hypothalamic corticotropin-releasing factor receptor 2α (Crfr2α), an important modulator of anxiety. In detail, chronic OXT shifted the splicing ratio from the anxiolytic membrane-bound (mCRFR2α) form of CRFR2α towards the soluble CRFR2α (sCRFR2α) form. Experimental induction of alternative splicing mimicked the anxiogenic effects of chronic OXT, while sCRFR2α-knock down reduced anxiety-related behavior of male rats. Furthermore, chronic OXT treatment triggered the release of sCRFR2α into the cerebrospinal fluid with sCRFR2α levels positively correlating with anxiety-like behavior. In summary, we revealed that the shifted splicing ratio towards expression of the anxiogenic sCRFR2α underlies the adverse effects of chronic OXT treatment on anxiety.
Collapse
Affiliation(s)
- Julia Winter
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Magdalena Meyer
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Ilona Berger
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Melanie Royer
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Marta Bianchi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Kerstin Kuffner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Sebastian Peters
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Stang
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Finn Hartmann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Anna K Schmidtner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Anna Bludau
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - David A Slattery
- Laboratory of Translational Psychiatry, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Frankfurt am Main, Germany
| | - Erwin H van den Burg
- Center for Psychiatric Neurosciences, University Hospital Lausanne, Lausanne, Switzerland
| | - Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
24
|
Schimmer J, Patwell R, Küppers S, Grinevich V. The Relationship Between Oxytocin and Alcohol Dependence. Curr Top Behav Neurosci 2023. [PMID: 37697074 DOI: 10.1007/7854_2023_444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The hypothalamic neuropeptide oxytocin (OT) is well known for its prosocial, anxiolytic, and ameliorating effects on various psychiatric conditions, including alcohol use disorder (AUD). In this chapter, we will first introduce the basic neurophysiology of the OT system and its interaction with other neuromodulatory and neurotransmitter systems in the brain. Next, we provide an overview over the current state of research examining the effects of acute and chronic alcohol exposure on the OT system as well as the effects of OT system manipulation on alcohol-related behaviors in rodents and humans. In rodent models of AUD, OT has been repeatedly shown to reduce ethanol consumption, particularly in models of acute alcohol exposure. In humans however, the results of OT administration on alcohol-related behaviors are promising but not yet conclusive. Therefore, we further discuss several physiological and methodological limitations to the effective application of OT in the clinic and how they may be mitigated by the application of synthetic OT receptor (OTR) agonists. Finally, we discuss the potential efficacy of cutting-edge pharmacology and gene therapies designed to specifically enhance endogenous OT release and thereby rescue deficient expression of OT in the brains of patients with severe forms of AUD and other incurable mental disorders.
Collapse
Affiliation(s)
- Jonas Schimmer
- Department of Neuropeptide Research in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Ryan Patwell
- Department of Neuropeptide Research in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Stephanie Küppers
- Department of Neuropeptide Research in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
25
|
Cuesta-Marti C, Uhlig F, Muguerza B, Hyland N, Clarke G, Schellekens H. Microbes, oxytocin and stress: Converging players regulating eating behavior. J Neuroendocrinol 2023; 35:e13243. [PMID: 36872624 DOI: 10.1111/jne.13243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Oxytocin is a peptide-hormone extensively studied for its multifaceted biological functions and has recently gained attention for its role in eating behavior, through its action as an anorexigenic neuropeptide. Moreover, the gut microbiota is involved in oxytocinergic signaling through the brain-gut axis, specifically in the regulation of social behavior. The gut microbiota is also implicated in appetite regulation and is postulated to play a role in central regulation of hedonic eating. In this review, we provide an overview on oxytocin and its individual links with the microbiome, the homeostatic and non-homeostatic regulation of eating behavior as well as social behavior and stress.
Collapse
Affiliation(s)
- Cristina Cuesta-Marti
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Begoña Muguerza
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Universitat Rovira i Virgili, Department of Biochemistry & Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Niall Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
26
|
Jones MW, Hunt T. Electromagnetic-field theories of qualia: can they improve upon standard neuroscience? Front Psychol 2023; 14:1015967. [PMID: 37325753 PMCID: PMC10267331 DOI: 10.3389/fpsyg.2023.1015967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
How do brains create all our different colors, pains, and other conscious qualities? These various qualia are the most essential aspects of consciousness. Yet standard neuroscience (primarily based on synaptic information processing) has not found the synaptic-firing codes, sometimes described as the "spike code," to account for how these qualia arise and how they unite to form complex perceptions, emotions, et cetera. Nor is it clear how to get from these abstract codes to the qualia we experience. But electromagnetic field (versus synaptic) approaches to how qualia arise have been offered in recent years by Pockett, McFadden, Jones, Bond, Ward and Guevera, Keppler and Shani, Hunt and Schooler, et cetera. These EM-field approaches show promise in offering more viable accounts of qualia. Yet, until now, they have not been evaluated together. We review various EM field theories of qualia, highlight their strengths and weaknesses, and contrast these theories with standard neuroscience approaches.
