1
|
Arambam K, Krishnani KK, Singh RD, Verma AK, Banerjee K, Chanu TI, Kumar N. Medicinal and aromatic plants assisted bioremediation of ammonical and bacterial contaminants in aquaponics water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70017. [PMID: 39916314 DOI: 10.1002/wer.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 05/08/2025]
Abstract
An experiment was conducted under laboratory conditions to examine the effect of sixteen medicinal and aromatic plants (MAPs), namely Aloe barbadensis, Cymbopogen citratus, Bacopa monnieri, Senna sigueana, Plantado ovata, Asparagus racemosses, Phylanthus emblica, Vitex negundo, Cammiphora wightii, Cymbopogon martini, Andrographis paniculate, Ocimum tenuiflorum, Gymnema sylvestre, Centella asiatica, Adhatoda vasica, and Cyamopsis tetragonoloba in the removal of total ammonia-N (TAN) from aquaponics water. The different dried and grounded MAPs were added @ 100 mgl-1 into individual conical flasks containing 100 ml aquaponics water (spiked with 5 mgl-1 ammonia) and placed in a shaker. The effectiveness of different MAPs in removing TAN was evaluated at 24 hrs intervals until one of the MAPs achieved a removal rate of over 80%. The study also investigated their potential activity against fish bacterial pathogens viz. Edwardsiella tarda, Escherichia coli, Vibrio parahaemolyticus, Aeromonas hydrophila, and Staphylococcus aureus using the agar well diffusion method. The study indicates a negligible removal of TAN in the first twelve hours for all the MAPs. TAN concentration significantly reduced from 24 hrs for amla-treated water followed by satavari-treated water. Within 96 hrs., amla, satavari, and jalbrahmi removed 88.13 ± 0.81%, 79.52 ± 2.27%, and 77.22 ± 0.70 of TAN respectively. Other MAPs showed little effectiveness in removing ammonia, while cluster beans and ardushi increased the ammonia level in the water. Additionally, the methanol extract of amla exhibited strong antibacterial activities against all tested pathogens especially, against E. tarda. This study suggests the potential application of a MAP-based One-Health approach for mitigating abiotic and biotic stresses in aquaculture. PRACTITIONER POINTS: Evaluated 16 different medicinal and aromatic plants (MAPs) for their ammonia removal activity from aquaponics water. Amla treated water showed the highest ammonia removal followed by Satavaari and Jalbrahmi. Cluster beans and Ardushi treated water resulted in increasing ammonia levels due to their high nitrogen contents. Methanolic extract of amla showed bactericidal activity against fish pathogens Edwardsiella tarda, E. coli, Vibrio parahaemolyticus, A. hydrophila, and S. aureus. Potential applications in developing aquaponics production system of fish with medicinal plants through nutrient cycling and water recycling.
Collapse
Affiliation(s)
- Kalpana Arambam
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | | | | | | | | | - Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon (Kh), India
| |
Collapse
|
2
|
Devi B, Goswami M, Devi A. Entrapment behaviours of trivalent and hexavalent chromium from aqueous medium using edible alkali-derived activated carbon of Eichhornia crassipes (water hyacinth). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6025-6039. [PMID: 38135795 DOI: 10.1007/s11356-023-31545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
The study examines the adsorption capabilities of an environmentally friendly activated carbon derived from a novel activating agent, i.e., an edible alkali prepared from black gram plant ash, for the removal of Cr(III) and Cr(VI) ions from an aqueous environment. The results of the systematic research show impressive removal efficiencies of 95.12% for Cr(III) ions and 99.6% for Cr(VI) ions. The kinetics and equilibrium data of the adsorption process confirm to the pseudo-second-order kinetics and Freundlich isotherm model. The thermodynamic analysis reveals the adsorption process as feasible and spontaneous across the temperature range of 298-313 K. The mechanism entails electrostatic attraction and adsorption of Cr(III) and Cr(VI) ions on oppositely charged surfaces and the participation of oxygen-containing functional groups on WHAC-BGA surface in the reduction of Cr(VI) to Cr(III). This study provides valuable insights for optimizing strategies to combat chromium contamination in water sources, offering a sustainable solution with the potential for real-world application.
