1
|
Aragão MÂ, Pires L, Santos-Buelga C, Barros L, Calhelha RC. Revitalising Riboflavin: Unveiling Its Timeless Significance in Human Physiology and Health. Foods 2024; 13:2255. [PMID: 39063339 PMCID: PMC11276209 DOI: 10.3390/foods13142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Since the early twentieth century, research on vitamins has revealed their therapeutic potential beyond their role as essential micronutrients. Riboflavin, known as vitamin B2, stands out for its unique characteristics. Despite numerous studies, riboflavin remains vital, with implications for human health. Abundantly present in various foods, riboflavin acts as a coenzyme in numerous enzymatic reactions crucial for human metabolism. Its role in energy production, erythrocyte synthesis, and vitamin metabolism underscores its importance in maintaining homeostasis. The impact of riboflavin extends to neurological function, skin health, and cardiovascular well-being, with adequate levels linked to reduced risks of various ailments. However, inadequate intake or physiological stress can lead to deficiency, a condition that poses serious health risks, including severe complications. This underscores the importance of maintaining sufficient levels of riboflavin for general wellness. The essential role of riboflavin in immune function further emphasises its significance for human health and vitality. This paper examines the diverse effects of riboflavin on health and stresses the importance of maintaining sufficient levels for overall well-being.
Collapse
Affiliation(s)
- M. Ângela Aragão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Ji Y, Zhao J, Gong J, Sedlazeck FJ, Fan S. Unveiling novel genetic variants in 370 challenging medically relevant genes using the long read sequencing data of 41 samples from 19 global populations. Mol Genet Genomics 2024; 299:65. [PMID: 38972030 PMCID: PMC11955097 DOI: 10.1007/s00438-024-02158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND A large number of challenging medically relevant genes (CMRGs) are situated in complex or highly repetitive regions of the human genome, hindering comprehensive characterization of genetic variants using next-generation sequencing technologies. In this study, we employed long-read sequencing technology, extensively utilized in studying complex genomic regions, to characterize genetic alterations, including short variants (single nucleotide variants and short insertions and deletions) and copy number variations, in 370 CMRGs across 41 individuals from 19 global populations. RESULTS Our analysis revealed high levels of genetic variants in CMRGs, with 68.73% exhibiting copy number variations and 65.20% containing short variants that may disrupt protein function across individuals. Such variants can influence pharmacogenomics, genetic disease susceptibility, and other clinical outcomes. We observed significant differences in CMRG variation across populations, with individuals of African ancestry harboring the highest number of copy number variants and short variants compared to samples from other continents. Notably, 15.79% to 33.96% of short variants were exclusively detectable through long-read sequencing. While the T2T-CHM13 reference genome significantly improved the assembly of CMRG regions, thereby facilitating variant detection in these regions, some regions still lacked resolution. CONCLUSION Our results provide an important reference for future clinical and pharmacogenetic studies, highlighting the need for a comprehensive representation of global genetic diversity in the reference genome and improved variant calling techniques to fully resolve medically relevant genes.
Collapse
Affiliation(s)
- Yanfeng Ji
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Junfan Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Jiao Gong
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Wen B, Tang R, Tang S, Sun Y, Xu J, Zhao D, Wang T, Yan C. A comparative study on riboflavin responsive multiple acyl-CoA dehydrogenation deficiency due to variants in FLAD1 and ETFDH gene. J Hum Genet 2024; 69:125-131. [PMID: 38228875 DOI: 10.1038/s10038-023-01216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.
Collapse
Affiliation(s)
- Bing Wen
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Runqi Tang
- Department of Pathology, Maternal and Child Health Hospital of Liaocheng, Liaocheng, 252000, Shandong, China
| | - Shuyao Tang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Sun
- Department of Neurology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
| | - Jingwen Xu
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Dandan Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Tan Wang
- Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Murgia C, Dehlia A, Guthridge MA. New insights into the nutritional genomics of adult-onset riboflavin-responsive diseases. Nutr Metab (Lond) 2023; 20:42. [PMID: 37845732 PMCID: PMC10580530 DOI: 10.1186/s12986-023-00764-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Riboflavin, or vitamin B2, is an essential nutrient that serves as a precursor to flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). The binding of the FAD and/or FMN cofactors to flavoproteins is critical for regulating their assembly and activity. There are over 90 proteins in the human flavoproteome that regulate a diverse array of biochemical pathways including mitochondrial metabolism, riboflavin transport, ubiquinone and FAD synthesis, antioxidant signalling, one-carbon metabolism, nitric oxide signalling and peroxisome oxidative metabolism. The identification of patients with genetic variants in flavoprotein genes that lead to adult-onset pathologies remains a major diagnostic challenge. However, once identified, many patients with adult-onset inborn errors of metabolism demonstrate remarkable responses to riboflavin therapy. We review the structure:function relationships of mutant flavoproteins and propose new mechanistic insights into adult-onset riboflavin-responsive pathologies and metabolic dysregulations that apply to multiple biochemical pathways. We further address the vexing issue of how the inheritance of genetic variants in flavoprotein genes leads to an adult-onset disease with complex symptomologies and varying severities. We also propose a broad clinical framework that may not only improve the current diagnostic rates, but also facilitate a personalized approach to riboflavin therapy that is low cost, safe and lead to transformative outcomes in many patients.