Collapse
Affiliation(s)
| | - Tam Hunt
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
27
|
Gigliucci V, Busnelli M, Santini F, Paolini C, Bertoni A, Schaller F, Muscatelli F, Chini B. Oxytocin receptors in the Magel2 mouse model of autism: Specific region, age, sex and oxytocin treatment effects. Front Neurosci 2023; 17:1026939. [PMID: 36998737 PMCID: PMC10043208 DOI: 10.3389/fnins.2023.1026939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
The neurohormone oxytocin (OXT) has been implicated in the regulation of social behavior and is intensively investigated as a potential therapeutic treatment in neurodevelopmental disorders characterized by social deficits. In the Magel2-knockout (KO) mouse, a model of Schaaf-Yang Syndrome, an early postnatal administration of OXT rescued autistic-like behavior and cognition at adulthood, making this model relevant for understanding the actions of OXT in (re)programming postnatal brain development. The oxytocin receptor (OXTR), the main brain target of OXT, was dysregulated in the hippocampus of Magel2-KO adult males, and normalized upon OXT treatment at birth. Here we have analyzed male and female Magel2-KO brains at postnatal day 8 (P8) and at postnatal day 90 (P90), investigating age, genotype and OXT treatment effects on OXTR levels in several regions of the brain. We found that, at P8, male and female Magel2-KOs displayed a widespread, substantial, down-regulation of OXTR levels compared to wild type (WT) animals. Most intriguingly, the postnatal OXT treatment did not affect Magel2-KO OXTR levels at P8 and, consistently, did not rescue the ultrasonic vocalization deficits observed at this age. On the contrary, the postnatal OXT treatment reduced OXTR levels at P90 in male Magel2-KO in a region-specific way, restoring normal OXTR levels in regions where the Magel2-KO OXTR was upregulated (central amygdala, hippocampus and piriform cortex). Interestingly, Magel2-KO females, previously shown to lack the social deficits observed in Magel2-KO males, were characterized by a different trend in receptor expression compared to males; as a result, the dimorphic expression of OXTR observed in WT animals, with higher OXTR expression observed in females, was abolished in Magel2-KO mice. In conclusion, our data indicate that in Magel2-KO mice, OXTRs undergo region-specific modifications related to age, sex and postnatal OXT treatment. These results are instrumental to design precisely-timed OXT-based therapeutic strategies that, by acting at specific brain regions, could modify the outcome of social deficits in Schaaf-Yang Syndrome patients.
Collapse
Affiliation(s)
- Valentina Gigliucci
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Marta Busnelli
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Francesca Santini
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Camilla Paolini
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | | | | | - Bice Chini
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
- *Correspondence: Bice Chini,
| |
Collapse
|
28
|
Salinas-Abarca AB, Martínez-Lorenzana G, Condés-Lara M, González-Hernández A. The role of the endocannabinoid 2-arachidonoylglycerol in the in vivo spinal oxytocin-induced antinociception in male rats. Exp Neurol 2023; 363:114383. [PMID: 36921751 DOI: 10.1016/j.expneurol.2023.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
Oxytocin receptor (OTR) activation at the spinal level produces antinociception. Some data suggest that central OTR activation enhances social interaction via an increase of endocannabinoids (eCB), but we do not know if this could occur at the spinal level, modulating pain transmission. Considering that oxytocin via OTR stimulates diacylglycerol formation, a key intermediate in synthesizing 2-arachidonylglycerol (2-AG), an eCB molecule, we sought to test the role of the eCB system on the spinal oxytocin-induced antinociception. Behavioral and electrophysiological experiments were conducted in naïve and formalin-treated (to induce long-term mechanical hypersensitivity) male Wistar rats. Intrathecal RHC 80267 injections, an inhibitor of the enzyme diacylglycerol lipase (thus, decreasing 2-AG formation), produces transient mechanical hypersensitivity, an effect unaltered by oxytocin but reversed by gabapentin. Similarly, in in vivo extracellular recordings of naïve spinal wide dynamic range cells, juxtacellular picoinjection of RHC 80267 increases the firing of nociceptive Aδ-, C-fibers, and post-discharge, an effect unaltered by oxytocin. Interestingly, in sensitized rats, oxytocin picoinjection reverses the RHC 80627-induced hyperactivity of Aδ-fibers (but not C- or post-discharge activity). In contrast, a sub-effective dose of JZL184 (a monoacylglycerol lipase inhibitor, thus favoring 2-AG levels), which does not have per se an antinociceptive effect in the formalin-induced hypernociception, the oxytocin-induced antinociception is boosted. Similarly, electrophysiological experiments suggest that juxtacellular JZL184 diminishes the neuronal firing of nociceptive fibers, and co-injection with oxytocin prolongs and enhances the antinociceptive effect. These data may imply that 2-AG formation may play a role in the spinal antinociception induced by oxytocin.
Collapse
Affiliation(s)
- Ana B Salinas-Abarca
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico; Department of Neural and Pain Sciences, University of Maryland Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| |
Collapse
|
29
|
Iwasaki M, Lefevre A, Althammer F, Clauss Creusot E, Łąpieś O, Petitjean H, Hilfiger L, Kerspern D, Melchior M, Küppers S, Krabichler Q, Patwell R, Kania A, Gruber T, Kirchner MK, Wimmer M, Fröhlich H, Dötsch L, Schimmer J, Herpertz SC, Ditzen B, Schaaf CP, Schönig K, Bartsch D, Gugula A, Trenk A, Blasiak A, Stern JE, Darbon P, Grinevich V, Charlet A. An analgesic pathway from parvocellular oxytocin neurons to the periaqueductal gray in rats. Nat Commun 2023; 14:1066. [PMID: 36828816 PMCID: PMC9958129 DOI: 10.1038/s41467-023-36641-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.