Collapse
Affiliation(s)
- Bhaswati Devi
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India
- Department of Chemistry, Gauhati University, Guwahati, 781014, Assam, India
| | - Manisha Goswami
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India
- Department of Environmental Science, Gauhati University, Guwahati, 781014, Assam, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
3
|
Santos Y, Costa G, Menezes J, Feitosa A, Coutinho H, Sena D, Filho F, Teixeira R. Pb(II) Ion Removal Potential in Chemically Modified Ziziphus joazeiro Barks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16283. [PMID: 36498352 PMCID: PMC9736088 DOI: 10.3390/ijerph192316283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In this study, five types of modified Ziziphus joazeiro barks were investigated for the removal of Pb(II) ions from aqueous solutions. The samples tested were natural barks, natural powder, washed with water, ethanol at 80% (EE) and 0.5 N NaOH. Batch kinetics experiments were performed under the conditions: 24−25 °C, pH 5.5−5.8, 102 mg·L−1 Pb(NO3)2, 100 rpm and 0.1 g of adsorbent, and analyses of pHpzc and Fourier transform infrared spectroscopy. All adsorbents tested showed potential to remove Pb(II) ions, but the adsorbent washed by 0.5 N NaOH obtained the highest experimental performance (25.5 mg·g−1 at 30 min), while the EE had the least performance (20.4 mg·g−1 at 60 min), and maximum removals of 99.9%. The kinetic models pointed to a probable chemisorption due to the best fit of pseudo-second order and Elovich, and Boyd’s model, suggesting that intraparticle diffusion limits the adsorption until the initial minutes of contact. The Langmuir isotherm fitted better to the experimental data for the NaOH adsorbent, with maximum adsorption capacity equal to 62.5 mg·g−1, although the Temkin model partially fitted, both suggesting the occurrence of chemisorption. The adsorption process is reversible (>81% at 20 min) and hence the adsorbents can be recycled and the Pb(II) ions recovered.
Collapse
Affiliation(s)
- Yannice Santos
- Environmental and Sanitary Engineering Course, Federal Institute of Education, Science and Technology—Campus Juazeiro do Norte, Juazeiro do Norte 63048-080, Brazil
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-010, Brazil
| | - Gilvânia Costa
- Environmental and Sanitary Engineering Course, Federal Institute of Education, Science and Technology—Campus Juazeiro do Norte, Juazeiro do Norte 63048-080, Brazil
| | - Jorge Menezes
- Science and Technology Center, Federal University of Cariri, Juazeiro do Norte 63048-080, Brazil
| | - Alex Feitosa
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-010, Brazil
| | - Henrique Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-010, Brazil
| | - Diniz Sena
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-010, Brazil
| | - Francisco Filho
- Science and Technology Center, Federal University of Cariri, Juazeiro do Norte 63048-080, Brazil
| | - Raimundo Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-010, Brazil
| |
Collapse
|
4
|
Niu J, Cui C, Zhang Y, Zhang L, Li H, Zhang Y, Hu H, Zhang J, Xie Y. Magnetic Biochar Composites Modified with Branched Polyethyleneimine for Highly Efficient Cr(VI) Removal from Water. ChemistrySelect 2022. [DOI: 10.1002/slct.202201500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaojiao Niu
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Can Cui
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Yu Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Li Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Hongxiong Li
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Ying Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Hailiang Hu
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Jianhui Zhang
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| | - Yadian Xie
- School of Chemical Engineering Guizhou Minzu University Guiyang 550025 Guizhou China
| |
Collapse
|
5
|
Zaib Q, Kyung D. Optimized removal of hexavalent chromium from water using spent tea leaves treated with ascorbic acid. Sci Rep 2022; 12:8845. [PMID: 35614301 PMCID: PMC9132990 DOI: 10.1038/s41598-022-12787-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Spent tea leaves were functionalized with ascorbic acid to obtain treated tea waste (t-TW) to encourage the adsorption of hexavalent chromium from water. The adsorption removal of Cr(VI) was systematically investigated as a function of four experimental factors: pH (2–12), initial Cr(VI) concentration (1–100 mg L−1), t-TW dosage (0–4 g L−1), and temperature (10–50 °C) by following a statistical experimental design. A central composite rotatable experimental design based on a response surface methodology was used to establish an empirical model that assessed the individual and combined effects of factors on adsorptive removal of Cr(VI). The model was experimentally verified and statistically validated then used to predict optimal adsorption removal of Cr(VI) from water. At optimized conditions, ≥ 99% of 1 mg L−1 Cr(VI) can be removed by 4 g L−1 t-TW at a pH of 9. The adsorptive mechanism was assessed by conducting kinetics and equilibrium studies. The adsorption of Cr(VI) by t-TW followed a pseudo-second-order kinetics model (k2 = 0.001 g mg−1 h−1) and could be described by Langmuir and Temkin isotherms, indicating monolayer adsorption and predominantly adsorbate-adsorbent interactions. The t-TW exhibited a competitive Cr(VI) adsorption capacity of 232.2 mg g−1 compared with the other low-cost adsorbents. These results support the utilization of tea waste for the removal of hazardous metal contaminants from aqueous systems.
