1
|
Buchanan LB, Shao Z, Galiwango RM, Constable S, Zuanazzi D, Biribawa VM, Ssemunywa HR, Namuniina A, Okech B, Edfeldt G, Tjernlund A, Tobian AAR, Park DE, Pham T, Aziz M, Salazar JE, Nelson S, Liu CM, Kaul R, Prodger JL. HIV-associated penile anaerobes disrupt epithelial barrier integrity. PLoS Pathog 2025; 21:e1013094. [PMID: 40245064 PMCID: PMC12040277 DOI: 10.1371/journal.ppat.1013094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/29/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Specific anaerobic taxa within the penile microbiome-the Bacteria Associated with Seroconversion, Inflammation and Immune Cells (BASIC) species-enhance HIV-1 susceptibility, in part by recruiting susceptible cells to the inner foreskin. However, their effect on epithelial barrier integrity has not been described. Using foreskin tissues and penile swabs from 116 males undergoing voluntary medical male circumcision, we assessed the relationship between BASIC species and foreskin epithelial thickness, junction protein expression, and cellular proliferation. The absolute abundance of BASIC species was associated with reduced tissue expression of the epithelial junction proteins claudin-1 and E-cadherin, and with elevated soluble E-cadherin in penile secretions, suggesting proteolytic cleavage. These effects were not seen in participants with a high abundance of control taxa without high levels of BASIC species. The BASIC species Prevotella bivia, but not Peptostreptococcus anaerobius or Dialister micraerophilus, was shown to directly degrade recombinant human E-cadherin and to increase the release of soluble E-cadherin from foreskin epithelial cells in vitro. In vivo BASIC species absolute abundance was also linked to a thicker nucleated epithelium and increased keratinocyte proliferation, with no change in stratum corneum thickness. Therefore, BASIC species may enhance penile HIV susceptibility by directly disrupting epithelial integrity, in addition to previously described target cell recruitment.
Collapse
Affiliation(s)
- Lane B. Buchanan
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Zhongtian Shao
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ronald M. Galiwango
- Rakai Health Sciences Program, Rakai, Uganda
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Shirley Constable
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David Zuanazzi
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | | | - Annemarie Namuniina
- Uganda Virus Research Institute, International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Brenda Okech
- Uganda Virus Research Institute, International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Gabriella Edfeldt
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Daniel E. Park
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Tony Pham
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Maliha Aziz
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Juan E. Salazar
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Sydney Nelson
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Cindy M. Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Rupert Kaul
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Jessica L. Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Galiwango RM, Okech B, Park DE, Buchanan L, Shao Z, Bagaya B, Mpendo J, Joag V, Yegorov S, Nanvubya A, Biribawa VM, Namatovu T, Kato C, Kawoozo B, Ssetaala A, Muwanga M, Aziz M, Pham T, Huibner S, Tobian AAR, Liu CM, Prodger JL, Kaul R. Impact of antimicrobials on penile HIV susceptibility and immunology in uncircumcised men: A randomized phase 1/2 clinical trial. Cell Rep Med 2024; 5:101705. [PMID: 39214083 PMCID: PMC11536468 DOI: 10.1016/j.xcrm.2024.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Within the penile microbiome, bacteria associated with seroconversion, immunology, and cells (BASIC species) enhance HIV susceptibility in heterosexual uncircumcised men by inducing foreskin inflammation and HIV target cell recruitment. This phase 1/2 clinical trial randomizes HIV-uninfected Ugandan men (n = 125) to either oral tinidazole, topical metronidazole, topical clindamycin, or topical hydrogen peroxide to define impact on ex vivo foreskin HIV susceptibility, penile immunology, and BASIC species density. Antimicrobials are well tolerated, and 116 (93%) participants complete the protocol. Topical metronidazole and oral tinidazole reduce the inner foreskin tissue density of HIV-susceptible CD4+ T cells (predefined primary endpoint). Antimicrobials also have varying but substantial effects on reducing prepuce inflammation and BASIC species density, reducing density of foreskin T cell subsets, and increasing foreskin epithelial integrity. Immune alterations correlate strongly with changes in the abundance of BASIC species. Clinical interventions targeting the penile microbiota, particularly topical metronidazole, may reduce HIV susceptibility in uncircumcised men.
Collapse
Affiliation(s)
- Ronald M Galiwango
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON M5S1A8, Canada
| | | | - Daniel E Park
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Lane Buchanan
- Departments of Microbiology and Immunology and Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A3K7, Canada
| | - Zhongtian Shao
- Departments of Microbiology and Immunology and Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A3K7, Canada
| | - Bernard Bagaya
- UVRI-IAVI HIV Vaccine Program, Entebbe, Uganda; Department of Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Vineet Joag
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON M5S1A8, Canada; Centre for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sergey Yegorov
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON M5S1A8, Canada; McMaster University, Institute for Infectious Disease Research, Guelph, ON L8S4L8, Canada
| | | | | | | | | | | | | | | | - Maliha Aziz
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Tony Pham
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Sanja Huibner
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Aaron A R Tobian
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cindy M Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Jessica L Prodger
- Departments of Microbiology and Immunology and Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A3K7, Canada
| | - Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Medicine, University Health Network, Toronto, ON M5G2C4, Canada.
| |
Collapse
|
3
|
Shao Z, Buchanan LB, Zuanazzi D, Khan YN, Khan AR, Prodger JL. Comparison between a deep-learning and a pixel-based approach for the automated quantification of HIV target cells in foreskin tissue. Sci Rep 2024; 14:1985. [PMID: 38263439 PMCID: PMC10806185 DOI: 10.1038/s41598-024-52613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/21/2024] [Indexed: 01/25/2024] Open
Abstract
The availability of target cells expressing the HIV receptors CD4 and CCR5 in genital tissue is a critical determinant of HIV susceptibility during sexual transmission. Quantification of immune cells in genital tissue is therefore an important outcome for studies on HIV susceptibility and prevention. Immunofluorescence microscopy allows for precise visualization of immune cells in mucosal tissues; however, this technique is limited in clinical studies by the lack of an accurate, unbiased, high-throughput image analysis method. Current pixel-based thresholding methods for cell counting struggle in tissue regions with high cell density and autofluorescence, both of which are common features in genital tissue. We describe a deep-learning approach using the publicly available StarDist method to count cells in immunofluorescence microscopy images of foreskin stained for nuclei, CD3, CD4, and CCR5. The accuracy of the model was comparable to manual counting (gold standard) and surpassed the capability of a previously described pixel-based cell counting method. We show that the performance of our deep-learning model is robust in tissue regions with high cell density and high autofluorescence. Moreover, we show that this deep-learning analysis method is both easy to implement and to adapt for the identification of other cell types in genital mucosal tissue.
Collapse
Affiliation(s)
- Zhongtian Shao
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Lane B Buchanan
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - David Zuanazzi
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Yazan N Khan
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Ali R Khan
- Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Jessica L Prodger
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
- Department of Epidemiology and Biostatistics, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| |
Collapse
|