Collapse
Affiliation(s)
- Chiara Murgia
- The School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, Australia.
| | - Ankush Dehlia
- School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| | - Mark A Guthridge
- School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
5
|
Nisco A, Carvalho TMA, Tolomeo M, Di Molfetta D, Leone P, Galluccio M, Medina M, Indiveri C, Reshkin SJ, Cardone RA, Barile M. Increased demand for FAD synthesis in differentiated and stem pancreatic cancer cells is accomplished by modulating FLAD1 gene expression: the inhibitory effect of Chicago Sky Blue. FEBS J 2023; 290:4679-4694. [PMID: 37254652 DOI: 10.1111/febs.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
FLAD1, along with its FAD synthase (FADS, EC 2.7.7.2) product, is crucial for flavin homeostasis and, due to its role in the mitochondrial respiratory chain and nuclear epigenetics, is closely related to cellular metabolism. Therefore, it is not surprising that it could be correlated with cancer. To our knowledge, no previous study has investigated FLAD1 prognostic significance in pancreatic ductal adenocarcinoma (PDAC). Thus, in the present work, the FAD synthesis process was evaluated in two PDAC cell lines: (a) PANC-1- and PANC-1-derived cancer stem cells (CSCs), presenting the R273H mutation in the oncosuppressor p53, and (b) MiaPaca2 and MiaPaca2-derived CSCs, presenting the R248W mutation in p53. As a control, HPDE cells expressing wt-p53 were used. FADS expression/activity increase was found with malignancy and even more with stemness. An increased FAD synthesis rate in cancer cell lines is presumably demanded by the increase in the FAD-dependent lysine demethylase 1 protein amount as well as by the increased expression levels of the flavoprotein subunit of complex II of the mitochondrial respiratory chain, namely succinate dehydrogenase. With the aim of proposing FADS as a novel target for cancer therapy, the inhibitory effect of Chicago Sky Blue on FADS enzymatic activity was tested on the recombinant 6His-hFADS2 (IC50 = 1.2 μm) and PANC-1-derived CSCs' lysate (IC50 = 2-10 μm). This molecule was found effective in inhibiting the growth of PANC-1 and even more of its derived CSC line, thus assessing its role as a potential chemotherapeutic drug.
Collapse
Affiliation(s)
- Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Tiago M A Carvalho
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Michele Galluccio
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), University of Zaragoza, Spain
| | - Cesare Indiveri
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| |
Collapse
|
6
|
Tummolo A, Leone P, Tolomeo M, Solito R, Mattiuzzo M, Lepri FR, Lorè T, Cardinali R, De Giovanni D, Simonetti S, Barile M. Combined isobutyryl-CoA and multiple acyl-CoA dehydrogenase deficiency in a boy with altered riboflavin homeostasis. JIMD Rep 2022; 63:276-291. [PMID: 35822092 PMCID: PMC9259400 DOI: 10.1002/jmd2.12292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
In this report, we describe the case of an 11-year-old boy, who came to our attention for myalgia and muscle weakness, associated with inappetence and vomiting. Hypertransaminasemia was also noted, with ultrasound evidence of hepatomegaly. Biochemical investigations revealed acylcarnitine and organic acid profiles resembling those seen in MADD, that is, multiple acyl-CoA dehydrogenase deficiencies (OMIM #231680) a rare inherited disorder of fatty acids, amino acids, and choline metabolism. The patient carried a single pathogenetic variant in the ETFDH gene (c.524G>A, p.Arg175His) and no pathogenetic variant in the riboflavin (Rf) homeostasis related genes (SLC52A1, SLC52A2, SLC52A3, SLC25A32, FLAD1). Instead, compound heterozygosity was found in the ACAD8 gene (c.512C>G, p.Ser171Cys; c.822C>A, p.Asn274Lys), coding for isobutyryl-CoA dehydrogenase (IBD), whose pathogenic variants are associated to IBD deficiency (OMIM #611283), a rare autosomal recessive disorder of valine catabolism. The c.822C>A was never previously described in a patient. Subsequent further analyses of Rf homeostasis showed reduced levels of flavins in plasma and altered FAD-dependent enzymatic activities in erythrocytes, as well as a significant reduction in the level of the plasma membrane Rf transporter 2 in erythrocytes. The observed Rf/flavin scarcity in this patient, possibly associated with a decreased ETF:QO efficiency might be responsible for the observed MADD-like phenotype. The patient's clinical picture improved after supplementation of Rf, l-carnitine, Coenzyme Q10, and also 3OH-butyrate. This report demonstrates that, even in the absence of genetic defects in genes involved in Rf homeostasis, further targeted molecular analysis may reveal secondary and possibly treatable biochemical alterations in this pattern.
Collapse
Affiliation(s)
- Albina Tummolo
- Metabolic Diseases and Clinical Genetics UnitChildren's Hospital “Giovanni XXIII”BariItaly
| | - Piero Leone
- Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of Bari “A. Moro”BariItaly
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of Bari “A. Moro”BariItaly
| | - Rita Solito
- Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of Bari “A. Moro”BariItaly
| | - Matteo Mattiuzzo
- Laboratory of Medical GeneticsTranslational Cytogenomics Research Unit, Bambino Gesù Children HospitalRomeItaly
| | - Francesca Romana Lepri
- Laboratory of Medical GeneticsTranslational Cytogenomics Research Unit, Bambino Gesù Children HospitalRomeItaly
| | - Tania Lorè
- Regional Centre for Neonatal ScreeningChildren's Hospital “Giovanni XXIII”BariItaly
| | - Roberta Cardinali
- Regional Centre for Neonatal ScreeningChildren's Hospital “Giovanni XXIII”BariItaly
| | - Donatella De Giovanni
- Metabolic Diseases and Clinical Genetics UnitChildren's Hospital “Giovanni XXIII”BariItaly
| | - Simonetta Simonetti
- Regional Centre for Neonatal ScreeningChildren's Hospital “Giovanni XXIII”BariItaly
| | - Maria Barile
- Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of Bari “A. Moro”BariItaly
| |
Collapse
|
7
|