Collapse
Affiliation(s)
- Qammer Zaib
- School of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan, 44610, Republic of Korea
| | - Daeseung Kyung
- School of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
6
|
Nathan RJ, Barr D, Rosengren RJ. Six fruit and vegetable peel beads for the simultaneous removal of heavy metals by biosorption. ENVIRONMENTAL TECHNOLOGY 2022; 43:1935-1952. [PMID: 33252309 DOI: 10.1080/09593330.2020.1858183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
In this study, a comparison between the biosorption performance of six fruit and vegetable peels, namely kiwifruit (KP), apple, banana, cucumber, orange and potato immobilized on sodium alginate beads has been made. Inductively coupled plasma coupled with mass spectroscopy was used for measuring the concentration of metal ions in solution before and after biosorption. A range of kinetic models were also applied to the biosorption batch data. The results showed that biosorption percentage of the ions were different on the various beads. For example, the decreasing order of biosorption by one KP bead at equilibrium was Cd > Cu > Hg > Ni > Pb > Cr > As, with approximately 92%, 84%, 80%, 75%, 67%, 34%, and 17% simultaneous removal of ions, respectively. The fastest biosorption was seen with Cd and Pb, as both reached equilibrium by 24 h. Equilibrium time of all other ions occurred by 48 h. While all beads in their unmodified form were suitable for the removal of divalent cations, KP bead showed significantly higher removal of the anion hexavalent Cr. Biosorption of Cd, Hg and Ni was limited by both pseudo-first order and pseudo-second order reaction rates. For Cr and Cu, the reaction was controlled by film diffusion and pseudo-first order rates. At a higher solution concentration, the preference of ions biosorbed as well as their percentage removed changed. Overall, the results indicated that KP beads show promise as a cost-effective method for removing toxic ions by biosorption, especially hexavalent chromium from drinking water.
Collapse
Affiliation(s)
- Risha Jasmine Nathan
- Pharmacology & Toxicology Department, University of Otago, Dunedin, New Zealand
- Geology Department, University of Otago, Dunedin, New Zealand
| | - Dave Barr
- Centre for Trace Element Analysis, Chemistry Department, University of Otago, Dunedin, New Zealand
| | - Rhonda J Rosengren
- Pharmacology & Toxicology Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Basnet P, Gyawali D, Nath Ghimire K, Paudyal H. An assessment of the lignocellulose-based biosorbents in removing Cr(VI) from contaminated water: A critical review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Esposito MC, Corsi I, Russo GL, Punta C, Tosti E, Gallo A. The Era of Nanomaterials: A Safe Solution or a Risk for Marine Environmental Pollution? Biomolecules 2021; 11:441. [PMID: 33809769 PMCID: PMC8002239 DOI: 10.3390/biom11030441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the application of engineered nanomaterials (ENMs) in environmental remediation gained increasing attention. Due to their large surface area and high reactivity, ENMs offer the potential for the efficient removal of pollutants from environmental matrices with better performances compared to conventional techniques. However, their fate and safety upon environmental application, which can be associated with their release into the environment, are largely unknown. It is essential to develop systems that can predict ENM interactions with biological systems, their overall environmental and human health impact. Until now, Life-Cycle Assessment (LCA) tools have been employed to investigate ENMs potential environmental impact, from raw material production, design and to their final disposal. However, LCA studies focused on the environmental impact of the production phase lacking information on their environmental impact deriving from in situ employment. A recently developed eco-design framework aimed to fill this knowledge gap by using ecotoxicological tools that allow the assessment of potential hazards posed by ENMs to natural ecosystems and wildlife. In the present review, we illustrate the development of the eco-design framework and review the application of ecotoxicology as a valuable strategy to develop ecosafe ENMs for environmental remediation. Furthermore, we critically describe the currently available ENMs for marine environment remediation and discuss their pros and cons in safe environmental applications together with the need to balance benefits and risks promoting an environmentally safe nanoremediation (ecosafe) for the future.
