1
|
Brischigliaro M, Ahn A, Hong S, Fontanesi F, Barrientos A. Emerging mechanisms of human mitochondrial translation regulation. Trends Biochem Sci 2025:S0968-0004(25)00056-8. [PMID: 40221217 DOI: 10.1016/j.tibs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
Mitochondrial translation regulation enables precise control over the synthesis of hydrophobic proteins encoded by the organellar genome, orchestrating their membrane insertion, accumulation, and assembly into oxidative phosphorylation (OXPHOS) complexes. Recent research highlights regulation across all translation stages (initiation, elongation, termination, and recycling) through a complex interplay of mRNA structures, specialized translation factors, and unique regulatory mechanisms that adjust protein levels for stoichiometric assembly. Key discoveries include mRNA-programmed ribosomal pausing, frameshifting, and termination-dependent re-initiation, which fine-tune protein synthesis and promote translation of overlapping open reading frames (ORFs) in bicistronic transcripts. In this review, we examine these advances, which are significantly enhancing our understanding of mitochondrial gene expression.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Seungwoo Hong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th Street, Miami, FL 33125, USA.
| |
Collapse
|
2
|
Wan X, Wang L, Khan MA, Peng L, Sun X, Yi X, Wang Z, Chen K. NAT10-mediated N4-acetylcytidine modification in KLF9 mRNA promotes adipogenesis. Cell Death Differ 2025:10.1038/s41418-025-01483-x. [PMID: 40123006 DOI: 10.1038/s41418-025-01483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Dysfunctional adipogenesis is a major contributor of obesity. N-acetyltransferase 10 (NAT10) plays a crucial role in regulating N4-acetylcysteine (ac4C) modification in tRNA, 18SrRNA, and mRNA. As the sole "writer" in the ac4C modification process, NAT10 enhances mRNA stability and translation efficiency. There are few reports on the relationship between NAT10 and adipogenesis, as well as obesity. Our study revealed a significant upregulation of NAT10 in adipose tissues of obese individuals and high-fat diet-fed mice. Furthermore, our findings revealed that the overexpression of NAT10 promotes adipogenesis, while its silencing inhibits adipogenesis in both human adipose tissue-derived stem cells (hADSCs) and 3T3-L1 cells. These results indicate the intimate relationship between NAT10 and obesity. After silencing mouse NAT10 (mNAT10), we identified 30 genes that exhibited both hypo-ac4C modification and downregulation in their expression, utilizing a combined approach of acRIP-sequencing (acRIP-seq) and RNA-sequencing (RNA-seq). Among these genes, we validated KLF9 as a target of NAT10 through acRIP-PCR. KLF9, a pivotal transcription factor that positively regulates adipogenesis. Our findings showed that NAT10 enhances the stability of KLF9 mRNA and further activates the CEBPA/B-PPARG pathway. Furthermore, a dual-luciferase reporter assay demonstrated that NAT10 can bind to three motifs of mouse KLF9 and one motif of human KLF9. In vivo studies revealed that adipose tissue-targeted mouse AAV-NAT10 (AAV-shRNA-mNAT10) inhibits adipose tissue expansion in mice. Additionally, Remodelin, a specific NAT10 inhibitor, significantly reduced body weight, adipocyte size, and adipose tissue expansion in high-fat diet-fed mice by inhibiting KLF9 mRNA ac4C modification. These findings provide novel insights and experimental evidence of the prevention and treatment of obesity, highlighting NAT10 and its downstream targets as potential therapeutic targets.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
3
|
Yamada H, Iwai H, Hashiya F, Kimura Y, Abe H, Yamamoto J. Concise Affinity-Based Purification of Ligated mRNA for Structure-Activity Relationship Studies of Nucleosugar Modification Patterns. Chembiochem 2025; 26:e202400711. [PMID: 39533830 DOI: 10.1002/cbic.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Position-specific nucleoside sugar modifications have been shown to improve the translational activity and stability of chemically synthesized mRNA. For pharmaceutical applications of chemically modified mRNAs, a rapid purification methodology is imperative to identify the optimal modification pattern. However, while the chemical synthesis of mRNAs can be accomplished by splint ligation of oligonucleotide fragments, the current purification method for ligated mRNAs based on denaturing polyacrylamide gel electrophoresis tends to be time consuming. In this study, we developed a two-step affinity purification method for rapid sample preparation. In this method, ligated mRNA is captured by oligo dT magnetic beads and streptavidin magnetic beads with 3'-biotinylated oligo DNA, which are complementary to the 3'-poly(A) and 5' terminal sequences of the target mRNA, respectively. Therefore, the target mRNA can be isolated from a complex mixture of splint ligations. Using this method, six sugar-modified mRNAs were simultaneously purified, and the translational activities of these mRNAs were evaluated immediately after purification. The results demonstrate that this methodology is suitable for the rapid preparation of various chemically synthesized mRNAs to identify their optimal modification patterns.