Tolomeo M, Chimienti G, Lanza M, Barbaro R, Nisco A, Latronico T, Leone P, Petrosillo G, Liuzzi GM, Ryder B, Inbar-Feigenberg M, Colella M, Lezza AMS, Olsen RKJ, Barile M. Retrograde response to mitochondrial dysfunctions associated to LOF variations in FLAD1 exon 2: unraveling the importance of RFVT2. Free Radic Res 2022; 56:511-525. [PMID: 36480241 DOI: 10.1080/10715762.2022.2146501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavin adenine dinucleotide (FAD) synthase (EC 2.7.7.2), encoded by human flavin adenine dinucleotide synthetase 1 (FLAD1), catalyzes the last step of the pathway converting riboflavin (Rf) into FAD. FLAD1 variations were identified as a cause of LSMFLAD (lipid storage myopathy due to FAD synthase deficiency, OMIM #255100), resembling Multiple Acyl-CoA Dehydrogenase Deficiency, sometimes treatable with high doses of Rf; no alternative therapeutic strategies are available. We describe here cell morphological and mitochondrial alterations in dermal fibroblasts derived from a LSMFLAD patient carrying a homozygous truncating FLAD1 variant (c.745C > T) in exon 2. Despite a severe decrease in FAD synthesis rate, the patient had decreased cellular levels of Rf and flavin mononucleotide and responded to Rf treatment. We hypothesized that disturbed flavin homeostasis and Rf-responsiveness could be due to a secondary impairment in the expression of the Rf transporter 2 (RFVT2), encoded by SLC52A2, in the frame of an adaptive retrograde signaling to mitochondrial dysfunction. Interestingly, an antioxidant response element (ARE) is found in the region upstream of the transcriptional start site of SLC52A2. Accordingly, we found that abnormal mitochondrial morphology and impairments in bioenergetics were accompanied by increased cellular reactive oxygen species content and mtDNA oxidative damage. Concomitantly, an active response to mitochondrial stress is suggested by increased levels of PPARγ-co-activator-1α and Peroxiredoxin III. In this scenario, the treatment with high doses of Rf might compensate for the secondary RFVT2 molecular defect, providing a molecular rationale for the Rf responsiveness in patients with loss of function variants in FLAD1 exon 2.HIGHLIGHTSFAD synthase deficiency alters mitochondrial morphology and bioenergetics;FAD synthase deficiency triggers a mitochondrial retrograde response;FAD synthase deficiency evokes nuclear signals that adapt the expression of RFVT2.
Collapse
Affiliation(s)
- Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy.,Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Martina Lanza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Barbaro
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Bryony Ryder
- National Metabolic Service, Starship Children's Hospital, Auckland, New Zealand
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Matilde Colella
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Angela M S Lezza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Jin C, Yonezawa A. Recent advances in riboflavin transporter RFVT and its genetic disease. Pharmacol Ther 2021; 233:108023. [PMID: 34662687 DOI: 10.1016/j.pharmthera.2021.108023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Riboflavin (vitamin B2) is essential for cellular growth and function. It is enzymatically converted to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which participate in the metabolic oxidation-reduction reactions of carbohydrates, amino acids, and lipids. Human riboflavin transporters RFVT1, RFVT2, and RFVT3 have been identified and characterized since 2008. They are highly specific transporters of riboflavin. RFVT3 has functional characteristics different from those of RFVT1 and RFVT2. RFVT3 contributes to absorption in the small intestine, reabsorption in the kidney, and transport to the fetus in the placenta, while RFVT2 mediates the tissue distribution of riboflavin from the blood. Several mutations in the SLC52A2 gene encoding RFVT2 and the SLC52A3 gene encoding RFVT3 were found in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. These patients commonly present with bulbar palsy, hearing loss, muscle weakness, and respiratory symptoms in infancy or later in childhood. A decrease in plasma riboflavin levels has been observed in several cases. Recent studies on knockout mice and patient-derived cells have advanced the understanding of these mechanisms. Here, we summarize novel findings on RFVT1-3 and their genetic diseases and discuss their potential as therapeutic drugs.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
9
|
Hagemeijer MC, Oussoren E, Ruijter GJG, Onkenhout W, Huidekoper HH, Ebberink MS, Waterham HR, Ferdinandusse S, de Vries MC, Huigen MCDG, Kluijtmans LAJ, Coene KLM, Blom HJ. Abnormal VLCADD newborn screening resembling MADD in four neonates with decreased riboflavin levels and VLCAD activity. JIMD Rep 2021; 61:12-18. [PMID: 34485012 PMCID: PMC8411102 DOI: 10.1002/jmd2.12223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/27/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Early detection of congenital disorders by newborn screening (NBS) programs is essential to prevent or limit disease manifestation in affected neonates. These programs balance between the detection of the highest number of true cases and the lowest number of false-positives. In this case report, we describe four unrelated cases with a false-positive NBS result for very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD). Three neonates presented with decreased but not deficient VLCAD enzyme activity and two of them carried a single heterozygous ACADVL c.1844G>A mutation. Initial biochemical investigations after positive NBS referral in these infants revealed acylcarnitine and organic acid profiles resembling those seen in multiple acyl-CoA dehydrogenase deficiency (MADD). Genetic analysis did not reveal any pathogenic mutations in the genes encoding the electron transfer flavoprotein (ETF alpha and beta subunits) nor in ETF dehydrogenase. Subsequent further diagnostics revealed decreased levels of riboflavin in the newborns and oral riboflavin administration normalized the MADD-like biochemical profiles. During pregnancy, the mothers followed a vegan, vegetarian or lactose-free diet which probably caused alimentary riboflavin deficiency in the neonates. This report demonstrates that a secondary (alimentary) maternal riboflavin deficiency in combination with reduced VLCAD activity in the newborns can result in an abnormal VLCADD/MADD acylcarnitine profile and can cause false-positive NBS. We hypothesize that maternal riboflavin deficiency contributed to the false-positive VLCADD neonatal screening results.