Collapse
Affiliation(s)
- Maria Consiglia Esposito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy;
| | - Gian Luigi Russo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano and INSTM Local Unit, Via Mancinelli 7, 20131 Milano, Italy;
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.C.E.); (G.L.R.); (E.T.)
| |
Collapse
|
9
|
Isiuku BO, Enyoh CE. Monitoring and modeling of heavy metal contents in vegetables collected from markets in Imo State, Nigeria. Environ Anal Health Toxicol 2020; 35:e2020003. [PMID: 32570998 PMCID: PMC7308666 DOI: 10.5620/eaht.e2020003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/20/2020] [Indexed: 11/25/2022] Open
Abstract
Vegetable consumption is one major exposure route of heavy metals to humans, but few data exist for Imo State, Nigeria. We assessed the contamination levels and associated health risk of cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in vegetables (Telfairia occidentalis, Pterocarpus mildbraedii, Gongronenina latifolium and Vernonia amygdalina) that are consumed frequently from markets (n=16) in three zones of Imo State, Nigeria. After wet-digestion of samples, the supernatant were analyzed using atomic absorption spectrophotometry. The mean concentrations in the four vegetables ranged from 0.006±0.003 mg/kg to 0.011±0.007 mg/kg for Cd, 0.064±0.012 mg/kg to 1.225±0.226 mg/kg for Co, 10.711±1.968 mg/kg to 25.088±13.975 mg/kg for Cu, 0.062±0.013 mg/kg to 0.307±0.210 mg/kg for Ni, 0.006±0.005 mg/kg to 0.012±0.002 mg/kg for Pb and 63.55±4.055 mg/kg to 104.126±24.080 mg/kg for Zn. Except for Zn, all heavy metals in the various vegetables were below the joint standard of Food and Agriculture Organization and World Health Organization. Although, overall load of heavy metal was very low, Zn had the highest contamination factor in vegetables. Heavy metals concentrations in vegetables generally showed low to high variations and statistically different (p<0.05). Average daily intake was below the provisional tolerance limit except for Zn. The target hazard quotient of metals in vegetables for both children and adults were below 1, indicating no potential risk to the public. Overall, heavy metals hazard index were below 1, indicating acceptable level of non-carcinogenic adverse health effect. However, potential multi-element contamination from ingestion is possible as revealed by the correlation profiling of heavy metals.