Collapse
Affiliation(s)
- Hiroki Yamada
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| | - Hiroto Iwai
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Hiroshi Abe
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Junichiro Yamamoto
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| |
Collapse
|
4
|
Kornienko IV, Aramova OY, Tishchenko AA, Rudoy DV, Chikindas ML. RNA Stability: A Review of the Role of Structural Features and Environmental Conditions. Molecules 2024; 29:5978. [PMID: 39770066 PMCID: PMC11676819 DOI: 10.3390/molecules29245978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The stability of RNA is a critical factor in determining its functionality and degradation in the cell. In recent years, it has been shown that the stability of RNA depends on a complex interaction of external and internal factors. External conditions, such as temperature fluctuations, the level of acidity of the environment, the presence of various substances and ions, as well as the effects of oxidative stress, can change the structure of RNA and affect its stability. Internal factors, including the specific structural features of RNA and its interactions with protein molecules, also have a significant impact on the regulation of the stability of these molecules. In this article, we review the main factors influencing RNA stability, since understanding the factors influencing this extremely complex process is important not only for understanding the regulation of expression at the RNA level but also for developing new methods for isolating and stabilizing RNA in preparation for creating biobanks of genetic material. We reviewed a modern solution to this problem and formulated basic recommendations for RNA storage aimed at minimizing degradation and damage to the molecule.
Collapse
Affiliation(s)
- Igor V. Kornienko
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq. 1, Rostov-on-Don 344003, Russia; (I.V.K.); (D.V.R.); (M.L.C.)
- Federal Research Centre Southern Scientific Centre of the Russian Academy of Sciences, Chekhov Ave. 41, Rostov-on-Don 344006, Russia
- Department of Genetics Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, Rostov-on-Don 344090, Russia
| | - Olga Yu. Aramova
- Federal Research Centre Southern Scientific Centre of the Russian Academy of Sciences, Chekhov Ave. 41, Rostov-on-Don 344006, Russia
- Department of Genetics Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, Rostov-on-Don 344090, Russia
| | - Anna A. Tishchenko
- Department of Big Data and Machine Learning, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, St. Petersburg 197101, Russia;
| | - Dmitriy V. Rudoy
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq. 1, Rostov-on-Don 344003, Russia; (I.V.K.); (D.V.R.); (M.L.C.)
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq. 1, Rostov-on-Don 344003, Russia; (I.V.K.); (D.V.R.); (M.L.C.)
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, New Brunswick, NJ 08901-8525, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bldg 2, Moscow 119048, Russia
| |
Collapse
|
5
|
Laila UE, An W, Xu ZX. Emerging prospects of mRNA cancer vaccines: mechanisms, formulations, and challenges in cancer immunotherapy. Front Immunol 2024; 15:1448489. [PMID: 39654897 PMCID: PMC11625737 DOI: 10.3389/fimmu.2024.1448489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer continues to pose an alarming threat to global health, necessitating the need for the development of efficient therapeutic solutions despite massive advances in the treatment. mRNA cancer vaccines have emerged as a hopeful avenue, propelled by the victory of mRNA technology in COVID-19 vaccines. The article delves into the intricate mechanisms and formulations of cancer vaccines, highlighting the ongoing efforts to strengthen mRNA stability and ensure successful translation inside target cells. Moreover, it discusses the design and mechanism of action of mRNA, showcasing its potential as a useful benchmark for developing efficacious cancer vaccines. The significance of mRNA therapy and selecting appropriate tumor antigens for the personalized development of mRNA vaccines are emphasized, providing insights into the immune mechanism. Additionally, the review explores the integration of mRNA vaccines with other immunotherapies and the utilization of progressive delivery platforms, such as lipid nanoparticles, to improve immune responses and address challenges related to immune evasion and tumor heterogeneity. While underscoring the advantages of mRNA vaccines, the review also addresses the challenges associated with the susceptibility of RNA to degradation and the difficulty in identifying optimum tumor-specific antigens, along with the potential solutions. Furthermore, it provides a comprehensive overview of the ongoing research efforts aimed at addressing these hurdles and enhancing the effectiveness of mRNA-based cancer vaccines. Overall, this review is a focused and inclusive impression of the present state of mRNA cancer vaccines, outlining their possibilities, challenges, and future predictions in the fight against cancer, ultimately aiding in the development of more targeted therapies against cancer.