Collapse
Affiliation(s)
- Marne C. Hagemeijer
- Center for Lysosomal and Metabolic Diseases, Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Esmee Oussoren
- Center for Lysosomal and Metabolic Diseases, Department of PediatricsErasmus University Medical CenterRotterdamThe Netherlands
| | - George J. G. Ruijter
- Center for Lysosomal and Metabolic Diseases, Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Willem Onkenhout
- Center for Lysosomal and Metabolic Diseases, Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Hidde H. Huidekoper
- Center for Lysosomal and Metabolic Diseases, Department of PediatricsErasmus University Medical CenterRotterdamThe Netherlands
| | - Merel S. Ebberink
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Maaike C. de Vries
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML)Radboud University Medical CenterNijmegenThe Netherlands
| | - Marleen C. D. G. Huigen
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML)Radboud University Medical CenterNijmegenThe Netherlands
| | - Leo A. J. Kluijtmans
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML)Radboud University Medical CenterNijmegenThe Netherlands
| | - Karlien L. M. Coene
- Department of Laboratory Medicine, Translational Metabolic Laboratory (TML)Radboud University Medical CenterNijmegenThe Netherlands
| | - Henk J Blom
- Center for Lysosomal and Metabolic Diseases, Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
10
|
Infant with early onset bilateral facial and bulbar weakness: Successful treatment of riboflavin in multiple acyl-CoA dehydrogenase deficiency caused by biallelic nonsense FLAD1 variants. Neuromuscul Disord 2021; 31:1194-1198. [PMID: 34454814 DOI: 10.1016/j.nmd.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a heterogeneous group of inborn error of metabolic disease affecting the oxidation of fatty acids and amino acids, and choline metabolism. Genes involved in electrons transfer to the mitochondrial respiratory chain typically induce MADD. Recently, FLAD1, which encodes flavin adenine dinucleotide synthase, has also been reported as a cause of MADD. Here, we present a case of a 28-month girl with progressive weakness in facial and bulbar muscle. She has been suffering from feeding difficulty and recurrent respiratory distress. Lipid storage myopathy was evident from muscle biopsy. Furthermore, whole exome sequencing identified homozygous variant of c.745C > T (p.Arg249*) in FLAD1, confirming the diagnosis of FLAD1-related MADD. The patient showed improvements in her symptoms and exhibited catch-up growth following the supplementation of riboflavin. Lipid storage myopathy with FLAD1-related MADD is potentially treatable. Therefore, we should have high clinical suspicion, even though the diagnosis is challenging.
Collapse
|
11
|
Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies. Methods Mol Biol 2021; 2280:275-295. [PMID: 33751442 DOI: 10.1007/978-1-0716-1286-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this short review chapter is to provide a brief summary of the relevance of riboflavin (Rf or vitamin B2) and its derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) for human neuromuscular bioenergetics.Therefore, as a completion of this book we would like to summarize what kind of human pathologies could derive from genetic disturbances of Rf transport, flavin cofactor synthesis and delivery to nascent apoflavoproteins, as well as by alteration of vitamin recycling during protein turnover.
Collapse
|
12
|
Role of RNA in Molecular Diagnosis of MADD Patients. Biomedicines 2021; 9:biomedicines9050507. [PMID: 34064479 PMCID: PMC8147995 DOI: 10.3390/biomedicines9050507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
The electron-transfer flavoprotein dehydrogenase gene (ETFDH) encodes the ETF-ubiquinone oxidoreductase (ETF-QO) and has been reported to be the major cause of multiple acyl-CoA dehydrogenase deficiency (MADD). In this study, we present the clinical and molecular diagnostic challenges, at the DNA and RNA levels, involved in establishing the genotype of four MADD patients with novel ETFDH variants: a missense variant, two deep intronic variants and a gross deletion. RNA sequencing allowed the identification of the second causative allele in all studied patients. Simultaneous DNA and RNA investigation can increase the number of MADD patients that can be confirmed following the suggestive data results of an expanded newborn screening program. In clinical practice, accurate identification of pathogenic mutations is fundamental, particularly with regard to diagnostic, prognostic, therapeutic and ethical issues. Our study highlights the importance of RNA studies for a definitive molecular diagnosis of MADD patients, expands the background of ETFDH mutations and will be important in providing an accurate genetic counseling and a prenatal diagnosis for the affected families.
Collapse
|
13
|
Liu XY, Chen XJ, Zhao M, Wang ZQ, Chen HZ, Li HF, Wang CJ, Wu SF, Peng C, Yin Y, Fu HX, Lin MT, Yu L, Xiong ZQ, Wu ZY, Wang N. CHIP control degradation of mutant ETF:QO through ubiquitylation in late-onset multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2021; 44:450-468. [PMID: 33438237 DOI: 10.1002/jimd.12361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 11/12/2022]
Abstract
Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common form of lipid storage myopathy. The disease is mainly caused by mutations in electron-transfer flavoprotein dehydrogenase gene (ETFDH), which leads to decreased levels of ETF:QO in skeletal muscle. However, the specific underlying mechanisms triggering such degradation remain unknown. We constructed expression plasmids containing wild type ETF:QO and mutants ETF:QO-A84T, R175H, A215T, Y333C, and cultured patient-derived fibroblasts containing the following mutations in ETFDH: c.250G>A (p.A84T), c.998A>G (p.Y333C), c.770A>G (p.Y257C), c.1254_1257delAACT (p. L418TfsX10), c.524G>A (p.R175H), c.380T>A (p.L127P), and c.892C>T (p.P298S). We used in vitro expression systems and patient-derived fibroblasts to detect stability of ETF:QO mutants then evaluated their interaction with Hsp70 interacting protein CHIP with active/inactive ubiquitin E3 ligase carboxyl terminus using western blot and immunofluorescence staining. This interaction was confirmed in vitro and in vivo by co-immunoprecipitation and immunofluorescence staining. We confirmed the existence two ubiquitination sites in mutant ETF:QO using mass spectrometry (MS) analysis. We found that mutant ETF:QO proteins were unstable and easily degraded in patient fibroblasts and in vitro expression systems by ubiquitin-proteasome pathway, and identified the specific ubiquitin E3 ligase as CHIP, which forms complex to control mutant ETF:QO degradation through poly-ubiquitination. CHIP-dependent degradation of mutant ETF:QO proteins was confirmed by MS and site-directed mutagenesis of ubiquitination sites. Hsp70 is directly involved in this process as molecular chaperone of CHIP. CHIP plays an important role in ubiquitin-proteasome pathway dependent degradation of mutant ETF:QO by working as a chaperone-assisted E3 ligase, which reveals CHIP's potential role in pathological mechanisms of late-onset MADD.
