1
|
Kowli S, Minocherhomji S, Martinez OM, Busque S, Lebrec H, Maecker HT. Characterization of immune phenotypes in peripheral blood of adult renal transplant recipients using mass cytometry (CyTOF). Immunohorizons 2025; 9:vlae013. [PMID: 39965168 PMCID: PMC11841977 DOI: 10.1093/immhor/vlae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 02/20/2025] Open
Abstract
Chronic immunosuppressive therapies are crucial in organ transplantation but can increase the risk of opportunistic infections and cancer over time. We investigated immune status changes in 10 kidney transplant patients and 11 age-matched healthy adults using broad in vitro stimulation of subject-derived peripheral blood mononuclear cells followed by mass cytometry by time of flight over 6 mo. Overall, the immune cells of transplant patients exhibited increased CD8+ T cell activation and differentiation compared with healthy donors, with elevated CD8+ CD57+, MIP-1β, and interferon γ production (P < 0.05, P < 0.05, and P < 0.01, respectively). CD107a and granzyme B expression were increased in CD8+ T cells and CD56bright natural killer cells (P < 0.05 and P < 0.01, respectively), while T regulatory cells had decreased interleukin-10 production (P < 0.05). These changes indicated a proinflammatory environment influenced by induction therapy and ongoing maintenance drugs. Additionally, transplant recipients displayed signs of immune modulation, including decreased tumor necrosis factor α, interferon γ, and MIP-1β expression in γδT cells (P < 0.05 and P < 0.01), and reduced interleukin-17 and granulocyte-macrophage colony-stimulating factor expression in CD8+ T memory cell subsets (P < 0.05). The diverse functional changes underscore the importance of comprehensive immune status profiling for optimizing individual treatment strategies and developing better immunosuppressants that specifically target activated cell populations.
Collapse
Affiliation(s)
- Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sheroy Minocherhomji
- Amgen Inc., Thousand Oaks, CA, United States
- Eli Lilly and Company, Indianapolis, IN 46285, United States
| | - Olivia M Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States
| | - Stephan Busque
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States
| | - Herve Lebrec
- Amgen Inc., Thousand Oaks, CA, United States
- Sonoma Biotherapeutics, South San Francisco, CA 94080, United States
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
2
|
Artuc M, Zuberbier T, Peiser M. Nickel Challenge In Vitro Affects CD38 and HLA-DR Expression in T Cell Subpopulations from the Blood of Patients with Nickel Allergy. Int J Mol Sci 2023; 25:298. [PMID: 38203472 PMCID: PMC10778727 DOI: 10.3390/ijms25010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Nickel allergy is a major health problem and shows clinical manifestation of contact eczema. The response of specific lymphocyte subpopulations in sensitized patients after new challenge to nickel has until now not been studied in detail. To evaluate if nickel-based elicitation reaction could be objectively identified by multi-parametric flow cytometry, immunophenotyping of specific T cells was applied. White blood cells from 7 patients (4 positive in patch test, 3 negative) were challenged by nickel and in vitro short-term culture. Standardized antibody-dye combinations, specific for T helper(h)1, Th17 and cytotoxic T cell activation, were selected according to the recommendations of Stanford Human Immune Monitoring Center. In cytotoxic CD8+CCR7+CD45RA+ T cells from patients suffering from nickel allergy, CD38 and HLA-DR were elevated comparing to healthy donors. After challenge to nickel in vitro both markers decreased in CD8+CCR7+CD45RA+ T cells but found up-regulated in CD4+CCR7+CD45RA+CCR6-CXCR3+Th1 cells. Intracellular expression of T-bet and RORγt further indicated Th1 and Th17 cells. Finally, CD4+CD25+CCR4- T cells increased after challenge with nickel in PBMCs of patients with nickel allergy. Flow cytometry based quantification of T cell markers might be used as a specific and reliable method to detect chemical induced skin sensitization and confirm diagnostic patch testing in the clinics.