Collapse
|
10
|
Walnut Shell Powder Can Limit Acid Mine Drainage Formation by Shaping the Bacterial Community Structure. Curr Microbiol 2019; 76:1199-1206. [PMID: 31278425 DOI: 10.1007/s00284-019-01734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/01/2019] [Indexed: 01/04/2023]
Abstract
The formation of acid mine drainage (AMD), which results from the oxidation of sulfur minerals by air and water, can be accelerated by acidophilic and chemolithotrophic bacteria such as Acidithiobacillus ferrooxidans. Our previous study revealed that walnut shell powder and its phenolic component inhibit the growth of A. ferrooxidans. However, their inhibitory effect on AMD formation in the environment needs verification. We established a bioleaching system to test whether walnut shell powder and its phenolic component can limit AMD formation. Our results showed that lignin and cellulose isolated from walnut shell decreased metal ion concentrations through absorption, whereas the phenolic component increased pH by downregulating the expression of Fe2+-oxidizing genes and rus operon genes of A. ferrooxidans. Only walnut shell powder showed an excellent ability to curb AMD by binding metal ions and increasing the pH value. On probing deeper into the alteration of the bacterial community structure in the bioleaching system, we found that the bacterial community became more diverse-the amount of A. ferrooxidans decreased and that of some non-acidophilic bacteria increased. The bacterial community in samples treated with walnut shell powder or its phenolic component had low abundance in the pathways of metabolism and energy production, as determined by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). In other words, preponderant microbes, mainly A. ferrooxidans, lacked energy to grow well in the treated samples. Our findings provide a practical applicability of walnut shell powder to reduce leaching from a complex environmental community.
Collapse
|
11
|
Lan G, Zhang Y, Liu Y, Qiu H, Liu P, Yan J, Zhang T. Modified peach stones by ethylenediamine as a new adsorbent for removal of Cr (VI) from wastewater. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1604752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Guihong Lan
- College of Chemistry and Chemical Engineering, Southwest petroleum University, Chengdu, China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, China
| | - Yingting Zhang
- College of Chemistry and Chemical Engineering, Southwest petroleum University, Chengdu, China
| | - Yongqiang Liu
- Faculty of Engineering and Physical sciences, University of Southampton, Southampton, UK
| | - Haiyan Qiu
- College of Chemistry and Chemical Engineering, Southwest petroleum University, Chengdu, China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, China
| | - Peng Liu
- Northwest Sichuan Gas Mine, Southwest Oil and Gas Field Branch, Chengdu, China
| | - Junhua Yan
- Sichuan Zhuchuang Safety Technology Co., Ltd, Chengdu, China
| | - Tailiang Zhang
- Sichuan Kuineng Environmental Protection Technology Co., Ltd, Chengdu, China
| |
Collapse
|
12
|
Reddy KRS, Kumar V, Prasad MNV, Kumar NS. Moringa oleifera (drumstick tree) seed coagulant protein (MoCP) binds cadmium - preparation and characterization of nanoparticles. EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/04.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Moringa oleifera is grown globally. It is a multipurpose tree and the seeds are rich in phytochemicals with antimicrobial activities. The crude powder of seeds clarify the turbid and metal contaminated water. M. oleifera (drumstick tree) seed coagulant protein (MoCP) was isolated to homogeneity from the crude extracts by carboxymethyl cellulose chromatography (CMC) and gel filtration. The molecular weight of the protein on gel filtration was 13 kDa and in SDS-PAGE it migrated as a single band under reducing conditions with molecular mass of 6.5 kDa (dimeric). Immobilized MoCP selectively binds cadmium from aqueous solutions (pH 2.0-7.0) with maximum binding at pH 6.0 in 180 min when tested at 10-600 minutes. It also bound the metal in the concentration range of 30-70mgL-1. The adsorption kinetics was better described by pseudo second order and the data better explained by freundlich isotherm model than Langmuir isotherm model as in Freundlich model the correlation coefficient (R2) is high and the calculated qmax is very close to the experimental qmax rather than Langmuir isotherm model. Furthermore, the nanoparticles of MoCP were prepared and characterized using transmission electron microscopy (TEM). The authenticity of the isolated protein and the nanopraticles prepared was confirmed by specific reactivity with the MoCP antibody raised earlier in our laboratory.