Collapse
Grants
- R01 HL090948 NHLBI NIH HHS
- R01 NS094640 NINDS NIH HHS
- This work was supported by the Centre National de la Recherche Scientifique contract UPR3212, the Université de Strasbourg contract UPR3212; the University of Strasbourg Institute for Advanced Study (USIAS) fellowship 2014-15, Fyssen Foundation research grant 2015, NARSAD Young Investigator Grant 24821, Agence Nationale de la Recherche (ANR, French Research Foundation) grants n° 19-CE16-0011-0 and n° 20-CE18-0031 (to AC); the Graduate School of Pain EURIDOL, ANR-17-EURE-0022 (to AC and ECC); ANR-DFG grant GR 3619/701, PHC PROCOPE and PICS07882 grants (to AC and VG); Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grants GR 3619/15-1, GR 3619/16-1(to VG); SFB Consortium 1158-2 (to VG, SH and BD); French Japanese governments fellowship B-16012 JM/NH and Subsidy from Nukada Institute for Medical and Biological Research (to MI); Fyssen Foundation fellowship (to AL); Région Grand Est fellowship (to DK); DFG Postdoc Fellowship AL 2466/1-1 (to FA); the Foundation of Prader-Willi Research post-doctoral fellowship (to CPS and FA); DAAD Postdoc Short term research grant 57552337 (to RP); DFG Walter Benjamin Position – Projektnummer 459051339 (to QK). National Heart, Lung, and Blood Institute Grant NIH HL090948, National Institute of Neurological Disorders and Stroke Grant NIH NS094640, and funding provided by the Center for Neuroinflammation and Cardiometabolic Diseases (CNCD) at Georgia State University (to JES). The authors thank Prof. Yulong Li for providing the GRABOTR plasmid, Drs. Romain Goutagny and Vincent Douchamps for in vivo electrophysiology advices, the Chronobiotron UMS 3415 for all animal care and the technical plateau ComptOpt UPR 3212 for behavior technical assistance.
Collapse
Affiliation(s)
- Mai Iwasaki
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000, Strasbourg, France
| | - Arthur Lefevre
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000, Strasbourg, France
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, 68159, Germany
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ferdinand Althammer
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, 68159, Germany
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, USA
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Etienne Clauss Creusot
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000, Strasbourg, France
| | - Olga Łąpieś
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000, Strasbourg, France
| | - Hugues Petitjean
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000, Strasbourg, France
| | - Louis Hilfiger
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000, Strasbourg, France
| | - Damien Kerspern
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000, Strasbourg, France
| | - Meggane Melchior
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000, Strasbourg, France
| | - Stephanie Küppers
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, 68159, Germany
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, 68159, Germany
| | - Ryan Patwell
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, 68159, Germany
| | - Alan Kania
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, 68159, Germany
| | - Tim Gruber
- Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew K Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, USA
| | - Moritz Wimmer
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Henning Fröhlich
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Laura Dötsch
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Jonas Schimmer
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, 68159, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, 69115, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Heidelberg University Hospital, 69115, Heidelberg, Germany
- Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Christian P Schaaf
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
- Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Kai Schönig
- Department of Molecular Biology, Central Institute of Mental Health, University of Heidelberg, Mannheim, 68159, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, University of Heidelberg, Mannheim, 68159, Germany
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, USA
| | - Pascal Darbon
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000, Strasbourg, France
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, 68159, Germany.
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, USA.
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, 67000, Strasbourg, France.
| |
Collapse
|
30
|
Cherepanov SM, Yuhi T, Iizuka T, Hosono T, Ono M, Fujiwara H, Yokoyama S, Shuto S, Higashida H. Two oxytocin analogs, N-(p-fluorobenzyl) glycine and N-(3-hydroxypropyl) glycine, induce uterine contractions ex vivo in ways that differ from that of oxytocin. PLoS One 2023; 18:e0281363. [PMID: 36758056 PMCID: PMC9910740 DOI: 10.1371/journal.pone.0281363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Contraction of the uterus is critical for parturient processes. Insufficient uterine tone, resulting in atony, can potentiate postpartum hemorrhage; thus, it is a major risk factor and is the main cause of maternity-related deaths worldwide. Oxytocin (OT) is recommended for use in combination with other uterotonics for cases of refractory uterine atony. However, as the effect of OT dose on uterine contraction and control of blood loss during cesarean delivery for labor arrest are highly associated with side effects, small amounts of uterotonics may be used to elicit rapid and superior uterine contraction. We have previously synthesized OT analogs 2 and 5, prolines at the 7th positions of which were replaced with N-(p-fluorobenzyl) glycine [thus, compound 2 is now called fluorobenzyl (FBOT)] or N-(3-hydroxypropyl) glycine [compound 5 is now called hydroxypropyl (HPOT)], which exhibited highly potent binding affinities for human OT receptors in vitro. In this study, we measured the ex vivo effects of FBOT and HPOT on contractions of uteri isolated from human cesarean delivery samples and virgin female mice. We evaluated the potency and efficacy of the analogs on uterine contraction, additivity with OT, and the ability to overcome the effects of atosiban, an OT antagonist. In human samples, the potency rank judged by the calculated EC50 (pM) was as follows: HPOT (189) > FBOT (556) > OT (5,340) > carbetocin (12,090). The calculated Emax was 86% for FBOT and 75% for HPOT (100%). Recovery from atosiban inhibition after HPOT treatment was as potent as that after OT treatment. HPOT showed additivity with OT. FBOT (56 pM) was found to be the strongest agonist in virgin mouse uterus. HPOT and FBOT demonstrated high potency and partial agonist efficacy in the human uterus. These results suggested that HPOT and FBOT are highly uterotonic for the human uterus and performed better than OT, indicating that they may prevent postpartum hemorrhage.
Collapse
Affiliation(s)
- Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Hosono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shigeru Yokoyama
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences and Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
31
|
Muscatelli F. [As early as birth, oxytocin plays a key role in both food and social behavior]. Biol Aujourdhui 2023; 216:131-143. [PMID: 36744979 DOI: 10.1051/jbio/2022017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 02/07/2023]
Abstract
Oxytocin (OT) is a neurohormone that regulates the so-called "social brain" and is mainly studied in adulthood. During postnatal development, the mechanisms by which the OT system structures various behaviors are little studied. Here we present the dynamic process of postnatal development of the OT system as well as the OT functions in the perinatal period that are essential for shaping social behaviors. Specifically, we discuss the role of OT, in the newborn, in integrating and adapting responses to early sensory stimuli and in stimulating suckling activity. Sensory dialogue and suckling are involved in mother-infant bonds and structure future social interactions. In rodents and humans, neurodevelopmental diseases with autism spectrum disorders (ASD), such as Prader-Willi and Schaaf-Yang syndromes, are associated with sensory, feeding and behavioral deficits in infancy. We propose that in early postnatal life, OT plays a key role in stimulating the maturation of neural networks controlling feeding behavior and early social interactions from birth. Administration of OT at birth improves sensory integration of environmental factors and the relationship with the mother as well as sucking activity as we have shown in mouse models and in babies with Prader-Willi syndrome. Long-term effects have also been observed on social and cognitive behavior. Therefore, early feeding difficulties might be an early predictive marker of ASD, and OT treatment a promising option to improve feeding behavior and, in the longer term, social behavioral problems.