Collapse
Affiliation(s)
- Xin-Yi Liu
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xue-Jiao Chen
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Miao Zhao
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhi-Qiang Wang
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Hai-Zhu Chen
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in the Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen-Ji Wang
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Shi-Fei Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Hong-Xia Fu
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Min-Ting Lin
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in the Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ning Wang
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Mereis M, Wanders RJA, Schoonen M, Dercksen M, Smuts I, van der Westhuizen FH. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. Int J Biochem Cell Biol 2021; 132:105899. [PMID: 33279678 DOI: 10.1016/j.biocel.2020.105899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.
Collapse
Affiliation(s)
- Michelle Mereis
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | | |
Collapse
|
15
|
Leone P, Tolomeo M, Barile M. Continuous and Discontinuous Approaches to Study FAD Synthesis and Degradation Catalyzed by Purified Recombinant FAD Synthase or Cellular Fractions. Methods Mol Biol 2021; 2280:87-116. [PMID: 33751431 DOI: 10.1007/978-1-0716-1286-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Riboflavin, or vitamin B2, is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), essential redox (and sometimes non-redox) cofactors of a large number of flavoenzymes involved in energetic metabolism, protein folding, apoptosis, chromatin remodeling, and a number of other cell regulatory processes.The cellular and subcellular steady-state concentrations of flavin cofactors, which are available for flavoprotein biogenesis and assembly, depend on carrier-mediated transport processes and on coordinated synthesizing/destroying enzymatic activities, catalyzed by enzymes whose catalytic and structural properties are still matter of investigation.Alteration of flavin homeostasis has been recently correlated to human pathological conditions, such as neuromuscular disorders and cancer, and therefore we propose here protocols useful to detect metabolic processes involved in FAD forming and destroying.Our protocols exploit the chemical-structural differences between riboflavin, FMN , and FAD , which are responsible for differences in the spectroscopic properties (mainly fluorescence) of the two cofactors (FMN and FAD); therefore, in our opinion, when applicable measurements of fluorescence changes in continuo represent the elective techniques to follow FAD synthesis and degradation. Thus, after procedures able to calibrate flavin concentrations (Subheading 3.1), we describe simple continuous and rapid procedures, based on the peculiar optical properties of free flavins, useful to determine the rate of cofactor metabolism catalyzed by either recombinant enzymes or natural enzymes present in cellular lysates/subfractions (Subheading 3.2).Fluorescence properties of free flavins can also be useful in analytical determinations of the three molecular flavin forms, based on HPLC separation, with a quite high sensitivity. Assaying at different incubation times the molecular composition of the reaction mixture is a discontinuous experimental approach to measure the rate of FAD synthesis/degradation catalyzed by cell lysates or recombinant FAD synthase (Subheading 3.3). Continuous and discontinuous approaches can, when necessary, be performed in parallel.
Collapse
Affiliation(s)
- Piero Leone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.
| |
Collapse
|
16
|
Wanders RJA, Visser G, Ferdinandusse S, Vaz FM, Houtkooper RH. Mitochondrial Fatty Acid Oxidation Disorders: Laboratory Diagnosis, Pathogenesis, and the Complicated Route to Treatment. J Lipid Atheroscler 2020; 9:313-333. [PMID: 33024728 PMCID: PMC7521971 DOI: 10.12997/jla.2020.9.3.313] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial fatty acid (FA) oxidation deficiencies represent a genetically heterogeneous group of diseases in humans caused by defects in mitochondrial FA beta-oxidation (mFAO). A general characteristic of all mFAO disorders is hypoketotic hypoglycemia resulting from the enhanced reliance on glucose oxidation and the inability to synthesize ketone bodies from FAs. Patients with a defect in the oxidation of long-chain FAs are at risk to develop cardiac and skeletal muscle abnormalities including cardiomyopathy and arrhythmias, which may progress into early death, as well as rhabdomyolysis and exercise intolerance. The diagnosis of mFAO-deficient patients has greatly been helped by revolutionary developments in the field of tandem mass spectrometry (MS) for the analysis of acylcarnitines in blood and/or urine of candidate patients. Indeed, acylcarnitines have turned out to be excellent biomarkers; not only do they provide information whether a certain patient is affected by a mFAO deficiency, but the acylcarnitine profile itself usually immediately points to which enzyme is likely deficient. Another important aspect of acylcarnitine analysis by tandem MS is that this technique allows high-throughput analysis, which explains why screening for mFAO deficiencies has now been introduced in many newborn screening programs worldwide. In this review, we will describe the current state of knowledge about mFAO deficiencies, with particular emphasis on recent developments in the area of pathophysiology and treatment.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gepke Visser
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Ding M, Liu R, Qiubo L, Zhang Y, Kong Q. Neonatal-onset multiple acyl-CoA dehydrogenase deficiency (MADD) in the ETFDH gene: A case report and a literature review. Medicine (Baltimore) 2020; 99:e21944. [PMID: 32925727 PMCID: PMC7489629 DOI: 10.1097/md.0000000000021944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
RATIONALE Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism affecting fatty acid, amino acid, and choline metabolism. The clinical manifestation of MADD is heterogeneous, from severe neonatal forms to mild late-onset forms. PATIENT CONCERNS Here, we report a patient who presented with severe hypoglycemia and exercise intolerance suggestive of MADD. Serum tandem mass spectrometry analysis indicated elevated levels of various acyl carnitines at 25 days of age. Exome sequencing of the proband revealed compound heterozygous mutations, c. 413T>G (p.Leu138Arg) and c.1667C > G (p.Pro556Arg), in the ETFDH gene as the probable causative mutations. DIAGNOSES Based on the patient's clinical presentation and test results, the patient was diagnosed with MADD. INTERVENTIONS A high-calorie and reduced-fat diet was given together with oral supplements of L-carnitine (150 mg/day). OUTCOMES He passed away at the age of 4 months because of severe respiratory distress accompanied by muscle weakness. LESSONS He passed away at the age of 4 months because of severe respiratory distress accompanied by muscle weakness. Clinicians should consider MADD in the differential diagnosis when patients present with muscle weakness and biochemical abnormalities. Gene testing plays a critical role in confirming the diagnosis of MADD and may not only prevent the need for invasive testing but also allow for timely initiation of treatment.