Collapse
Affiliation(s)
| | | | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
6
|
Hang R, Li H, Liu W, Wang R, Hu H, Chen M, You C, Chen X. HOT3/eIF5B1 confers Kozak motif-dependent translational control of photosynthesis-associated nuclear genes for chloroplast biogenesis. Nat Commun 2024; 15:9878. [PMID: 39543117 PMCID: PMC11564774 DOI: 10.1038/s41467-024-54194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Photosynthesis requires chloroplasts, in which most proteins are nucleus-encoded and produced via cytoplasmic translation. The translation initiation factor eIF5B gates the transition from initiation (I) to elongation (E), and the Kozak motif is associated with translation efficiency, but their relationship is previously unknown. Here, with ribosome profiling, we determined the genome-wide I-E transition efficiencies. We discovered that the most prevalent Kozak motif is associated with high I-E transition efficiency in Arabidopsis, rice, and wheat, thus implicating the potential of the Kozak motif in facilitating the I-E transition. Indeed, the effects of Kozak motifs in promoting translation depend on HOT3/eIF5B1 in Arabidopsis. HOT3 preferentially promotes the translation of photosynthesis-associated nuclear genes in a Kozak motif-dependent manner, which explains the chloroplast defects and reduced photosynthesis activity of hot3 mutants. Our study linked the Kozak motif to eIF5B-mediated I-E transition during translation and uncovered the function of HOT3 in the cytoplasmic translational control of chloroplast biogenesis and photosynthesis.
Collapse
Affiliation(s)
- Runlai Hang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
| | - Hao Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Wenjing Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Runyu Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Hao Hu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Chenjiang You
- College of Life Sciences, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| | - Xuemei Chen
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
7
|
Delehedde C, Ciganek I, Bernard PL, Laroui N, Da Silva CC, Gonçalves C, Nunes J, Bennaceur-Griscelli AL, Imeri J, Huyghe M, Even L, Midoux P, Rameix N, Guittard G, Pichon C. Enhancing natural killer cells proliferation and cytotoxicity using imidazole-based lipid nanoparticles encapsulating interleukin-2 mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102263. [PMID: 39104868 PMCID: PMC11298638 DOI: 10.1016/j.omtn.2024.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
mRNA applications have undergone unprecedented applications-from vaccination to cell therapy. Natural killer (NK) cells are recognized to have a significant potential in immunotherapy. NK-based cell therapy has drawn attention as allogenic graft with a minimal graft-versus-host risk leading to easier off-the-shelf production. NK cells can be engineered with either viral vectors or electroporation, involving high costs, risks, and toxicity, emphasizing the need for alternative way as mRNA technology. We successfully developed, screened, and optimized novel lipid-based platforms based on imidazole lipids. Formulations are produced by microfluidic mixing and exhibit a size of approximately 100 nm with a polydispersity index of less than 0.2. They are able to transfect NK-92 cells, KHYG-1 cells, and primary NK cells with high efficiency without cytotoxicity, while Lipofectamine Messenger Max and D-Lin-MC3 lipid nanoparticle-based formulations do not. Moreover, the translation of non-modified mRNA was higher and more stable in time compared with a modified one. Remarkably, the delivery of therapeutically relevant interleukin 2 mRNA resulted in extended viability together with preserved activation markers and cytotoxic ability of both NK cell lines and primary NK cells. Altogether, our platforms feature all prerequisites needed for the successful deployment of NK-based therapeutic strategies.
Collapse
Affiliation(s)
- Christophe Delehedde
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Sanofi R&D, Integrated Drug Discovery, 94400 Vitry-sur-Seine, France
| | - Ivan Ciganek
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Inserm UMS 55 ART ARNm and University of Orléans, 45100 Orléans, France
- Sanofi R&D, Integrated Drug Discovery, 94400 Vitry-sur-Seine, France
| | - Pierre Louis Bernard
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Cancer Research Centre of Marseille, CRCM, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, 13273 Marseille, France
| | - Nabila Laroui
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Inserm UMS 55 ART ARNm and University of Orléans, 45100 Orléans, France
| | - Cathy Costa Da Silva
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Cancer Research Centre of Marseille, CRCM, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, 13273 Marseille, France
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Inserm UMS 55 ART ARNm and University of Orléans, 45100 Orléans, France
| | - Jacques Nunes
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Cancer Research Centre of Marseille, CRCM, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, 13273 Marseille, France