Collapse
Affiliation(s)
- Metin Artuc
- Department of Dermatology and Allergy, Allergy Center Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Torsten Zuberbier
- Berlin Institute of Allergology, Charité-Universitätsmedizin, Campus Benjamin Franklin, 12203 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Matthias Peiser
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| |
Collapse
|
3
|
Bai B, Li T, Zhao J, Zhao Y, Zhang X, Wang T, Zhang N, Wang X, Ba X, Xu J, Yu Y, Wang B. The Tyrosine Phosphatase Activity of PTPN22 Is Involved in T Cell Development via the Regulation of TCR Expression. Int J Mol Sci 2023; 24:14505. [PMID: 37833951 PMCID: PMC10572452 DOI: 10.3390/ijms241914505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor (TCR)-mediated signaling pathway, such as the lymphocyte-specific protein tyrosine kinase (Lck), Src family tyrosine kinases Fyn, and the phosphorylation levels of Zeta-chain-associated protein kinase-70 (ZAP70). For the first time, we have successfully produced PTPN22 CS transgenic mice in which the tyrosine phosphatase activity of PTPN22 is suppressed. Notably, the number of thymocytes in the PTPN22 CS mice was significantly reduced, and the expression of cytokines in the spleen and lymph nodes was changed significantly. Furthermore, PTPN22 CS facilitated the positive and negative selection of developing thymocytes, increased the expression of the TCRαβ-CD3 complex on the thymus cell surface, and regulated their internalization and recycling. ZAP70, Lck, Phospholipase C gamma1(PLCγ1), and other proteins were observed to be reduced in PTPN22 CS mouse thymocytes. In summary, PTPN22 regulates TCR internalization and recycling via the modulation of the TCR signaling pathway and affects TCR expression on the T cell surface to regulate negative and positive selection. PTPN22 affected the development of the thymus, spleen, lymph nodes, and other peripheral immune organs in mice. Our study demonstrated that PTPN22 plays a crucial role in T cell development and provides a theoretical basis for immune system construction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yang Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang 110169, China; (B.B.); (T.L.); (J.Z.); (Y.Z.); (X.Z.); (T.W.); (N.Z.); (X.W.); (X.B.); (J.X.)
| | - Bing Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang 110169, China; (B.B.); (T.L.); (J.Z.); (Y.Z.); (X.Z.); (T.W.); (N.Z.); (X.W.); (X.B.); (J.X.)
| |
Collapse
|
4
|
Shesternya PA, Savchenko AA, Gritsenko OD, Vasileva AO, Kudryavtsev IV, Masterova AA, Isakov DV, Borisov AG. Features of Peripheral Blood Th-Cell Subset Composition and Serum Cytokine Level in Patients with Activity-Driven Ankylosing Spondylitis. Pharmaceuticals (Basel) 2022; 15:ph15111370. [PMID: 36355542 PMCID: PMC9695783 DOI: 10.3390/ph15111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Th cells may exhibit pathological activity depending on the regulatory and functional signals sensed under a wide range of immunopathological conditions, including ankylosing spondylitis (AS). The relationship between Th cells and cytokines is important for diagnoses and for determining treatment. Accordingly, the aim of this study was to investigate the relationship between Th-cell subset composition and serum cytokine profile for patients with activity-driven AS. In our study, patients were divided into two groups according to disease activity: low-activity AS (ASDAS-CRP < 2.1) and high-activity AS (ASDAS-CRP > 2.1). The peripheral blood Th cell subset composition was studied by flow cytometry. Using multiplex analysis, serum cytokine levels were quantified and investigated. It was found that only patients with high-activity AS had reduced central memory (CM) Th1 cells (p = 0.035) but elevated numbers of CM (p = 0.014) and effector memory (EM) Th2 cells (p < 0.001). However, no activity-driven change in the Th17 cell subset composition was observed in AS patients. Moreover, low-AS activity patients had increased numbers of Tfh17 EM cells (p < 0.001), whereas high-AS activity was associated with elevated Tfh2 EM level (p = 0.031). The serum cytokine profiles in AS patients demonstrated that cues stimulating cellular immunity were increased, but patients with high-AS activity reveled increased IL-5 level (p = 0.017). Analyzing the data obtained from AS patients allowed us to conclude that Th cell subset differentiation was mainly affected during the CM stage and characterized the IL-23/IL-17 regulatory axis, whereas increased humoral immunity was observed in the high-AS activity group.
Collapse
Affiliation(s)
- Pavel A. Shesternya
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
- Correspondence:
| | - Andrei A. Savchenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Olga D. Gritsenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
| | - Alexandra O. Vasileva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
| | | | - Alena A. Masterova
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Dmitry V. Isakov
- Academician I.P. Pavlov First St. Petersburg State Medical University, Ministry of Healthcare, 197022 St. Peterburg, Russia
| | - Alexandr G. Borisov
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| |
Collapse
|
5
|
Olin A, Acevedo N, Lakshmikanth T, Chen Y, Johansson C, Alm J, Scheynius A, Brodin P. Longitudinal analyses of development of the immune system during the first five years of life in relation to lifestyle. Allergy 2022; 77:1583-1595. [PMID: 35094423 DOI: 10.1111/all.15232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Changes in immune cell composition during the immunological window within the first years after birth are not fully understood, especially the effect that different lifestyles might have on immune cell functionality. METHODS Peripheral blood mononuclear cells from mothers and their children at birth and at two anvd five years were analyzed by mass cytometry. Immune cell composition and functionality was analyzed according to family lifestyle (anthroposophic and non-anthroposophic). RESULTS We found no significant differences in the proportions of major immune lineages between anthroposophic and non-anthroposophic children at each time point, but there were clear changes over time in the proportions of mononuclear leukocytes, especially in B-cells and T lymphocytes. Phenotypic distances between cord blood and maternal blood were high at birth but decreased sharply the first two years, indicating strong phenotypic convergence with maternal cells. We found that children exhibited similar stimulation responses at birth, but subsequently segregated into two discrete functional trajectories. Trajectory 1 was associated with a decrease in tumor necrosis factor alpha (TNFa) production by CD4+ T- and NK-cells, while Trajectory 2 depicted an increase in the production of IL-2 and interferon gamma (INFg) by T-cells. In both trajectories, there was an increase in IL-17A production by T-cells resulting in prominent differences at five years of age. CONCLUSIONS This exploratory study suggests that leukocyte frequencies and cell phenotypes change with age in the same way across all children, while functional development follows one of two discrete trajectories that largely segregate by family lifestyle, supporting the hypothesis that early environmental exposures imprint immune cell function which may contribute to IgE sensitization. Our results also support that the first two years are critical for the environmental exposures to imprint the immune cells. Further studies with larger sample sizes are required to validate our findings.