Collapse
Affiliation(s)
| | - Ruihua Liu
- Department of Pediatric, Affiliated Hospital of Jining Medical University
| | - Li Qiubo
- Department of Pediatric, Affiliated Hospital of Jining Medical University
| | - Yanke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, P.R. China
| | - Qingxia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, P.R. China
| |
Collapse
|
18
|
Sinha T, Naash MI, Al-Ubaidi MR. Flavins Act as a Critical Liaison Between Metabolic Homeostasis and Oxidative Stress in the Retina. Front Cell Dev Biol 2020; 8:861. [PMID: 32984341 PMCID: PMC7481326 DOI: 10.3389/fcell.2020.00861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Derivatives of the vitamin riboflavin, FAD and FMN, are essential cofactors in a multitude of bio-energetic reactions, indispensable for lipid metabolism and also are requisites in mitigating oxidative stress. Given that a balance between all these processes contributes to the maintenance of retinal homeostasis, effective regulation of riboflavin levels in the retina is paramount. However, various genetic and dietary factors have brought to fore pathological conditions that co-occur with a suboptimal level of flavins in the retina. Our focus in this review is to, comprehensively summarize all the possible metabolic and oxidative reactions which have been implicated in various retinal pathologies and to highlight the contribution flavins may have played in these. Recent research has found a sensitive method of measuring flavins in both diseased and healthy retina, presence of a novel flavin binding protein exclusively expressed in the retina, and the presence of flavin specific transporters in both the inner and outer blood-retina barriers. In light of these exciting findings, it is even more imperative to shift our focus on how the retina regulates its flavin homeostasis and what happens when this is disrupted.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
19
|
Tolomeo M, Nisco A, Leone P, Barile M. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Int J Mol Sci 2020; 21:ijms21155310. [PMID: 32722651 PMCID: PMC7432027 DOI: 10.3390/ijms21155310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of Riboflavin (Rf) transport and metabolism have been recently related to severe human neuromuscular disorders, as resulting in profound alteration of human flavoproteome and, therefore, of cellular bioenergetics. This explains why the interest in studying the “flavin world”, a topic which has not been intensively investigated before, has increased much over the last few years. This also prompts basic questions concerning how Rf transporters and FAD (flavin adenine dinucleotide) -forming enzymes work in humans, and how they can create a coordinated network ensuring the maintenance of intracellular flavoproteome. The concept of a coordinated cellular “flavin network”, introduced long ago studying humans suffering for Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), has been, later on, addressed in model organisms and more recently in cell models. In the frame of the underlying relevance of a correct supply of Rf in humans and of a better understanding of the molecular rationale of Rf therapy in patients, this review wants to deal with theories and existing experimental models in the aim to potentiate possible therapeutic interventions in Rf-related neuromuscular diseases.
Collapse
|
20
|
Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int J Mol Sci 2020; 21:ijms21113847. [PMID: 32481712 PMCID: PMC7312377 DOI: 10.3390/ijms21113847] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
As an essential vitamin, the role of riboflavin in human diet and health is increasingly being highlighted. Insufficient dietary intake of riboflavin is often reported in nutritional surveys and population studies, even in non-developing countries with abundant sources of riboflavin-rich dietary products. A latent subclinical riboflavin deficiency can result in a significant clinical phenotype when combined with inborn genetic disturbances or environmental and physiological factors like infections, exercise, diet, aging and pregnancy. Riboflavin, and more importantly its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), play a crucial role in essential cellular processes including mitochondrial energy metabolism, stress responses, vitamin and cofactor biogenesis, where they function as cofactors to ensure the catalytic activity and folding/stability of flavoenzymes. Numerous inborn errors of flavin metabolism and flavoenzyme function have been described, and supplementation with riboflavin has in many cases been shown to be lifesaving or to mitigate symptoms. This review discusses the environmental, physiological and genetic factors that affect cellular riboflavin status. We describe the crucial role of riboflavin for general human health, and the clear benefits of riboflavin treatment in patients with inborn errors of metabolism.
Collapse
|
21
|
Ou M, Zhu L, Zhang Y, Zhang Y, Zhou J, Zhang Y, Chen X, Yang L, Li T, Su X, Hu Q, Wang W. A novel electron transfer flavoprotein dehydrogenase (ETFDH) gene mutation identified in a newborn with glutaric acidemia type II: a case report of a Chinese family. BMC MEDICAL GENETICS 2020; 21:98. [PMID: 32393189 PMCID: PMC7212588 DOI: 10.1186/s12881-020-00995-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/10/2020] [Indexed: 12/04/2022]
Abstract
Background Glutaric acidemia type II (GA II) or multiple acyl-CoA dehydrogenase deficiency (MADD, OMIM 231680) is an inherited autosomal recessive disease affecting fatty acid, amino acid and choline metabolism, due to mutations in one of three genes namely, electron transfer flavoprotein alpha-subunit, ETFA, electron transfer flavoprotein β-subunit, ETFB and electron transfer flavoprotein dehydrogenase, ETFDH. Currently, few studies have reported genetic profiling of neonatal-onset GA II. This study aimed to identify the genetic mutations in a Chinese family with GA II. Case presentation We reported a case of GA II with purulent meningitis and septicemia and identified a novel ETFDH gene mutation in a female infant. The patient developed an episode of hypoglycemia and hypotonicity on the postnatal first day. Laboratory investigations revealed elevations of multiple acylcarnitines indicating glutaric acidemia type II in newborn screening analysis. Urinary organic acids were evaluated for the confirmation and revealed a high glutaric acid excretion. Genetic analysis revealed two mutations in the ETFDH gene (c.623_626 del / c. 1399G > C), which were considered to be the etiology for the disease. The novel mutation c.623_626 del was identified in the proband infant and her father, her mother was carriers of the mutation c.1399G > C. Conclusions A novel variant (c.623_626 del) and a previously reported missense (c.1399G > C) in the ETFDH gene have been identified in the family. The two variants of ETFDH gene identified probably underlie the pathogenesis of Glutaric acidemia type II in this family, and also enlarge ETFDH genotype-phenotype correlations spectrum.