Collapse
Affiliation(s)
- Françoise Muscatelli
- INMED (Institut de Neurobiologie de la Méditerranée), INSERM, Aix Marseille Univ, Marseille, France
| |
Collapse
|
32
|
Baudon A, Clauss Creusot E, Charlet A. [Emergent role of astrocytes in oxytocin-mediated modulatory control of neuronal circuits and brain functions]. Biol Aujourdhui 2023; 216:155-165. [PMID: 36744981 DOI: 10.1051/jbio/2022022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 02/07/2023]
Abstract
The neuropeptide oxytocin has been in the focus of scientists for decades due to its profound and pleiotropic effects on physiology, activity of neuronal circuits and behaviors. Until recently, it was believed that oxytocinergic action exclusively occurs through direct activation of neuronal oxytocin receptors. However, several studies demonstrated the existence and functional relevance of astroglial oxytocin receptors in various brain regions in the mouse and rat brain. Astrocytic signaling and activity are critical for many important physiological processes including metabolism, neurotransmitter clearance from the synaptic cleft and integrated brain functions. While it can be speculated that oxytocinergic action on astrocytes predominantly facilitates neuromodulation via the release of gliotransmitters, the precise role of astrocytic oxytocin receptors remains elusive. In this review, we discuss the latest studies on the interaction between the oxytocinergic system and astrocytes, and give details of underlying intracellular cascades.
Collapse
Affiliation(s)
- Angel Baudon
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| | - Etienne Clauss Creusot
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| |
Collapse
|
33
|
Talpo F, Spaiardi P, Castagno AN, Maniezzi C, Raffin F, Terribile G, Sancini G, Pisani A, Biella GR. Neuromodulatory functions exerted by oxytocin on different populations of hippocampal neurons in rodents. Front Cell Neurosci 2023; 17:1082010. [PMID: 36816855 PMCID: PMC9932910 DOI: 10.3389/fncel.2023.1082010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide widely known for its peripheral hormonal effects (i.e., parturition and lactation) and central neuromodulatory functions, related especially to social behavior and social, spatial, and episodic memory. The hippocampus is a key structure for these functions, it is innervated by oxytocinergic fibers, and contains OT receptors (OTRs). The hippocampal OTR distribution is not homogeneous among its subregions and types of neuronal cells, reflecting the specificity of oxytocin's modulatory action. In this review, we describe the most recent discoveries in OT/OTR signaling in the hippocampus, focusing primarily on the electrophysiological oxytocinergic modulation of the OTR-expressing hippocampal neurons. We then look at the effect this modulation has on the balance of excitation/inhibition and synaptic plasticity in each hippocampal subregion. Additionally, we review OTR downstream signaling, which underlies the OT effects observed in different types of hippocampal neuron. Overall, this review comprehensively summarizes the advancements in unraveling the neuromodulatory functions exerted by OT on specific hippocampal networks.
Collapse
Affiliation(s)
- Francesca Talpo
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Antonio Nicolas Castagno
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudia Maniezzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Giulia Terribile
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Neurological Institute Foundation Casimiro Mondino (IRCCS), Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy,*Correspondence: Gerardo Rosario Biella,
| |
Collapse
|
34
|
Wei J, Zheng H, Li G, Chen Z, Fang G, Yan J. Involvement of oxytocin receptor deficiency in psychiatric disorders and behavioral abnormalities. Front Cell Neurosci 2023; 17:1164796. [PMID: 37153633 PMCID: PMC10159063 DOI: 10.3389/fncel.2023.1164796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
Oxytocin and its target receptor (oxytocin receptor, OXTR) exert important roles in the regulation of complex social behaviors and cognition. The oxytocin/OXTR system in the brain could activate and transduce several intracellular signaling pathways to affect neuronal functions or responses and then mediate physiological activities. The persistence and outcome of the oxytocin activity in the brain are closely linked to the regulation, state, and expression of OXTR. Increasing evidence has shown that genetic variations, epigenetic modification states, and the expression of OXTR have been implicated in psychiatric disorders characterized by social deficits, especially in autism. Among these variations and modifications, OXTR gene methylation and polymorphism have been found in many patients with psychiatric disorders and have been considered to be associated with those psychiatric disorders, behavioral abnormalities, and individual differences in response to social stimuli or others. Given the significance of these new findings, in this review, we focus on the progress of OXTR's functions, intrinsic mechanisms, and its correlations with psychiatric disorders or deficits in behaviors. We hope that this review can provide a deep insight into the study of OXTR-involved psychiatric disorders.
