1
|
Sabili Z, Rashidi-Monfard S, Haghi R, Kahrizi D. Comparative analysis of simple sequence repeats and synteny across ten Oryza species: Implications for stress response and genetic diversity. Comput Biol Chem 2025; 116:108379. [PMID: 39978112 DOI: 10.1016/j.compbiolchem.2025.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Rice is a pivotal food source for most of the global population, necessitating a strategic focus on maximizing its production under diverse conditions through various methods. As molecular markers, simple sequence repeats (SSRs) emerge as instrumental tools in product enhancement and molecular research. This study employs in silico methods to predict the presence of molecular markers across distinct genomic and genic regions within ten Oryza species. Subsequently, we conducted a comprehensive comparison and synteny analysis of common molecular markers shared among most species, particularly those implicated in stress responses, utilizing McscanX. Beyond identifying common SSRs across the ten species under investigation, we delved into the functional analysis of these markers, specifically pinpointing those associated with stress. Additionally, our investigation illustrated the uniform distribution of SSRs along chromosomes and created a physical map showcasing their prevalence. Notably, chromosomes 1, 2, and 3 exhibited a higher density of molecular markers compared to their counterparts. Furthermore, our study highlighted that Oryza glumipatula, Oryza brachyantha, Oryza meridionalis, and Oryza longistaminata species manifested more pronounced differences in SSR markers compared to other Oryza species. The implications of these findings extend to applications in genetic diversity assessment, genetic mapping, and molecular marker-assisted selection breeding, providing valuable insights for future research and development in the field.
Collapse
Affiliation(s)
- Zahra Sabili
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Sajad Rashidi-Monfard
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Reza Haghi
- The Gene Bank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| | - Danial Kahrizi
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Han S, Li C, Li S, Chen Y, Wang C, Liu K, Liu Y, Wang HY, Wang Q, Cao X, Shi B, Shao C. High-quality chromosome-level genome assembly of the whitespotted conger (Conger myriaster). Sci Data 2025; 12:626. [PMID: 40234431 PMCID: PMC12000294 DOI: 10.1038/s41597-025-04947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
The whitespotted conger (Conger myriaster) is an ecologically and economically significant benthic marine species widely distributed across East Asia's coastal waters. Despite this importance, the genomic resources for this species remain limited, hindering evolutionary and aquaculture research. Here, we present the first high-quality chromosome-level genome assembly of C. myriaster using PacBio CLR, WGS, 10X Genomics and Hi-C data. The resulting 1.09 Gb genome assembly exhibits excellent contiguity, with 97.49% of sequences anchored onto 19 chromosomes. The assembled genome achieved a BUSCO completeness stands at 98.00%, containing 34.80% repetitive sequences and 24,063 predicted protein-coding genes. This foundational genomic resource overcomes a major limitation, providing the essential framework for future investigations into the evolutionary adaptations and for the genetic improvement of C. myriaster in aquaculture.
Collapse
Grants
- This research was funded by the National Key R&D Program of China (grant number 2022YFD2400100), the Key Research and Development Project of Shandong Province (2024LZGC005), the AoShan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology (grant number 2017ASTCP-ES06), the Taishan Scholars Program (NO. tstp20221149) to C.S, the National Ten-Thousands Talents Special Support Program to C.S, the Central Public-interest Scientific Institution Basal Research Fund, CAFS (grant number 2023TD19 and 20603022023023), the Key R&D Program of Hebei Province, China (21326307D), the China Agriculture Research System (grant number CARS-47-G03) and the project by the National Marine Genetic Resource Center, the National Key R&D Program of China (grant number 2024YFD2401002).
- the China Agriculture Research System (grant number CARS-47-G03), and the project by the National Marine Genetic Resource Center
- the National Key R&D Program of China (grant number 2024YFD2401002)
- the National Ten-Thousands Talents Special Support Program to C.S, the Central Public-interest Scientific Institution Basal Research Fund, CAFS (grant number 20603022023023)
Collapse
Affiliation(s)
- Shenglei Han
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Chen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Chenggang Wang
- Haiyang Yellow Sea Fisheries Co., Ltd., Yantai, 265100, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Hong-Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Xuwen Cao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Bao Shi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China.
