1
|
Hasuda AL, Person E, Khoshal AK, Bruel S, Puel S, Oswald IP, Bracarense APFL, Pinton P. Deoxynivalenol induces apoptosis and inflammation in the liver: Analysis using precision-cut liver slices. Food Chem Toxicol 2022; 163:112930. [DOI: 10.1016/j.fct.2022.112930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
|
2
|
Davies M, Peramuhendige P, King L, Golding M, Kotian A, Penney M, Shah S, Manevski N. Evaluation of In Vitro Models for Assessment of Human Intestinal Metabolism in Drug Discovery. Drug Metab Dispos 2020; 48:1169-1182. [PMID: 32862146 DOI: 10.1124/dmd.120.000111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/07/2020] [Indexed: 02/13/2025] Open
Abstract
Although intestinal metabolism plays an important role in drug disposition, early predictions of human outcomes are challenging, in part because of limitations of available in vitro models. To address this, we have evaluated three in vitro models of human intestine (microsomes, permeabilized enterocytes, and cryopreserved intestinal mucosal epithelium) as tools to assess intestinal metabolism and estimate the fraction escaping gut metabolism (f g) in drug discovery. The models were tested with a chemically diverse set of 32 compounds, including substrates for oxidoreductive, hydrolytic, and conjugative enzymes. Liquid chromatography-high-resolution mass spectrometry was used to quantify substrate disappearance [intrinsic clearance (CLint)] and qualify metabolite formation (quantitative-qualitative bioanalysis). Fraction unbound in the incubation (f u,inc) was determined by rapid equilibrium dialysis. Measured in vitro results (CLint and f u,inc) were supplemented with literature data [passive Caco-2 apical to basolateral permeability, enterocyte blood flow, and intestinal surface area (A)] and combined using a midazolam-calibrated Q gut model to predict human f g values. All three models showed reliable CYP and UDP-glucuronosyltransferase activities, but enterocytes and mucosa may offer advantages for low-clearance compounds and alternative pathways (e.g., sulfation, hydrolases, and flavin-containing monooxigenases). Early predictions of human f g values were acceptable for the high-f g compounds (arbitrarily f g > 0.7). However, predictions of low- and moderate-f g values (arbitrarily f g < 0.7) remain challenging, indicating that further evaluation is needed (e.g., saturation effects and impact of transporters) but not immediate compound avoidance. Results suggest that tested models offer an additional value in drug discovery, especially for drug design and chemotype evaluation. SIGNIFICANCE STATEMENT: We found that cellular models of the human gut (permeabilized enterocytes and cryopreserved intestinal mucosa) offer an alternative to and potential advantage over intestinal microsomes in studies of drug metabolism, particularly for low-clearance compounds and alternative pathways (e.g., sulfation, hydrolases, and flavin-containing monooxigenases). The predictivity of human fraction escaping gut metabolism for common CYP and UDP-glucuronosyltransferase substrates based on the Q gut model is still limited, however, and appropriate further evaluation is recommended.