Collapse
Affiliation(s)
- Axel Olin
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
| | - Nathalie Acevedo
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
- Institute for Immunological Research University of Cartagena Cartagena Colombia
| | - Tadepally Lakshmikanth
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
| | - Yang Chen
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
| | - Catharina Johansson
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
| | - Johan Alm
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
- Science for Life Laboratory Karolinska Institutet Stockholm Sweden
| | - Petter Brodin
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
- Department of Newborn Medicine Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
6
|
Corsi-Zuelli F, Deakin B, de Lima MHF, Qureshi O, Barnes NM, Upthegrove R, Louzada-Junior P, Del-Ben CM. T regulatory cells as a potential therapeutic target in psychosis? Current challenges and future perspectives. Brain Behav Immun Health 2021; 17:100330. [PMID: 34661175 PMCID: PMC7611834 DOI: 10.1016/j.bbih.2021.100330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Many studies have reported that patients with psychosis, even before drug treatment, have mildly raised levels of blood cytokines relative to healthy controls. In contrast, there is a remarkable scarcity of studies investigating the cellular basis of immune function and cytokine changes in psychosis. The few flow-cytometry studies have been limited to counting the proportion of the major classes of monocyte and lymphocytes without distinguishing their pro- and anti-inflammatory subsets. Moreover, most of the investigations are cross-sectional and conducted with patients on long-term medication. These features make it difficult to eliminate confounding of illness-related changes by lifestyle factors, disease duration, and long exposure to antipsychotics. This article focuses on regulatory T cells (Tregs), cornerstone immune cells that regulate innate and adaptive immune forces and neuro-immune interactions between astrocytes and microglia. Tregs are also implicated in cardio-metabolic disorders that are common comorbidities of psychosis. We have recently proposed that Tregs are hypofunctional ('h-Tregs') in psychosis driven by our clinical findings and other independent research. Our h-Treg-glial imbalance hypothesis offers a new account for the co-occurrence of systemic immune dysregulation and mechanisms of psychosis development. This article extends our recent review, the h-Treg hypothesis, to cover new discoveries on Treg-based therapies from pre-clinical findings and their clinical implications. We provide a detailed characterisation of Treg studies in psychosis, identifying important methodological limitations and perspectives for scientific innovation. The outcomes presented in this article reaffirms our proposed h-Treg state in psychosis and reveals emerging preclinical research suggesting the potential benefit of Treg-enhancing therapies. There is a clear need for longitudinal studies conducted with drug-naïve or minimally treated patients using more sophisticated techniques of flow-cytometry, CyTOF expression markers, and in vitro co-culture assays to formally test the suppressive capacity of Tregs. Investment in Treg research offers major potential benefits in targeting emerging immunomodulatory treatment modalities on person-specific immune dysregulations.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Brazil
- Center for Research on Inflammatory Diseases – CRID, Ribeirão Preto Medical School, University of São Paulo, São Paulo, 14048-900, Brazil
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Mikhael Haruo Fernandes de Lima
- Center for Research on Inflammatory Diseases – CRID, Ribeirão Preto Medical School, University of São Paulo, São Paulo, 14048-900, Brazil
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Brazil
| | - Omar Qureshi
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive Edgbaston, Birmingham, B15 2TT, UK
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, B15 2SQ, UK
| | - Nicholas M. Barnes
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive Edgbaston, Birmingham, B15 2TT, UK
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Prichatts Rd, Edgbaston, B152TT, UK
- Birmingham Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, B4 6NH, UK
| | - Paulo Louzada-Junior
- Center for Research on Inflammatory Diseases – CRID, Ribeirão Preto Medical School, University of São Paulo, São Paulo, 14048-900, Brazil
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Brazil
| | - Cristina Marta Del-Ben
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Brazil
| |
Collapse
|