| | - Anne-Lise Bennaceur-Griscelli
- Inserm U 1310 F-94800 Villejuif and CITHERA/ UMS45 Infrastructure INGESTEM, 91100 Evry, France
- University Paris Saclay, APHP Paul Brousse Hospital, School of Medicine, 94270 Le Kremlin Bicêtre, France
| | - Jusuf Imeri
- Inserm U 1310 F-94800 Villejuif and CITHERA/ UMS45 Infrastructure INGESTEM, 91100 Evry, France
- University Paris Saclay, APHP Paul Brousse Hospital, School of Medicine, 94270 Le Kremlin Bicêtre, France
| | - Matthias Huyghe
- Inserm U 1310 F-94800 Villejuif and CITHERA/ UMS45 Infrastructure INGESTEM, 91100 Evry, France
- University Paris Saclay, APHP Paul Brousse Hospital, School of Medicine, 94270 Le Kremlin Bicêtre, France
| | - Luc Even
- Sanofi R&D, Integrated Drug Discovery, 94400 Vitry-sur-Seine, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Inserm UMS 55 ART ARNm and University of Orléans, 45100 Orléans, France
| | - Nathalie Rameix
- Sanofi R&D, Integrated Drug Discovery, 94400 Vitry-sur-Seine, France
| | - Geoffrey Guittard
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Cancer Research Centre of Marseille, CRCM, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, 13273 Marseille, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Inserm UMS 55 ART ARNm and University of Orléans, 45100 Orléans, France
- Institut Universitaire de France, 1 rue Descartes, 75035 Paris, France
| |
Collapse
|
8
|
Palos K, Nelson Dittrich AC, Lyons EH, Gregory BD, Nelson ADL. Comparative analyses suggest a link between mRNA splicing, stability, and RNA covalent modifications in flowering plants. BMC PLANT BIOLOGY 2024; 24:768. [PMID: 39134938 PMCID: PMC11318313 DOI: 10.1186/s12870-024-05486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND In recent years, covalent modifications on RNA nucleotides have emerged as pivotal moieties influencing the structure, function, and regulatory processes of RNA Polymerase II transcripts such as mRNAs and lncRNAs. However, our understanding of their biological roles and whether these roles are conserved across eukaryotes remains limited. RESULTS In this study, we leveraged standard polyadenylation-enriched RNA-sequencing data to identify and characterize RNA modifications that introduce base-pairing errors into cDNA reads. Our investigation incorporated data from three Poaceae (Zea mays, Sorghum bicolor, and Setaria italica), as well as publicly available data from a range of stress and genetic contexts in Sorghum and Arabidopsis thaliana. We uncovered a strong enrichment of RNA covalent modifications (RCMs) deposited on a conserved core set of nuclear mRNAs involved in photosynthesis and translation across these species. However, the cohort of modified transcripts changed based on environmental context and developmental program, a pattern that was also conserved across flowering plants. We determined that RCMs can partly explain accession-level differences in drought tolerance in Sorghum, with stress-associated genes receiving a higher level of RCMs in a drought tolerant accession. To address function, we determined that RCMs are significantly enriched near exon junctions within coding regions, suggesting an association with splicing. Intriguingly, we found that these base-pair disrupting RCMs are associated with stable mRNAs, are highly correlated with protein abundance, and thus likely associated with facilitating translation. CONCLUSIONS Our data point to a conserved role for RCMs in mRNA stability and translation across the flowering plant lineage.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | | | - Eric H Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Harisa GI, Faris TM, Sherif AY, Alzhrani RF, Alanazi SA, Kohaf NA, Alanazi FK. Coding Therapeutic Nucleic Acids from Recombinant Proteins to Next-Generation Vaccines: Current Uses, Limitations, and Future Horizons. Mol Biotechnol 2024; 66:1853-1871. [PMID: 37578574 DOI: 10.1007/s12033-023-00821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
This study aims to highlight the potential use of cTNAs in therapeutic applications. The COVID-19 pandemic has led to significant use of coding therapeutic nucleic acids (cTNAs) in terms of DNA and mRNA in the development of vaccines. The use of cTNAs resulted in a paradigm shift in the therapeutic field. However, the injection of DNA or mRNA into the human body transforms cells into biological factories to produce the necessary proteins. Despite the success of cTNAs in the production of corona vaccines, they have several limitations such as instability, inability to cross biomembranes, immunogenicity, and the possibility of integration into the human genome. The chemical modification and utilization of smart drug delivery cargoes resolve cTNAs therapeutic problems. The success of cTNAs in corona vaccine production provides perspective for the eradication of influenza viruses, Zika virus, HIV, respiratory syncytial virus, Ebola virus, malaria, and future pandemics by quick vaccine design. Moreover, the progress cTNAs technology is promising for the development of therapy for genetic disease, cancer therapy, and currently incurable diseases.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia.