Collapse
|
3
|
Aguilar-Rojas A, Olivo-Marin JC, Guillen N. Human intestinal models to study interactions between intestine and microbes. Open Biol 2020; 10:200199. [PMID: 33081633 PMCID: PMC7653360 DOI: 10.1098/rsob.200199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Implementations of suitable in vitro cell culture systems of the human intestine have been essential tools in the study of the interaction among organs, commensal microbiota, pathogens and parasites. Due to the great complexity exhibited by the intestinal tissue, researchers have been developing in vitro/ex vivo systems to diminish the gap between conventional cell culture models and the human intestine. These models are able to reproduce different structures and functional aspects of the tissue. In the present review, information is recapitulated on the most used models, such as cell culture, intestinal organoids, scaffold-based three-dimensional models, and organ-on-a-chip and their use in studying the interaction between human intestine and microbes, and their advantages and limitations are also discussed.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Medicina Reproductiva, Unidad Médica de Alta Especialidad en Ginecología y Obstetricia No. 4 ‘Dr. Luis Castelazo Ayala’, Av. Río Magdalena No. 289, Col. Tizapán San Ángel, C.P. 01090 Ciudad de México, México
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
- Centre National de la Recherche Scientifique, UMR3691, 25 Rue du Dr Roux, 75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
- Centre National de la Recherche Scientifique, ERL9195, 25 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
4
|
Hewes SA, Wilson RL, Estes MK, Shroyer NF, Blutt SE, Grande-Allen KJ. In Vitro Models of the Small Intestine: Engineering Challenges and Engineering Solutions. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:313-326. [PMID: 32046599 PMCID: PMC7462033 DOI: 10.1089/ten.teb.2019.0334] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Pathologies affecting the small intestine contribute significantly to the disease burden of both the developing and the developed world, which has motivated investigation into the disease mechanisms through in vitro models. Although existing in vitro models recapitulate selected features of the intestine, various important aspects have often been isolated or omitted due to the anatomical and physiological complexity. The small intestine's intricate microanatomy, heterogeneous cell populations, steep oxygen gradients, microbiota, and intestinal wall contractions are often not included in in vitro experimental models of the small intestine, despite their importance in both intestinal biology and pathology. Known and unknown interdependencies between various physiological aspects necessitate more complex in vitro models. Microfluidic technology has made it possible to mimic the dynamic mechanical environment, signaling gradients, and other important aspects of small intestinal biology. This review presents an overview of the complexity of small intestinal anatomy and bioengineered models that recapitulate some of these physiological aspects.
Collapse
Affiliation(s)
- Sarah A. Hewes
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Reid L. Wilson
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
5
|
Vila A, Torras N, Castaño AG, García-Díaz M, Comelles J, Pérez-Berezo T, Corregidor C, Castaño Ó, Engel E, Fernández-Majada V, Martínez E. Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa. Biofabrication 2020; 12:025008. [PMID: 31805546 DOI: 10.1088/1758-5090/ab5f50] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mounting evidence supports the importance of the intestinal epithelial barrier and its permeability both in physiological and pathological conditions. Conventional in vitro models to evaluate intestinal permeability rely on the formation of tightly packed epithelial monolayers grown on hard substrates. These two-dimensional models lack the cellular and mechanical components of the non-epithelial compartment of the intestinal barrier, the stroma, which are key contributors to the barrier permeability in vivo. Thus, advanced in vitro models approaching the in vivo tissue composition are fundamental to improve precision in drug absorption predictions, to provide a better understanding of the intestinal biology, and to faithfully represent related diseases. Here, we generate photo-crosslinked gelatine methacrylate (GelMA)-poly(ethylene glycol) diacrylate (PEGDA) hydrogel co-networks that provide the required mechanical and biochemical features to mimic both the epithelial and stromal compartments of the intestinal mucosa, i.e. they are soft, cell adhesive and cell-loading friendly, and suitable for long-term culturing. We show that fibroblasts can be embedded in the GelMA-PEGDA hydrogels while epithelial cells can grow on top to form a mature epithelial monolayer that exhibits barrier properties which closely mimic those of the intestinal barrier in vivo, as shown by the physiologically relevant transepithelial electrical resistance (TEER) and permeability values. The presence of fibroblasts in the artificial stroma compartment accelerates the formation of the epithelial monolayer and boosts the recovery of the epithelial integrity upon temporary barrier disruption, demonstrating that our system is capable of successfully reproducing the interaction between different cellular compartments. As such, our hydrogel co-networks offer a technologically simple yet sophisticated approach to produce functional three-dimensional (3D) in vitro models of epithelial barriers with epithelial and stromal cells arranged in a spatially relevant manner and near-physiological functionality.