| |
Collapse
|
3
|
Öztoprak H, Gao S, Guiglielmoni N, Brandt A, Zheng Y, Errbii M, Bednarski V, Becker C, Becker K, Borgschulte L, Burak KA, Dion-Côté AM, Leonov V, Opherden L, Shimano S, Bast J. Chromosome-scale genome dynamics reveal signatures of independent haplotype evolution in the ancient asexual mite Platynothrus peltifer. SCIENCE ADVANCES 2025; 11:eadn0817. [PMID: 39854451 PMCID: PMC11758997 DOI: 10.1126/sciadv.adn0817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
Some unique asexual species persist over time and contradict the consensus that sex is a prerequisite for long-term evolutionary survival. How they escape the dead-end fate remains enigmatic. Here, we generated a haplotype-resolved genome assembly on the basis of a single individual and collected genomic data from worldwide populations of the parthenogenetic diploid oribatid mite Platynothrus peltifer to identify signatures of persistence without sex. We found that haplotypes diverge independently since the transition to asexuality at least 20 million years ago in European lineages, contrasting Japanese and Canadian lineages. Multiple lines of evidence indicate conservation of one haplotype copy and relaxed selection in the other for the ancient asexual lineages. These findings highlight the evolutionary genomic singularities of ancient asexual oribatid mites that may have contributed to escaping the early demise typically associated with asexuality.
Collapse
Affiliation(s)
- Hüsna Öztoprak
- Institute of Zoology, University of Cologne, Cologne, Germany
| | - Shan Gao
- Institute of Zoology, University of Cologne, Cologne, Germany
| | | | - Alexander Brandt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Yichen Zheng
- Institute of Zoology, University of Cologne, Cologne, Germany
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt am Ruebenberge, Germany
| | - Mohammed Errbii
- Institute of Zoology, University of Cologne, Cologne, Germany
| | | | - Christian Becker
- Cologne Center for Genomics (CCG), Medical Faculty, University of Cologne, Cologne, Germany
| | - Kerstin Becker
- Genomics & Transcriptomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Lea Borgschulte
- Institute of Zoology, University of Cologne, Cologne, Germany
| | | | | | - Vladislav Leonov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Linda Opherden
- Institute of Zoology, University of Cologne, Cologne, Germany
| | | | - Jens Bast
- Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Viboonjun U, Longsaward R. Genome-wide identification and data mining reveals major-latex protein (MLP) from the PR-10 protein family played defense-related roles against phytopathogenic challenges in cassava (Manihot esculenta Crantz). Genetica 2024; 152:145-158. [PMID: 39215788 DOI: 10.1007/s10709-024-00211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Despite being identified in previous articles, the pathogenesis-related 10 (PR-10) protein remains relatively overlooked and has yet to be fully characterized in numerous plant species. This research employs a comprehensive data mining approach to in silico characterize PR-10 proteins in cassava, a vital crop plant globally. In this study, the focus was on in silico identified 53 cassava PR-10 proteins, which can be categorized into two main subgroups: 34 major latex proteins (MLPs) and 13 major allergen proteins, Pru ar 1, based on their phylogenetic relationship. The genome collinearity analysis with the rubber tree showed a possible evolutionary relationship of the PR-10 gene between these two Euphorbiaceae species, specifically on their chromosome 15. Notably, MLP423 and other MLP proteins were identified in various previously published cassava transcriptome datasets in response to biotic treatments from diverse phytopathogens, including anthracnose fungus, viruses, and bacterial blight. Ligand prediction and molecular docking of three MLP423 proteins have revealed potential interaction with cytokinin and abscisic acid hormones. Their expressions and predicted binding affinities are discussed here, highlighting their role as contributors to cassava's defense network against key diseases.
Collapse
Affiliation(s)
- Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Rawit Longsaward
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
5
|
Jinshi Z, Mei L, Jinjin L, Weilin Z. Genome-wide selection of potential target candidates for RNAi against Nilaparvata lugens. BMC Genomics 2024; 25:1036. [PMID: 39501148 PMCID: PMC11536790 DOI: 10.1186/s12864-024-10940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Nilaparvata lugens is one of the most destructive pests of rice. RNAi-based N. lugens control offers one alternative strategy to traditional chemical insecticides. However, selection of potential target for RNAi against N. lugens remains a major challenge. Only two target genes for nuclear transgenic N. lugens-resistant plants have been screened. Importantly, only one or few potential target genes against N. lugens were screened every time by knowledge of essential genes from model organisms in previous study. RESULTS Here, in silico genome-wide selection of potential target genes against N. lugens through homology comparison was performed. Through genome synteny comparisons, about 3.5% of Drosophila melanogaster genome was found to have conserved genomic synteny with N. lugens genome. By using N. lugens proteins to search D. melanogaster homologs defining lethal or sterile phenotype, 358 N. lugens genes were first screened as putative target genes. Transgenic rice lines expressing dsRNA of randomly selected gene (NlRan or NlSRP54) from 358 putative target genes enhanced resistance to N. lugens. After expression check and safety check, 115 N. lugens genes were screened as potential target candidates. CONCLUSION The combined efforts in this study firstly provide one in silico genome-wide homology-based screening approach for RNAi-based target genes against N. lugens, which not only offer one new opportunity to batch select potential target candidates in pests of interest, but also will facilitate the selection of RNAi target in many pest species by providing more than one hundred potential target candidates.