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Tarek M Faris
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
| | - Riyad F Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alanazi
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Science Collage of Pharmacy, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box: 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Li J, Sun F, He K, Zhang L, Meng J, Huang D, Zhang Y. Detection and Quantification of 5moU RNA Modification from Direct RNA Sequencing Data. Curr Genomics 2024; 25:212-225. [PMID: 39086998 PMCID: PMC11288159 DOI: 10.2174/0113892029288843240402042529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 08/02/2024] Open
Abstract
Background Chemically modified therapeutic mRNAs have gained momentum recently. In addition to commonly used modifications (e.g., pseudouridine), 5moU is considered a promising substitution for uridine in therapeutic mRNAs. Accurate identification of 5-methoxyuridine (5moU) would be crucial for the study and quality control of relevant in vitro-transcribed (IVT) mRNAs. However, current methods exhibit deficiencies in providing quantitative methodologies for detecting such modification. Utilizing the capabilities of Oxford nanopore direct RNA sequencing, in this study, we present NanoML-5moU, a machine-learning framework designed specifically for the read-level detection and quantification of 5moU modification for IVT data. Materials and Methods Nanopore direct RNA sequencing data from both 5moU-modified and unmodified control samples were collected. Subsequently, a comprehensive analysis and modeling of signal event characteristics (mean, median current intensities, standard deviations, and dwell times) were performed. Furthermore, classical machine learning algorithms, notably the Support Vector Machine (SVM), Random Forest (RF), and XGBoost were employed to discern 5moU modifications within NNUNN (where N represents A, C, U, or G) 5-mers. Results Notably, the signal event attributes pertaining to each constituent base of the NNUNN 5-mers, in conjunction with the utilization of the XGBoost algorithm, exhibited remarkable performance levels (with a maximum AUROC of 0.9567 in the "AGTTC" reference 5-mer dataset and a minimum AUROC of 0.8113 in the "TGTGC" reference 5-mer dataset). This accomplishment markedly exceeded the efficacy of the prevailing background error comparison model (ELIGOs AUC 0.751 for site-level prediction). The model's performance was further validated through a series of curated datasets, which featured customized modification ratios designed to emulate broader data patterns, demonstrating its general applicability in quality control of IVT mRNA vaccines. The NanoML-5moU framework is publicly available on GitHub (https://github.com/JiayiLi21/NanoML-5moU). Conclusion NanoML-5moU enables accurate read-level profiling of 5moU modification with nanopore direct RNA-sequencing, which is a powerful tool specialized in unveiling signal patterns in in vitro-transcribed (IVT) mRNAs.
Collapse
Affiliation(s)
- Jiayi Li
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Feiyang Sun
- Department of Computer Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Kunyang He
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jia Meng
- Department of Biological Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Daiyun Huang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Yuxin Zhang
- Department of Biological Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| |
Collapse
|
11
|
Kramps T. Introduction to RNA Vaccines Post COVID-19. Methods Mol Biol 2024; 2786:1-22. [PMID: 38814388 DOI: 10.1007/978-1-0716-3770-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Available prophylactic vaccines help prevent many infectious diseases that burden humanity. Future vaccinology will likely extend these benefits by more effectively countering newly emerging pathogens, fighting currently intractable infections, or even generating novel treatment modalities for non-infectious diseases. Instead of applying protein antigen directly, RNA vaccines contain short-lived genetic information that guides the expression of protein antigen in the vaccinee, like infection with a recombinant viral vector. Upon decades of research, messenger RNA-lipid nanoparticle (mRNA-LNP) vaccines have proven clinical value in addressing the COVID-19 pandemic as they combine benefits of killed subunit vaccines and live-attenuated vectors, including flexible production, self-adjuvanting effects, and stimulation of humoral and cellular immunity. RNA vaccines remain subject to continued development raising high hopes for broader future application. Their mechanistic versatility promises to make them a key tool of vaccinology and immunotherapy going forward. Here, I briefly review key developments in RNA vaccines and outline the contents of this volume of Methods in Molecular Biology.
Collapse
|
12
|
Reinhart AG, Osterwald A, Ringler P, Leiser Y, Lauer ME, Martin RE, Ullmer C, Schumacher F, Korn C, Keller M. Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions. Mol Pharm 2023; 20:6492-6503. [PMID: 37975733 DOI: 10.1021/acs.molpharmaceut.3c00956] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
mRNA LNPs can experience a decline in activity over short periods (ranging from weeks to months). As a result, they require frozen storage and transportation conditions to maintain their full functionality when utilized. Currently approved commercially available mRNA LNP vaccines also necessitate frozen storage and supply chain management. Overcoming this significant inconvenience in the future is crucial to reducing unnecessary costs and challenges associated with storage and transport. In this study, our objective was to illuminate the potential time frame for nonfrozen storage and transportation conditions of mRNA LNPs without compromising their activity. To achieve this goal, we conducted a stability assessment and an in vitro cell culture delivery study involving five mRNA LNPs. These LNPs were constructed by using a standard formulation similar to that employed in the three commercially available LNP formulations. Among these formulations, we selected five structurally diverse ionizable lipids─C12-200, CKK-E12, MC3, SM-102, and lipid 23─from the existing literature. We incorporated these lipids into a standard LNP formulation, keeping all other components identical. The LNPs, carrying mRNA payloads, were synthesized by using microfluidic mixing technology. We evaluated the shelf life stability of these LNPs over a span of 9 weeks at temperatures of 2-8, 25, and 40 °C, utilizing an array of analytical techniques. Our findings indicated minimal impact on the hydrodynamic diameter, zeta potential, encapsulation efficiency, and polydispersity of all LNPs across the various temperatures over the studied period. The RiboGreen assay analysis of LNPs showed consistent mRNA contents over several weeks at various nonfrozen storage temperatures, leading to the incorrect assumption of intact and functional LNPs. This misunderstanding was rectified by the significant differences observed in EGFP protein expression in an in vitro cell culture (using HEK293 cells) across the five LNPs. Specifically, only LNP 1 (C12-200) and LNP 4 (SM-102) exhibited high levels of EGFP expression at the start (T0), with over 90% of HEK293 cells transfected and mean fluorescence intensity (MFI) levels exceeding 1. Interestingly, LNP 1 (C12-200) maintained largely unchanged levels of in vitro activity over 11 weeks when stored at both 2-8 and 25 °C. In contrast, LNP 4 (SM-102) retained its functionality when stored at 2-8 °C over 11 weeks but experienced a gradual decline of in vitro activity when stored at room temperature over the same period. Importantly, we observed distinct LNP architectures for the five formulations through cryo-EM imaging. This highlights the necessity for a deeper comprehension of structure-activity relationships within these complex nanoparticle structures. Enhancing our understanding in this regard is vital for overcoming storage and stability limitations, ultimately facilitating the broader application of this technology beyond vaccines.