Collapse
Affiliation(s)
- Jinbao Wei
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Huanrui Zheng
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Guokai Li
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zichun Chen
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Gengjing Fang
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujia, China
- Gengjing Fang
| | - Jianying Yan
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Jianying Yan
| |
Collapse
|
35
|
Muscatelli F, Matarazzo V, Chini B. Neonatal oxytocin gives the tempo of social and feeding behaviors. Front Mol Neurosci 2022; 15:1071719. [PMID: 36583080 PMCID: PMC9792990 DOI: 10.3389/fnmol.2022.1071719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The nonapeptide oxytocin (OT) is a master regulator of the social brain in early infancy, adolescence, and adult life. Here, we review the postnatal dynamic development of OT-system as well as early-life OT functions that are essential for shaping social behaviors. We specifically address the role of OT in neonates, focusing on its role in modulating/adapting sensory input and feeding behavior; both processes are involved in the establishing mother-infant bond, a crucial event for structuring all future social interactions. In patients and rodent models of Prader-Willi and Schaaf-Yang syndromes, two neurodevelopmental diseases characterized by autism-related features, sensory impairments, and feeding difficulties in early infancy are linked to an alteration of OT-system. Successful preclinical studies in mice and a phase I/II clinical trial in Prader-Willi babies constitute a proof of concept that OT-treatment in early life not only improves suckling deficit but has also a positive long-term effect on learning and social behavior. We propose that in early postnatal life, OT plays a pivotal role in stimulating and coordinating the maturation of neuronal networks controlling feeding behavior and the first social interactions. Consequently, OT therapy might be considered to improve feeding behavior and, all over the life, social cognition, and learning capabilities.
Collapse
Affiliation(s)
- Françoise Muscatelli
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France,*Correspondence: Françoise Muscatelli,
| | - Valery Matarazzo
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Bice Chini
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy and NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
36
|
The Role of Oxytocin in Abnormal Brain Development: Effect on Glial Cells and Neuroinflammation. Cells 2022; 11:cells11233899. [PMID: 36497156 PMCID: PMC9740972 DOI: 10.3390/cells11233899] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The neonatal period is critical for brain development and determinant for long-term brain trajectory. Yet, this time concurs with a sensitivity and risk for numerous brain injuries following perinatal complications such as preterm birth. Brain injury in premature infants leads to a complex amalgam of primary destructive diseases and secondary maturational and trophic disturbances and, as a consequence, to long-term neurocognitive and behavioral problems. Neuroinflammation is an important common factor in these complications, which contributes to the adverse effects on brain development. Mediating this inflammatory response forms a key therapeutic target in protecting the vulnerable developing brain when complications arise. The neuropeptide oxytocin (OT) plays an important role in the perinatal period, and its importance for lactation and social bonding in early life are well-recognized. Yet, novel functions of OT for the developing brain are increasingly emerging. In particular, OT seems able to modulate glial activity in neuroinflammatory states, but the exact mechanisms underlying this connection are largely unknown. The current review provides an overview of the oxytocinergic system and its early life development across rodent and human. Moreover, we cover the most up-to-date understanding of the role of OT in neonatal brain development and the potential neuroprotective effects it holds when adverse neural events arise in association with neuroinflammation. A detailed assessment of the underlying mechanisms between OT treatment and astrocyte and microglia reactivity is given, as well as a focus on the amygdala, a brain region of crucial importance for socio-emotional behavior, particularly in infants born preterm.
Collapse
|
37
|
Jurek B, Denk L, Schäfer N, Salehi MS, Pandamooz S, Haerteis S. Oxytocin accelerates tight junction formation and impairs cellular migration in 3D spheroids: evidence from Gapmer-induced exon skipping. Front Cell Neurosci 2022; 16:1000538. [PMID: 36263085 PMCID: PMC9574052 DOI: 10.3389/fncel.2022.1000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (OXT) is a neuropeptide that has been associated with neurological diseases like autism, a strong regulating activity on anxiety and stress-related behavior, physiological effects during pregnancy and parenting, and various cellular effects in neoplastic tissue. In this study, we aimed to unravel the underlying mechanism that OXT employs to regulate cell-cell contacts, spheroid formation, and cellular migration in a 3D culture model of human MLS-402 cells. We have generated a labeled OXT receptor (OXTR) overexpressing cell line cultivated in spheroids that were treated with the OXTR agonists OXT, Atosiban, and Thr4-Gly7-oxytocin (TGOT); with or without a pre-treatment of antisense oligos (Gapmers) that induce exon skipping in the human OXTR gene. This exon skipping leads to the exclusion of exon 4 and therefore a receptor that lost its intracellular G-protein-binding domain. Sensitive digital PCR (dPCR) provided us with the means to differentiate between wild type and truncated OXTR in our cellular model. OXTR truncation differentially activated intracellular signaling cascades related to cell-cell attachment and proliferation like Akt, ERK1/2-RSK1/2, HSP27, STAT1/5, and CREB, as assessed by a Kinase Profiler Assay. Digital and transmission electron microscopy revealed increased tight junction formation and well-organized cellular protrusions into an enlarged extracellular space after OXT treatment, resulting in increased cellular survival. In summary, OXT decreases cellular migration but increases cell-cell contacts and therefore improves nutrient supply. These data reveal a novel cellular effect of OXT that might have implications for degenerating CNS diseases and tumor formation in various tissues.