Collapse
Affiliation(s)
- Anna Vila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kothari A, Rajagopalan P. The assembly of integrated rat intestinal-hepatocyte cultures. Bioeng Transl Med 2020; 5:e10146. [PMID: 31989035 PMCID: PMC6971435 DOI: 10.1002/btm2.10146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/07/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
The jejunum is the segment of the small intestine responsible for several metabolism and biotransformation functions. In this report, we have cultured rat jejunum explants in vitro and integrated them with hepatocyte cultures. We have also investigated the changes in jejunum function at different locations since spatial variations in intestinal functions have been reported previously. We divided the length of the rat jejunum into three distinct regions of approximately 9 cm each. We defined the regions as proximal (adjacent to the duodenum), medial, and distal (adjacent to the ileum). Spatiotemporal variations in functions were observed between these regions within the jejunum. Alkaline phosphatase activity (a marker of enterocyte function), decreased twofold between the proximal and distal regions at 4 hr. Lysozyme activity (a marker of Paneth cell function) increased from the proximal to the distal jejunum by 40% at 24 hr. Mucin-covered areas, a marker of goblet cell function, increased by twofold between the proximal and distal segments of the jejunum at 24 hr. When hepatocytes were integrated with proximal jejunum explants, statistically higher urea (~2.4-fold) and mucin (57%) production were observed in the jejunum explants. The integrated intestine-liver cultures can be used as a platform for future investigations.
Collapse
Affiliation(s)
- Anjaney Kothari
- School of Biomedical Engineering and SciencesVirginia TechBlacksburgVirginia
| | - Padmavathy Rajagopalan
- School of Biomedical Engineering and SciencesVirginia TechBlacksburgVirginia
- Department of Chemical EngineeringVirginia TechBlacksburgVirginia
- ICTAS Center for Systems Biology of Engineered TissuesVirginia TechBlacksburgVirginia
| |
Collapse
|
7
|
Ji X, Zheng W, Yao W. Protective Role of Hydrogen Gas on Oxidative Damage and Apoptosis in Intestinal Porcine Epithelial Cells (IPEC-J2) Induced by Deoxynivalenol: A Preliminary Study. Toxins (Basel) 2019; 12:E5. [PMID: 31861743 PMCID: PMC7020398 DOI: 10.3390/toxins12010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
To explore the protective role of hydrogen gas (H2) on oxidative damage and apoptosis in intestinal porcine epithelial cells (IPEC-J2) induced by deoxynivalenol (DON), cells were assigned to four treatment groups, including control, 5 μM DON, H2-saturated medium, and 5 μM DON + H2-saturated medium treatments. After 12 h of different treatments, the cell viability, biomarkers of cell redox states, and gene expression of antioxidant enzymes and apoptosis were observed and detected. Furthermore, caspase-3 and Bax protein expressions were measured by Western blot analysis. Our results demonstrated that the 5 μM DON significantly caused cytotoxicity to IPEC-J2 cells by reducing cell viability and increasing lactate dehydrogenase release in culture supernatants. Moreover, DON treatments significantly increased levels of 8-hydroxy-2'-deoxyguanosine, 3-nitrotyrosine, and malonaldehyde; however, they decreased total superoxide dismutase and catalase activities and downregulated messenger RNA (mRNA) expression related to antioxidant enzymes in cells. The 5 μM DON treatment also downregulated Bcl-2 expression and upregulated caspase-3 and Bax expression. However, the H2-saturated medium significantly improved cell growth status and reversed the change of redox states and expression of genes and proteins related to apoptosis induced by DON in IPEC-J2 cells. In conclusion, H2 could protect IPEC-J2 cells from DON-induced oxidative damage and apoptosis in vitro.
Collapse
Affiliation(s)
- Xu Ji
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.J.); (W.Z.)
| | - Weijiang Zheng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.J.); (W.Z.)
- National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Yao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.J.); (W.Z.)
- National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing 210095, China
| |
Collapse
|