Collapse
Affiliation(s)
- Konada R. S. Reddy
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad , India
| | - Vinay Kumar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad , India
| | - Majeti N. V. Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad , India
| | - Nadimpalli S. Kumar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad , India
| |
Collapse
|
13
|
Qureshi MI, Patel F, Al-Baghli N, Abussaud B, Tawabini BS, Laoui T. A Comparative Study of Raw and Metal Oxide Impregnated Carbon Nanotubes for the Adsorption of Hexavalent Chromium from Aqueous Solution. Bioinorg Chem Appl 2017; 2017:1624243. [PMID: 28487625 PMCID: PMC5402250 DOI: 10.1155/2017/1624243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/12/2017] [Accepted: 03/16/2017] [Indexed: 11/17/2022] Open
Abstract
The present study reports the use of raw, iron oxide, and aluminum oxide impregnated carbon nanotubes (CNTs) for the adsorption of hexavalent chromium (Cr(VI)) ions from aqueous solution. The raw CNTs were impregnated with 1% and 10% loadings (weight %) of iron oxide and aluminum oxide nanoparticles using wet impregnation technique. The synthesized materials were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Batch adsorption experiments were performed to assess the removal efficiency of Cr(VI) ions from water and the effects of pH, contact time, adsorbent dosage, and initial concentration of the Cr(VI) ions were investigated. Results of the study revealed that impregnated CNTs achieved significant increase in the removal efficiency of Cr(VI) ions compared to raw CNTs. In fact, both CNTs impregnated with 10% loading of iron and aluminum oxides were able to remove up to 100% of Cr(VI) ions from aqueous solution. Isotherm studies were carried out using Langmuir and Freundlich isotherm models. Adsorption kinetics of Cr(VI) ions from water was found to be well described by the pseudo-second-order model. The results suggest that metallic oxide impregnated CNTs have very good potential application in the removal of Cr(VI) ions from water resulting in better environmental protection.
Collapse
Affiliation(s)
| | - Faheemuddin Patel
- Department of Mechanical Engineering, KFUPM, Dhahran 31261, Saudi Arabia
| | - Nadhir Al-Baghli
- Department of Chemical Engineering, KFUPM, Dhahran 31261, Saudi Arabia
| | - Basim Abussaud
- Department of Chemical Engineering, KFUPM, Dhahran 31261, Saudi Arabia
| | | | - Tahar Laoui
- Department of Mechanical Engineering, KFUPM, Dhahran 31261, Saudi Arabia
| |
Collapse
|
14
|
Marín-Allende MJ, Romero-Guzmán ET, Ramírez-García JJ, Reyes-Gutiérrez LR. Chromium(VI) removal from aqueous medium by maize cane and agave bagasse biomasses. PARTICULATE SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1080/02726351.2016.1194350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. J. Marín-Allende
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacác, México
- Universidad Autónoma del Estado de México, Toluca, México
- Tecnológico de Estudios Superiores Tianguistenco, Santiago Tianguistenco, Estado de México, México
| | | | | | | |
Collapse
|
15
|
Competitive and Noncompetitive Batch Sorption Studies of Aqueous Cd(II) and Pb(II) Uptake onto Coffea canephoraHusks, Cyperus papyrusStems, and Musaspp. Peels. J CHEM-NY 2015. [DOI: 10.1155/2015/696098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coffea canephora,Cyperus papyrus,andMusaspp. were studied for competitive and noncompetitive removal of aqueous Cd2+and Pb2+. The optimal conditions were pH 4.5 and agitation time 3.0 hours. Biomass constituent ions showed no interference effects whereas cation exchange capacity values corresponded to the sorption efficiencies. XRD spectroscopy revealed surface oxygen and nitrogen groups that provide binding sites for metal ions. The maximum sorption efficiency ranges for metal ions in noncompetitive media were 95.2–98.7% forC. canephora, 42.0–91.3% forC. papyrus,and 79.9–92.2% forMusaspp. and in competitive sorption 90.8–98.0% forC. canephora, 19.5–90.4% forC. papyrus,and 56.4–89.3% forMusaspp. The Pb2+ions uptake was superior to that of Cd2+ions in competitive and noncompetitive media. In competitive sorption synergistic effects were higher for Cd2+than Pb2+ions. The pseudo-second-order kinetic model fitted experimental data with0.917≤R2≥1.000for Pb2+ions and0.711≤R2≥0.999for Cd2+ions. The Langmuir model fitted noncompetitive sorption data with0.769≤R2≥0.999; moreover the Freundlich model fitted competitive sorption data with0.867≤R2≥0.989. Noncompetitive sorption was monolayer chemisorption whereas competitive sorption exhibited heterogeneous sorption mechanisms.