Collapse
Affiliation(s)
- Mingcai Ou
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Lin Zhu
- Hangzhou Genuine Clinical Laboratory Co. Ltd, 859 Shixiang West Road, Hangzhou, 310007, Zhejiang Province, China
| | - Yong Zhang
- Neonatal unit, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Yaguo Zhang
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Jingyao Zhou
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Yu Zhang
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Xuelian Chen
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Lijuan Yang
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Ting Li
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Xingyue Su
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China
| | - Qi Hu
- Department of Neonatal screen, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan Province, China.
| | - Wenjun Wang
- Hangzhou Genuine Clinical Laboratory Co. Ltd, 859 Shixiang West Road, Hangzhou, 310007, Zhejiang Province, China.
| |
Collapse
|
22
|
Leone P, Galluccio M, Quarta S, Anoz-Carbonell E, Medina M, Indiveri C, Barile M. Mutation of Aspartate 238 in FAD Synthase Isoform 6 Increases the Specific Activity by Weakening the FAD Binding. Int J Mol Sci 2019; 20:ijms20246203. [PMID: 31835305 PMCID: PMC6941110 DOI: 10.3390/ijms20246203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
FAD synthase (FADS, or FMN:ATP adenylyl transferase) coded by the FLAD1 gene is the last enzyme in the pathway of FAD synthesis. The mitochondrial isoform 1 and the cytosolic isoform 2 are characterized by the following two domains: the C-terminal PAPS domain (FADSy) performing FAD synthesis and pyrophosphorolysis; the N-terminal molybdopterin-binding domain (FADHy) performing a Co++/K+-dependent FAD hydrolysis. Mutations in FLAD1 gene are responsible for riboflavin responsive and non-responsive multiple acyl-CoA dehydrogenases and combined respiratory chain deficiency. In patients harboring frameshift mutations, a shorter isoform (hFADS6) containing the sole FADSy domain is produced representing an emergency protein. With the aim to ameliorate its function we planned to obtain an engineered more efficient hFADS6. Thus, the D238A mutant, resembling the D181A FMNAT “supermutant” of C. glabrata, was overproduced and purified. Kinetic analysis of this enzyme highlighted a general increase of Km, while the kcat was two-fold higher than that of WT. The data suggest that the FAD synthesis rate can be increased. Additional modifications could be performed to further improve the synthesis of FAD. These results correlate with previous data produced in our laboratory, and point towards the following proposals (i) FAD release is the rate limiting step of the catalytic cycle and (ii) ATP and FMN binding sites are synergistically connected.
Collapse
Affiliation(s)
- Piero Leone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4–, 70126 Bari, Italy; (P.L.); (S.Q.)
- Department of Biology, Ecology and Earth Sciences (DiBEST), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via P. Bucci 4c, 87036 Arcavacata di Rende, Italy; (M.G.); (C.I.)
| | - Michele Galluccio
- Department of Biology, Ecology and Earth Sciences (DiBEST), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via P. Bucci 4c, 87036 Arcavacata di Rende, Italy; (M.G.); (C.I.)
| | - Stefano Quarta
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4–, 70126 Bari, Italy; (P.L.); (S.Q.)
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-C.); (M.M.)
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-C.); (M.M.)
| | - Cesare Indiveri
- Department of Biology, Ecology and Earth Sciences (DiBEST), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via P. Bucci 4c, 87036 Arcavacata di Rende, Italy; (M.G.); (C.I.)
| | - Maria Barile
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4–, 70126 Bari, Italy; (P.L.); (S.Q.)
- Correspondence:
| |
Collapse
|
23
|
van Rijt WJ, Ferdinandusse S, Giannopoulos P, Ruiter JPN, de Boer L, Bosch AM, Huidekoper HH, Rubio-Gozalbo ME, Visser G, Williams M, Wanders RJA, Derks TGJ. Prediction of disease severity in multiple acyl-CoA dehydrogenase deficiency: A retrospective and laboratory cohort study. J Inherit Metab Dis 2019; 42:878-889. [PMID: 31268564 DOI: 10.1002/jimd.12147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is an ultra-rare inborn error of mitochondrial fatty acid oxidation (FAO) and amino acid metabolism. Individual phenotypes and treatment response can vary markedly. We aimed to identify markers that predict MADD phenotypes. We performed a retrospective nationwide cohort study; then developed an MADD-disease severity scoring system (MADD-DS3) based on signs and symptoms with weighed expert opinions; and finally correlated phenotypes and MADD-DS3 scores to FAO flux (oleate and myristate oxidation rates) and acylcarnitine profiles after palmitate loading in fibroblasts. Eighteen patients, diagnosed between 1989 and 2014, were identified. The MADD-DS3 entails enumeration of eight domain scores, which are calculated by averaging the relevant symptom scores. Lifetime MADD-DS3 scores of patients in our cohort ranged from 0 to 29. FAO flux and [U-13 C]C2-, C5-, and [U-13 C]C16-acylcarnitines were identified as key variables that discriminated neonatal from later onset patients (all P < .05) and strongly correlated to MADD-DS3 scores (oleate: r = -.86; myristate: r = -.91; [U-13 C]C2-acylcarnitine: r = -.96; C5-acylcarnitine: r = .97; [U-13 C]C16-acylcarnitine: r = .98, all P < .01). Functional studies in fibroblasts were found to differentiate between neonatal and later onset MADD-patients and were correlated to MADD-DS3 scores. Our data may improve early prediction of disease severity in order to start (preventive) and follow-up treatment appropriately. This is especially relevant in view of the inclusion of MADD in population newborn screening programs.