Collapse
Affiliation(s)
- Anne-Gaëlle Reinhart
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Anja Osterwald
- Roche Pharma Research and Early Development, DTA Ophthalmology I2O, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Philippe Ringler
- Biozentrum, University of Basel, Spitalstrasse 41, Basel CH - 4056, Switzerland
| | - Yael Leiser
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Matthias E Lauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Rainer E Martin
- Roche Pharma Research and Early Development, Therapeutic Modalities, Medicinal Chemistry, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, DTA Ophthalmology I2O, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Felix Schumacher
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Claudia Korn
- Roche Pharma Research and Early Development, DTA Ophthalmology I2O, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Michael Keller
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
13
|
Chen H, Luo W, Lu X, Zhang T. Regulatory role of RNA modifications in the treatment of pancreatic ductal adenocarcinoma (PDAC). Heliyon 2023; 9:e20969. [PMID: 37928039 PMCID: PMC10623179 DOI: 10.1016/j.heliyon.2023.e20969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely life-threatening malignancy with a relatively unfavorable prognosis. The early occurrence of metastasis and local recurrence subsequent to surgery contribute to the poor survival rates of PDAC patients, thereby limiting the effectiveness of surgical intervention. Additionally, the desmoplastic and immune-suppressive tumor microenvironment of PDAC diminishes its responsiveness to conventional treatment modalities such as chemotherapy, radiotherapy, and immunotherapy. Therefore, it is imperative to identify novel therapeutic targets for PDAC treatment. Chemical modifications are prevalent in various types of RNA and exert significant influence on their structure and functions. RNA modifications, exemplified by m6A, m5C, m1A, and Ψ, have been identified as general regulators of cellular functions. The abundance of specific modifications, such as m6A, has been correlated with cell proliferation, invasion, migration, and patient prognosis in PDAC. Pre-clinical data has indicated that manipulating RNA modification regulators could enhance the efficacy of chemotherapy, radiotherapy, and immunotherapy. Therefore, targeting RNA modifications in conjunction with current adjuvant or neoadjuvant therapy holds promise. The objective of this review is to provide a comprehensive overview of RNA modifications in PDAC treatment, encompassing their behaviors, mechanisms, and potential treatment targets. Therefore, it aims to stimulate the development of novel therapeutic approaches and future clinical trials.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyue Lu
- Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Pederiva C, Trevisan DM, Peirasmaki D, Chen S, Savage SA, Larsson O, Ule J, Baranello L, Agostini F, Farnebo M. Control of protein synthesis through mRNA pseudouridylation by dyskerin. SCIENCE ADVANCES 2023; 9:eadg1805. [PMID: 37506213 PMCID: PMC10381945 DOI: 10.1126/sciadv.adg1805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Posttranscriptional modifications of mRNA have emerged as regulators of gene expression. Although pseudouridylation is the most abundant, its biological role remains poorly understood. Here, we demonstrate that the pseudouridine synthase dyskerin associates with RNA polymerase II, binds to thousands of mRNAs, and is responsible for their pseudouridylation, an action that occurs in chromatin and does not appear to require a guide RNA with full complementarity. In cells lacking dyskerin, mRNA pseudouridylation is reduced, while at the same time, de novo protein synthesis is enhanced, indicating that this modification interferes with translation. Accordingly, mRNAs with fewer pseudouridines due to knockdown of dyskerin are translated more efficiently. Moreover, mRNA pseudouridylation is severely reduced in patients with dyskeratosis congenita caused by inherited mutations in the gene encoding dyskerin (i.e., DKC1). Our findings demonstrate that pseudouridylation by dyskerin modulates mRNA translatability, with important implications for both normal development and disease.