Collapse
Affiliation(s)
- Benjamin Jurek
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lucia Denk
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Nicole Schäfer
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), Bio Park 1, University of Regensburg, Regensburg, Germany
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- *Correspondence: Silke Haerteis
| |
Collapse
|
38
|
Putnam PT, Chang SWC. Interplay between the oxytocin and opioid systems in regulating social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210050. [PMID: 35858101 PMCID: PMC9272147 DOI: 10.1098/rstb.2021.0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 07/30/2023] Open
Abstract
The influence of neuromodulators on brain activity and behaviour is undeniably profound, yet our knowledge of the underlying mechanisms, or ability to reliably reproduce effects across varying conditions, is still lacking. Oxytocin, a hormone that acts as a neuromodulator in the brain, is an example of this quandary; it powerfully shapes behaviours across nearly all mammalian species, yet when manipulated exogenously can produce unreliable or sometimes unexpected behavioural results across varying contexts. While current research is rapidly expanding our understanding of oxytocin, interactions between oxytocin and other neuromodulatory systems remain underappreciated in the current literature. This review highlights interactions between oxytocin and the opioid system that serve to influence social behaviour and proposes a parallel-mechanism hypothesis to explain the supralinear effects of combinatorial neuropharmacological approaches. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
39
|
Putnam PT, Chang SWC. Oxytocin does not stand alone. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210047. [PMID: 35858106 PMCID: PMC9272150 DOI: 10.1098/rstb.2021.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
40
|
Carter CS, Kingsbury MA. Oxytocin and oxygen: the evolution of a solution to the ‘stress of life’. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210054. [PMID: 35856299 PMCID: PMC9272143 DOI: 10.1098/rstb.2021.0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and the OT receptor occupy essential roles in our current understanding of mammalian evolution, survival, sociality and reproduction. This narrative review examines the hypothesis that many functions attributed to OT can be traced back to conditions on early Earth, including challenges associated with managing life in the presence of oxygen and other basic elements, including sulfur. OT regulates oxidative stress and inflammation especially through effects on the mitochondria. A related nonapeptide, vasopressin, as well as molecules in the hypothalamic–pituitary–adrenal axis, including the corticotropin-releasing hormone family of molecules, have a broad set of functions that interact with OT. Interactions among these molecules have roles in the causes and consequence of social behaviour and the management of threat, fear and stress. Here, we discuss emerging evidence suggesting that unique properties of the OT system allowed vertebrates, and especially mammals, to manage over-reactivity to the ‘side effects’ of oxygen, including inflammation, oxidation and free radicals, while also supporting high levels of sociality and a perception of safety. This article is part of the theme issue ‘Interplays between oxytocin and other neuromodulators in shaping complex social behaviours’.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcy A. Kingsbury
- Lurie Center for Autism, Mass General Hospital for Children, Harvard University Medical School, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
41
|
Le J, Zhang L, Zhao W, Zhu S, Lan C, Kou J, Zhang Q, Zhang Y, Li Q, Chen Z, Fu M, Montag C, Zhang R, Yang W, Becker B, Kendrick KM. Infrequent Intranasal Oxytocin Followed by Positive Social Interaction Improves Symptoms in Autistic Children: A Pilot Randomized Clinical Trial. PSYCHOTHERAPY AND PSYCHOSOMATICS 2022; 91:335-347. [PMID: 35545057 DOI: 10.1159/000524543] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION There are currently no approved drug interventions for social behavior dysfunction in autism spectrum disorder (ASD). Previous trials investigating effects of daily intranasal oxytocin treatment have reported inconsistent results and have not combined it with positive social interaction. However, in two preclinical studies we established that treatment every other day rather than daily is more efficacious in maintaining neural and behavioral effects by reducing receptor desensitization. OBJECTIVE We aimed to establish whether a 6-week intranasal oxytocin compared with placebo treatment, followed by a period of positive social interaction, would produce reliable symptom improvements in children with ASD. METHODS A pilot double-blind, randomized, crossover design trial was completed including 41 children with ASD aged 3-8 years. Primary outcomes were the Autism Diagnostic Observation Schedule-2 (ADOS-2) and social responsivity scale-2 (SRS-2). Secondary measures included cognitive, autism- and caregiver-related questionnaires, and social attention assessed using eye-tracking. RESULTS Significant improvements were found for oxytocin relative to placebo in primary outcome measures (total ADOS-2 and SRS-2 scores, ps < 0.001) and in behavioral adaptability and repetitive behavior secondary measures. Altered SRS-2 scores were associated with increased saliva oxytocin concentrations. Additionally, oxytocin significantly increased time spent viewing dynamic social compared to geometric stimuli and the eyes of angry, happy, and neutral expression faces. There were no adverse side effects of oxytocin treatment. CONCLUSIONS Overall, results demonstrate that a 6-week intranasal oxytocin treatment administered every other day and followed by positive social interactions can improve clinical, eye tracking, and questionnaire-based assessments of symptoms in young autistic children.
Collapse
Affiliation(s)
- Jiao Le
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Zhang
- Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Siyu Zhu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunmei Lan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Kou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Qianqian Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhang
- Department of Molecular Psychology, Ulm University, Ulm, Germany
| | - Qin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhuo Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Meina Fu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Department of Molecular Psychology, Ulm University, Ulm, Germany
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, Key Laboratory for Neuroscience, Ministry of Health, Beijing, China.,Autism Research Center of Peking University Health Science Center, Beijing, China
| | - Wenxu Yang
- Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
42
|
Buemann B. Oxytocin Release: A Remedy for Cerebral Inflammaging. Curr Aging Sci 2022; 15:218-228. [PMID: 35431008 DOI: 10.2174/1874609815666220414104832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Oxytocin facilitates reproduction both by physiological and behavioral mechanisms. Oxytocinergic neurons emerging from the hypothalamus release oxytocin from the pituitary gland to the blood by axonal discharge to regulate reproductive organs. However, at the same time, oxytocin is secreted into neighboring areas of the hypothalamus from the dendrites of these neurons. Here, the peptide acts by autocrine and paracrine mechanisms to influence other neuroendocrine systems. Furthermore, oxytocinergic neurons project to many different locations in the brain, where they affect sensory processing, affective functions, and reward. Additional to its regulatory role, significant anti-inflammatory and restoring effects of oxytocin have been reported from many invivo and in-vitro studies. The pervasive property of the oxytocin system may enable it generally to dampen stress reactions both peripherally and centrally, and protect neurons and supportive cells from inadequate inflammation and malfunctioning. Animal experiments have documented the importance of preserving immune- and stem cell functions in the hypothalamus to impede age-related destructive processes of the body. Sexual reward has a profound stimulating impact on the oxytocinergic activity, and the present article therefore presents the hypothesis that frequent sexual activity and gratigying social experiance may postpone the onset of frailty and age-associated diseases by neural protection from the bursts of oxytocin. Furthermore, suggestions are given how the neuroplastic properties of oxytocin may be utilized to enhance sexual reward by learning processes in order to further reinforce the release of this peptide.