Collapse
Affiliation(s)
- Willemijn J van Rijt
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Panagiotis Giannopoulos
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jos P N Ruiter
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Lonneke de Boer
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annet M Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
24
|
Muru K, Reinson K, Künnapas K, Lilleväli H, Nochi Z, Mosegaard S, Pajusalu S, Olsen RKJ, Õunap K. FLAD1-associated multiple acyl-CoA dehydrogenase deficiency identified by newborn screening. Mol Genet Genomic Med 2019; 7:e915. [PMID: 31392824 PMCID: PMC6732309 DOI: 10.1002/mgg3.915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD), also known as glutaric aciduria type II, is a mitochondrial fatty acid oxidation disorder caused by variants in ETFA, ETFB, and ETFDH. Recently, riboflavin transporter genes and the mitochondrial FAD transporter gene have also been associated with MADD-like phenotype. METHODS We present a case of MADD identified by newborn biochemical screening in a full-term infant suggestive of both medium-chain acyl-CoA dehydrogenase deficiency and MADD. Urine organic acid GC/MS analysis was also concerning for both disorders. However, panel sequencing of ETFA, ETFB, ETFDH, and ACADM was unrevealing. Ultimately, a variant in the FAD synthase gene, FLAD1 was found explaining the clinical presentation. RESULTS Exome sequencing identified compound heterozygous variants in FLAD1: NM_025207.4: c.[442C>T];[1588C>T], p.[Arg148*];[Arg530Cys]. The protein damaging effects were confirmed by Western blot. The patient remained asymptomatic and there was no clinical decompensation during the first year of life. Plasma acylcarnitine and urinary organic acid analyses normalized without any treatment. Riboflavin supplementation was started at 15 months. CONCLUSION Newborn screening, designed to screen for specific treatable congenital metabolic diseases, may also lead to the diagnosis of additional, very rare metabolic disorders such as FLAD1 deficiency. The case further illustrates that even milder forms of FLAD1 deficiency are detectable in the asymptomatic state by newborn screening.
Collapse
Affiliation(s)
- Kai Muru
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kadi Künnapas
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Hardo Lilleväli
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Zahra Nochi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
25
|
Leone P, Galluccio M, Brizio C, Barbiroli A, Iametti S, Indiveri C, Barile M. The hidden side of the human FAD synthase 2. Int J Biol Macromol 2019; 138:986-995. [PMID: 31351152 DOI: 10.1016/j.ijbiomac.2019.07.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
FAD synthase, the last enzyme of the pathway converting riboflavin to FAD, exists in humans in different isoforms, with isoforms 1, 2 and 6 being characterized at the functional and molecular levels. Isoform 2, the cytosolic and most abundant FADS, consists of two domains: a PAPS reductase C-terminus domain (here named FADSy) responsible for FAD synthesis, and an N-terminus molybdopterin-binding resembling domain (MPTb - here named FADHy), whose FAD hydrolytic activity is hidden unless both Co2+ and chemical mercurial reagents are added to the enzyme. To investigate the hFADS2 hydrolytic function under conditions closer to the physiological context, the hydrolytic activity was further characterized. Co2+ induced FAD hydrolysis was strongly stimulated in the presence of K+, reaching a Vmax higher than that of FAD synthesis. The pH dependence together with the inhibition of the hydrolysis by NaF and KI allow excluding that the reaction occurs via a NUDIX type catalysis. The K0.5 for K+ or Co2+ was 7.2 or 0.035 mM, respectively. Other monovalent or divalent cations can partially substitute K+ or Co2+. Reduced glutathione stimulated whereas NADH inhibited the hydrolytic activity. The latter aspects correlate with an interconnection of the homeostasis of NAD and FAD.
Collapse
Affiliation(s)
- Piero Leone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4 -, 70126 Bari, Italy; Department of Biology, Ecology and Earth Sciences (DiBEST), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via P. Bucci 4c, , 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department of Biology, Ecology and Earth Sciences (DiBEST), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via P. Bucci 4c, , 87036 Arcavacata di Rende, Italy
| | - Carmen Brizio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4 -, 70126 Bari, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy
| | - Stefania Iametti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy
| | - Cesare Indiveri
- Department of Biology, Ecology and Earth Sciences (DiBEST), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via P. Bucci 4c, , 87036 Arcavacata di Rende, Italy; Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM) - CNR, via Giovanni Amendola 165/A, 70126 Bari, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, via Orabona 4 -, 70126 Bari, Italy.
| |
Collapse
|
26
|
Balasubramaniam S, Christodoulou J, Rahman S. Disorders of riboflavin metabolism. J Inherit Metab Dis 2019; 42:608-619. [PMID: 30680745 DOI: 10.1002/jimd.12058] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023]
Abstract
Riboflavin (vitamin B2), a water-soluble vitamin, is an essential nutrient in higher organisms as it is not endogenously synthesised, with requirements being met principally by dietary intake. Tissue-specific transporter proteins direct riboflavin to the intracellular machinery responsible for the biosynthesis of the flavocoenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These flavocoenzymes play a vital role in ensuring the functionality of a multitude of flavoproteins involved in bioenergetics, redox homeostasis, DNA repair, chromatin remodelling, protein folding, apoptosis, and other physiologically relevant processes. Hence, it is not surprising that the impairment of flavin homeostasis in humans may lead to multisystem dysfunction including neuromuscular disorders, anaemia, abnormal fetal development, and cardiovascular disease. In this review, we provide an overview of riboflavin absorption, transport, and metabolism. We then focus on the clinical and biochemical features associated with biallelic FLAD1 mutations leading to FAD synthase deficiency, the only known primary defect in flavocoenzyme synthesis, in addition to providing an overview of clinical disorders associated with nutritional deficiency of riboflavin and primary defects of riboflavin transport. Finally, we give a brief overview of disorders of the cellular flavoproteome. Because riboflavin therapy may be beneficial in a number of primary or secondary disorders of the cellular flavoproteome, early recognition and prompt management of these disorders is imperative.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - John Christodoulou
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|