Collapse
|
16
|
Krishnani KK, Srinives S, Mohapatra BC, Boddu VM, Hao J, Meng X, Mulchandani A. Hexavalent chromium removal mechanism using conducting polymers. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:99-106. [PMID: 23507365 DOI: 10.1016/j.jhazmat.2013.01.079] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/11/2013] [Accepted: 01/31/2013] [Indexed: 05/22/2023]
Abstract
We report detoxification of Cr(VI) into Cr(III) using electrochemically synthesized polyaniline (PANI), polypyrrole (PPY), PANI nanowires (PANI-NW) and palladium-decorated PANI (PANI-Pd) thin films. Percent Cr(VI) reduction was found to be decreased with an increase in pH from 1.8 to 6.8 and with initial Cr(VI) concentration ranging from 2.5 to 10mg/L. Efficacy of PANI increased at higher temp of 37 °C as compared to 30 °C. PANI-Pd was found to be most effective for all three initial Cr(VI) concentrations at pH 1.8. However, efficacy of PANI-Pd was significantly reduced at higher pHs of 5 and 6.8. Efficacy of PANI and PANI-NW was found to nearly the same. However, there was a significant reduction in effectiveness of PANI-NW at 10mg/L of Cr(VI) at all the three pHs studied, which could be attributed to degradation of PANI-NW by higher initial Cr(VI) concentration. PPY and PANI-NW were found to be highly sensitive with respect to pH and Cr(VI) initial concentration. Chromium speciation on PANI film was carried out by total chromium analysis and XPS, which revealed Cr(III) formation and its subsequent adsorption on the polymer. PANI-Pd and PANI are recommended for future sensor applications for chromium detection at low pH.
Collapse
Affiliation(s)
- K K Krishnani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Mohamad OA, Hao X, Xie P, Hatab S, Lin Y, Wei G. Biosorption of copper (II) from aqueous solution using non-living Mesorhizobium amorphae strain CCNWGS0123. Microbes Environ 2012; 27:234-41. [PMID: 22353770 PMCID: PMC4036052 DOI: 10.1264/jsme2.me11331] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/23/2011] [Indexed: 11/12/2022] Open
Abstract
The mining industry generates huge amounts of wastewater, containing toxic heavy metals. Treatment to remove heavy metals is necessary and recent work has been focused on finding more environmentally friendly materials for removing heavy metals from wastewater. Biosorption can be an effective process for heavy metal removal from aqueous solutions. Our objectives were to investigate the removal of copper (II) from aqueous solutions using dead cells of Mesorhizobium amorphae CCNWGS0123 under differing levels of pH, agitation speed, temperature, initial copper concentration, biosorbent dose and contact time using flame atomic absorption spectroscopy for metal estimation. The maximum copper removal rate was achieved at pH 5.0, agitation speed 150×g, temperature 28°C and initial Cu (II) concentration of 100 mg L(-1). Maximum biosorption capacity was at 0.5 g L⁻¹ and equilibrium was attained within 30 min. Langmuir and Freundlich isotherms showed correlation coefficients of 0.958 and 0.934, respectively. Fourier transform-infrared spectroscopy (FT-IR) analysis indicated that many functional groups, such as O-H, N-H, C-H, C=O, -NH, -CN, C-N, C-O, amide -I, -II, -III and unsaturated alkenes, alkyls and aromatic groups on the cell surface were involved in the interaction between CCNWGS0123 and Cu. Scanning electron microscope and energy dispersive X-ray scanning results showed deformation, aggregation, and cell-surface damage due to the precipitation of copper on the cell surface. Dead cells of CCNWGS0123 showed potential as an efficient biosorbent for the removal of Cu²⁺ from aqueous solutions.
Collapse
Affiliation(s)
- Osama Abdalla Mohamad
- College of Life Sciences, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuli Hao
- College of Life Sciences, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pin Xie
- College of Life Sciences, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaimaa Hatab
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanbing Lin
- College of Life Sciences, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- College of Life Sciences, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|