Collapse
Affiliation(s)
- Chiara Pederiva
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Davide M. Trevisan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14152, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Shan Chen
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17165, Sweden
- Science for Life Laboratory, Stockholm 17165, Sweden
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20852, USA
| | - Ola Larsson
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17165, Sweden
- Science for Life Laboratory, Stockholm 17165, Sweden
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK
- UK Dementia Research Institute, King’s College London, London W1T 7NF, UK
- National Institute of Chemistry, 1001 Ljubljana, Slovenia
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Federico Agostini
- Science for Life Laboratory, Stockholm 17165, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna 17165, Sweden
| | - Marianne Farnebo
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14152, Sweden
| |
Collapse
|
15
|
Lamolle G, Simón D, Iriarte A, Musto H. Main Factors Shaping Amino Acid Usage Across Evolution. J Mol Evol 2023:10.1007/s00239-023-10120-5. [PMID: 37264211 DOI: 10.1007/s00239-023-10120-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
The standard genetic code determines that in most species, including viruses, there are 20 amino acids that are coded by 61 codons, while the other three codons are stop triplets. Considering the whole proteome each species features its own amino acid frequencies, given the slow rate of change, closely related species display similar GC content and amino acids usage. In contrast, distantly related species display different amino acid frequencies. Furthermore, within certain multicellular species, as mammals, intragenomic differences in the usage of amino acids are evident. In this communication, we shall summarize some of the most prominent and well-established factors that determine the differences found in the amino acid usage, both across evolution and intragenomically.
Collapse
Affiliation(s)
- Guillermo Lamolle
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | - Diego Simón
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
16
|
Sen R, Sarkar S, Chlamydas S, Garbati M, Barnes C. Epigenetic features, methods, and implementations associated with COVID-19. OMICS APPROACHES AND TECHNOLOGIES IN COVID-19 2023:161-175. [DOI: 10.1016/b978-0-323-91794-0.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Yang Z, Zhang S, Xia T, Fan Y, Shan Y, Zhang K, Xiong J, Gu M, You B. RNA Modifications Meet Tumors. Cancer Manag Res 2022; 14:3223-3243. [PMID: 36444355 PMCID: PMC9700476 DOI: 10.2147/cmar.s391067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 09/14/2023] Open
Abstract
RNA modifications occur through the whole process of gene expression regulation, including transcription, translation, and post-translational processes. They are closely associated with gene expression, RNA stability, and cell cycle. RNA modifications in tumor cells play a vital role in tumor development and metastasis, changes in the tumor microenvironment, drug resistance in tumors, construction of tumor cell-cell "internet", etc. Several types of RNA modifications have been identified to date and have various effects on the biological characteristics of different tumors. In this review, we discussed the function of RNA modifications, including N 6-methyladenine (m6A), 5-methylcytosine (m5C), N 7-methyladenosine (m7G), N 1-methyladenosine (m1A), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I), in the microenvironment and therapy of solid and liquid tumors.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Siyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Tian Xia
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yue Fan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Ying Shan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Kaiwen Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Jiayan Xiong
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Miao Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Bo You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| |
Collapse
|
18
|
Nelson AL, Fontana G, Miclau E, Rongstad M, Murphy W, Huard J, Ehrhart N, Bahney C. Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration. J Tissue Eng Regen Med 2022; 16:961-976. [PMID: 36112528 PMCID: PMC9826348 DOI: 10.1002/term.3349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023]
Abstract
Activation of the canonical Wingless-related integration site (Wnt) pathway has been shown to increase bone formation and therefore has therapeutic potential for use in orthopedic conditions. However, attempts at developing an effective strategy to achieve Wnt activation has been met with several challenges. The inherent hydrophobicity of Wnt ligands makes isolating and purifying the protein difficult. To circumvent these challenges, many have sought to target extracellular inhibitors of the Wnt pathway, such as Wnt signaling pathway inhibitors Sclerostin and Dickkopf-1, or to use small molecules, ions and proteins to increase target Wnt genes. Here, we review systemic and localized bioactive approaches to enhance bone formation or improve bone repair through antibody-based therapeutics, synthetic Wnt surrogates and scaffold doping to target canonical Wnt. We conclude with a brief review of emerging technologies, such as mRNA therapy and Clustered Regularly Interspaced Short Palindromic Repeats technology, which serve as promising approaches for future clinical translation.