Collapse
Affiliation(s)
- Benjamin Buemann
- Retired. Copenhagen, Denmark. Previous Affiliation: Research Department of Human Nutrition, The Royal Veterinary and Agricultural University, Copenhagen, Denmark
| |
Collapse
|
43
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
44
|
Baudon A, Clauss Creusot E, Althammer F, Schaaf CP, Charlet A. Emerging role of astrocytes in oxytocin-mediated control of neural circuits and brain functions. Prog Neurobiol 2022; 217:102328. [PMID: 35870680 DOI: 10.1016/j.pneurobio.2022.102328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022]
Abstract
The neuropeptide oxytocin has been in the focus of scientists for decades due to its profound and pleiotropic effects on physiology, activity of neuronal circuits and behaviors, among which sociality. Until recently, it was believed that oxytocinergic action exclusively occurs through direct activation of neuronal oxytocin receptors. However, several studies demonstrated the existence and functional relevance of astroglial oxytocin receptors in various brain regions in the mouse and rat brain. Astrocytic signaling and activity is critical for many important physiological processes including metabolism, neurotransmitter clearance from the synaptic cleft and integrated brain functions. While it can be speculated that oxytocinergic action on astrocytes predominantly facilitates neuromodulation via the release of specific gliotransmitters, the precise role of astrocytic oxytocin receptors remains elusive. In this review, we discuss the latest studies on the interaction between the oxytocinergic system and astrocytes, including detailed information about intracellular cascades, and speculate about future research directions on astrocytic oxytocin signaling.
Collapse
Affiliation(s)
- Angel Baudon
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg 67000 France
| | - Etienne Clauss Creusot
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg 67000 France
| | | | | | - Alexandre Charlet
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg 67000 France.
| |
Collapse
|
45
|
Rokicki J, Kaufmann T, de Lange AMG, van der Meer D, Bahrami S, Sartorius AM, Haukvik UK, Steen NE, Schwarz E, Stein DJ, Nærland T, Andreassen OA, Westlye LT, Quintana DS. Oxytocin receptor expression patterns in the human brain across development. Neuropsychopharmacology 2022; 47:1550-1560. [PMID: 35347267 PMCID: PMC9205980 DOI: 10.1038/s41386-022-01305-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/04/2022] [Indexed: 12/31/2022]
Abstract
Oxytocin plays a vital role in social behavior and homeostatic processes, with animal models indicating that oxytocin receptor (OXTR) expression patterns in the brain influence behavior and physiology. However, the developmental trajectory of OXTR gene expression is unclear. By analyzing gene expression data in human post-mortem brain samples, from the prenatal period to late adulthood, we demonstrate distinct patterns of OXTR gene expression in the developing brain, with increasing OXTR expression along the course of the prenatal period culminating in a peak during early childhood. This early life OXTR expression peak pattern appears slightly earlier in a comparative macaque sample, which is consistent with the relative immaturity of the human brain during early life compared to macaques. We also show that a network of genes with strong spatiotemporal couplings with OXTR is enriched in several psychiatric illness and body composition phenotypes. Taken together, these results demonstrate that oxytocin signaling plays an important role in a diverse set of psychological and somatic processes across the lifespan.
Collapse
Affiliation(s)
- Jaroslav Rokicki
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Tobias Kaufmann
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Ann-Marie G. de Lange
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.9851.50000 0001 2165 4204LREN, Centre for Research in Neurosciences - Department of Clinical Neurosciences, CHUV and University of Lausanne, Lausanne, Switzerland ,grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Dennis van der Meer
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5012.60000 0001 0481 6099School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shahram Bahrami
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | - Alina M. Sartorius
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | - Unn K. Haukvik
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.55325.340000 0004 0389 8485Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Emanuel Schwarz
- grid.7700.00000 0001 2190 4373Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dan J. Stein
- grid.7836.a0000 0004 1937 1151SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Terje Nærland
- grid.55325.340000 0004 0389 8485NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Daniel S. Quintana
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
46
|
Martins D, Brodmann K, Veronese M, Dipasquale O, Mazibuko N, Schuschnig U, Zelaya F, Fotopoulou A, Paloyelis Y. "Less is more": a dose-response account of intranasal oxytocin pharmacodynamics in the human brain. Prog Neurobiol 2022; 211:102239. [PMID: 35122880 DOI: 10.1016/j.pneurobio.2022.102239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
Abstract
Intranasal oxytocin is attracting attention as a potential treatment for several brain disorders due to promising preclinical results. However, translating findings to humans has been hampered by remaining uncertainties about its pharmacodynamics and the methods used to probe its effects in the human brain. Using a dose-response design (9, 18 and 36 IU), we demonstrate that intranasal oxytocin-induced changes in local regional cerebral blood flow (rCBF) in the amygdala at rest, and in the covariance between rCBF in the amygdala and other key hubs of the brain oxytocin system, follow a dose-response curve with maximal effects for lower doses. Yet, the effects on local rCBF might vary by amygdala subdivision, highlighting the need to qualify dose-response curves within subregion. We further link physiological changes with the density of the oxytocin receptor gene mRNA across brain regions, strengthening our confidence in intranasal oxytocin as a valid approach to engage central targets. Finally, we demonstrate that intranasal oxytocin does not disrupt cerebrovascular reactivity, which corroborates the validity of haemodynamic neuroimaging to probe the effects of intranasal oxytocin in the human brain. DATA AVAILABILITY: Participants did not consent for open sharing of the data. Therefore, data can only be accessed from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Katja Brodmann
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ndaba Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | | | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Aikaterini Fotopoulou
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
47
|