Collapse
Affiliation(s)
- Anna Laura Nelson
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - GianLuca Fontana
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Elizabeth Miclau
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA
| | - Mallory Rongstad
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - William Murphy
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Johnny Huard
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Nicole Ehrhart
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Chelsea Bahney
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA,Orthopaedic Trauma InstituteUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| |
Collapse
|
19
|
Chen TH, Potapov V, Dai N, Ong JL, Roy B. N 1-methyl-pseudouridine is incorporated with higher fidelity than pseudouridine in synthetic RNAs. Sci Rep 2022; 12:13017. [PMID: 35906281 PMCID: PMC9335462 DOI: 10.1038/s41598-022-17249-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/22/2022] [Indexed: 12/29/2022] Open
Abstract
In vitro transcribed synthetic messenger RNAs (mRNAs) represent a novel therapeutic modality. To overcome the inherent immunogenicity, as well as to increase the therapeutic efficacy of the molecules, uridine analogs-such as pseudouridine (Ψ) and N1-methyl-pseudouridine (m1Ψ), are incorporated in the synthetic mRNA. To decipher the fidelity with which these modifications are incorporated during the in vitro transcription (IVT) process, we compared the incorporation fidelity of uridine analogs with different RNA polymerases. We demonstrate that m1Ψ is incorporated with higher fidelity than Ψ. The fidelity of nucleotide incorporation differs between RNA polymerases; however, the spectrum of mutations observed between the RNAPs is similar. We also show that the array of nucleotide misincorporation is not dependent on the template DNA sequence context and that the distribution of these misincorporated nucleotides is not localized to any specific region along the length of the RNA. Based on our findings, we introduce a novel method to improve uridine analog incorporation fidelity during IVT. Our proof-of-concept experiments for higher-fidelity incorporation of uridine analogs during IVT provide guidelines when choosing RNAPs for the generation of modified uridine-containing mRNAs in vitro.
Collapse
Affiliation(s)
- Tien-Hao Chen
- RNA and Genome Editing, New England Biolabs Inc., Beverly, MA, 01915, USA
| | - Vladimir Potapov
- RNA and Genome Editing, New England Biolabs Inc., Beverly, MA, 01915, USA
| | - Nan Dai
- RNA and Genome Editing, New England Biolabs Inc., Beverly, MA, 01915, USA
| | - Jennifer L Ong
- RNA and Genome Editing, New England Biolabs Inc., Beverly, MA, 01915, USA
| | - Bijoyita Roy
- RNA and Genome Editing, New England Biolabs Inc., Beverly, MA, 01915, USA.
| |
Collapse
|
20
|
Palacio-Castañeda V, Oude Egberink R, Sait A, Andrée L, Sala BM, Hassani Besheli N, Oosterwijk E, Nilvebrant J, Leeuwenburgh SCG, Brock R, Verdurmen WPR. Mimicking the Biology of Engineered Protein and mRNA Nanoparticle Delivery Using a Versatile Microfluidic Platform. Pharmaceutics 2021; 13:pharmaceutics13111944. [PMID: 34834361 PMCID: PMC8624409 DOI: 10.3390/pharmaceutics13111944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
To investigate the delivery of next-generation macromolecular drugs, such as engineered proteins and mRNA-containing nanoparticles, there is an increasing push towards the use of physiologically relevant disease models that incorporate human cells and do not face ethical dilemmas associated with animal use. Here, we illustrate the versatility and ease of use of a microfluidic platform for studying drug delivery using high-resolution microscopy in 3D. Using this microfluidic platform, we successfully demonstrate the specific targeting of carbonic anhydrase IX (CAIX) on cells overexpressing the protein in a tumor-mimicking chip system using affibodies, with CAIX-negative cells and non-binding affibodies as controls. Furthermore, we demonstrate this system’s feasibility for testing mRNA-containing biomaterials designed to regenerate bone defects. To this end, peptide- and lipid-based mRNA formulations were successfully mixed with colloidal gelatin in microfluidic devices, while translational activity was studied by the expression of a green fluorescent protein. This microfluidic platform enables the testing of mRNA delivery from colloidal biomaterials of relatively high densities, which represents a first important step towards a bone-on-a-chip platform. Collectively, by illustrating the ease of adaptation of our microfluidic platform towards use in distinct applications, we show that our microfluidic chip represents a powerful and flexible way to investigate drug delivery in 3D disease-mimicking culture systems that recapitulate key parameters associated with in vivo drug application.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (R.O.E.); (A.S.)
| | - Rik Oude Egberink
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (R.O.E.); (A.S.)
| | - Arbaaz Sait
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (R.O.E.); (A.S.)
| | - Lea Andrée
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands; (L.A.); (N.H.B.); (S.C.G.L.)
| | - Benedetta Maria Sala
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (B.M.S.); (J.N.)
| | - Negar Hassani Besheli
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands; (L.A.); (N.H.B.); (S.C.G.L.)
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525 GA Nijmegen, The Netherlands;
| | - Johan Nilvebrant
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (B.M.S.); (J.N.)
| | - Sander C. G. Leeuwenburgh
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands; (L.A.); (N.H.B.); (S.C.G.L.)
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (R.O.E.); (A.S.)
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
- Correspondence: (R.B.); (W.P.R.V.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (R.O.E.); (A.S.)
- Correspondence: (R.B.); (W.P.R.V.)
| |
Collapse
|