Carter CS. Oxytocin and love: Myths, metaphors and mysteries. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 9:100107. [PMID: 35755926 PMCID: PMC9216351 DOI: 10.1016/j.cpnec.2021.100107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Oxytocin is a peptide molecule with a multitude of physiological and behavioral functions. Based on its association with reproduction - including social bonding, sexual behavior, birth and maternal behavior - oxytocin also has been called "the love hormone." This essay specifically examines association and parallels between oxytocin and love. However, many myths and gaps in knowledge remain concerning both. A few of these are described here and we hypothesize that the potential benefits of both love and oxytocin may be better understood in light of interactions with more ancient systems, including specifically vasopressin and the immune system. Oxytocin is anti-inflammatory and is associated with recently evolved, social solutions to a variety of challenges necessary for mammalian survival and reproduction. The shared functions of oxytocin and love have profound implications for health and longevity, including the prevention and treatment of excess inflammation and related disorders, especially those occurring in early life and during periods of chronic threat or disease.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, USA
- Department of Psychology, University of Virginia, Charlottesville, USA
| |
Collapse
|
48
|
Yao S, Kendrick KM. Effects of Intranasal Administration of Oxytocin and Vasopressin on Social Cognition and Potential Routes and Mechanisms of Action. Pharmaceutics 2022; 14:323. [PMID: 35214056 PMCID: PMC8874551 DOI: 10.3390/pharmaceutics14020323] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Acute and chronic administration of intranasal oxytocin and vasopressin have been extensively utilized in both animal models and human preclinical and clinical studies over the last few decades to modulate various aspects of social cognition and their underlying neural mechanisms, although effects are not always consistent. The use of an intranasal route of administration is largely driven by evidence that it permits neuropeptides to penetrate directly into the brain by circumventing the blood-brain barrier, which has been considered relatively impermeable to them. However, this interpretation has been the subject of considerable debate. In this review, we will focus on research in both animal models and humans, which investigates the different potential routes via which these intranasally administered neuropeptides may be producing their various effects on social cognition. We will also consider the contribution of different methods of intranasal application and additionally the importance of dose magnitude and frequency for influencing G protein-coupled receptor signaling and subsequent functional outcomes. Overall, we conclude that while some functional effects of intranasal oxytocin and vasopressin in the domain of social cognition may result from direct penetration into the brain following intranasal administration, others may be contributed by the neuropeptides either entering the peripheral circulation and crossing the blood-brain barrier and/or producing vagal stimulation via peripheral receptors. Furthermore, to complicate matters, functional effects via these routes may differ, and both dose magnitude and frequency can produce very different functional outcomes and therefore need to be optimized to produce desired effects.
Collapse
Affiliation(s)
- Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Keith Maurice Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
49
|
Abstract
Oxytocin (OT) is a nonapeptide mainly produced in the supraoptic and paraventricular nuclei. OT in the brain and blood has extensive functions in both mental and physical activities. These functions are mediated by OT receptors (OTRs) that are distributed in a broad spectrum of tissues with dramatic sexual dimorphism. In both sexes, OT generally facilitates social cognition and behaviors, facilitates parental behavior and sexual activity and inhibits feeding and pain perception. However, there are significant differences in OT levels and distribution of OTRs in men from women. Thus, many OT functions in men are different from women, particularly in the reproduction. In men, the reproductive functions are relatively simple. In women, the reproductive functions involve menstrual cycle, pregnancy, parturition, lactation, and menopause. These functions make OT regulation of women's health and disease a unique topic of physiological and pathological studies. In menstruation, pre-ovulatory increase in OT secretion in the hypothalamus and the ovary can promote the secretion of gonadotropin-releasing hormone and facilitate ovulation. During pregnancy, increased OT synthesis and preterm release endow OT system the ability to promote maternal behavior and lactation. In parturition, cervix expansion-elicited pulse OT secretion and uterine OT release accelerate the expelling of fetus and reduce postpartum hemorrhage. During lactation, intermittent pulsatile OT secretion is necessary for the milk-ejection reflex and maternal behavior. Disorders in OT secretion can account for maternal depression and hypogalactia. In menopause, the reduction of OT secretion accounts for many menopausal symptoms and diseases. These issues are reviewed in this work.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haipeng Yang
- Neonatal Division of the Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqun Han
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingxing Ma,
| |
Collapse
|
50
|
Structure-function relationships of the disease-linked A218T oxytocin receptor variant. Mol Psychiatry 2022; 27:907-917. [PMID: 34980886 PMCID: PMC9054668 DOI: 10.1038/s41380-021-01241-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
Various single nucleotide polymorphisms (SNPs) in the oxytocin receptor (OXTR) gene have been associated with behavioral traits, autism spectrum disorder (ASD) and other diseases. The non-synonymous SNP rs4686302 results in the OXTR variant A218T and has been linked to core characteristics of ASD, trait empathy and preterm birth. However, the molecular and intracellular mechanisms underlying those associations are still elusive. Here, we uncovered the molecular and intracellular consequences of this mutation that may affect the psychological or behavioral outcome of oxytocin (OXT)-treatment regimens in clinical studies, and provide a mechanistic explanation for an altered receptor function. We created two monoclonal HEK293 cell lines, stably expressing either the wild-type or A218T OXTR. We detected an increased OXTR protein stability, accompanied by a shift in Ca2+ dynamics and reduced MAPK pathway activation in the A218T cells. Combined whole-genome and RNA sequencing analyses in OXT-treated cells revealed 7823 differentially regulated genes in A218T compared to wild-type cells, including 429 genes being associated with ASD. Furthermore, computational modeling provided a molecular basis for the observed change in OXTR stability suggesting that the OXTR mutation affects downstream events by altering receptor activation and signaling, in agreement with our in vitro results. In summary, our study provides the cellular mechanism that links the OXTR rs4686302 SNP with genetic dysregulations associated with aspects of ASD.
Collapse
|