Collapse
Affiliation(s)
- Zhang Jinshi
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Li Mei
- Analysis Center of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lian Jinjin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Zhang Weilin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| |
Collapse
|
6
|
Canesin LEC, Vilaça ST, Oliveira RRM, Al-Ajli F, Tracey A, Sims Y, Formenti G, Fedrigo O, Banhos A, Sanaiotti TM, Farias IP, Jarvis ED, Oliveira G, Hrbek T, Solferini V, Aleixo A. A reference genome for the Harpy Eagle reveals steady demographic decline and chromosomal rearrangements in the origin of Accipitriformes. Sci Rep 2024; 14:19925. [PMID: 39261501 PMCID: PMC11390914 DOI: 10.1038/s41598-024-70305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
The Harpy Eagle (Harpia harpyja) is an iconic species that inhabits forested landscapes in Neotropical regions, with decreasing population trends mainly due to habitat loss, and currently classified as vulnerable. Here, we report on a chromosome-scale genome assembly for a female individual combining long reads, optical mapping, and chromatin conformation capture reads. The final assembly spans 1.35 Gb, with N50scaffold equal to 58.1 Mb and BUSCO completeness of 99.7%. We built the first extensive transposable element (TE) library for the Accipitridae to date and identified 7,228 intact TEs. We found a burst of an unknown TE ~ 13-22 million years ago (MYA), coincident with the split of the Harpy Eagle from other Harpiinae eagles. We also report a burst of solo-LTRs and CR1 retrotransposons ~ 31-33 MYA, overlapping with the split of the ancestor to all Harpiinae from other Accipitridae subfamilies. Comparative genomics with other Accipitridae, the closely related Cathartidae and Galloanserae revealed major chromosome-level rearrangements at the basal Accipitriformes genome, in contrast to a conserved ancient genome architecture for the latter two groups. A historical demography reconstruction showed a rapid decline in effective population size over the last 20,000 years. This reference genome serves as a crucial resource for future conservation efforts towards the Harpy Eagle.
Collapse
Affiliation(s)
| | - Sibelle T Vilaça
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Renato R M Oliveira
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Farooq Al-Ajli
- Rockefeller University, New York, USA
- Katara Biodiversity Genomics Program, Katara Cultural Village Foundation, Doha, Qatar
| | | | - Ying Sims
- Rockefeller University, New York, USA
| | | | | | - Aureo Banhos
- Universidade Federal do Espírito Santo (UFES), Alegre, Brazil
| | | | | | - Erich D Jarvis
- Rockefeller University, New York, USA
- Howard Hughes Medical Institute (HHMI), New York, USA
| | - Guilherme Oliveira
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Trinity University, San Antonio, USA
| | - Vera Solferini
- Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | - Alexandre Aleixo
- Instituto Tecnológico Vale - Desenvolvimento Sustentável (ITV-DS), Belém, Brazil.
| |
Collapse
|
7
|
Simmons JR, Estrem B, Zagoskin MV, Oldridge R, Zadegan SB, Wang J. Chromosome fusion and programmed DNA elimination shape karyotypes of nematodes. Curr Biol 2024; 34:2147-2161.e5. [PMID: 38688284 PMCID: PMC11111355 DOI: 10.1016/j.cub.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
An increasing number of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and increased numbers of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the nematode Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among other nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these nematodes, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes. These karyotype changes may lead to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms are dynamic and may play a role during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
Collapse
Affiliation(s)
- James R Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maxim V Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ryan Oldridge
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
8
|
Rey Redondo E, Xu Y, Yung CCM. Genomic characterisation and ecological distribution of Mantoniella tinhauana: a novel Mamiellophycean green alga from the Western Pacific. Front Microbiol 2024; 15:1358574. [PMID: 38774501 PMCID: PMC11106453 DOI: 10.3389/fmicb.2024.1358574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Mamiellophyceae are dominant marine algae in much of the ocean, the most prevalent genera belonging to the order Mamiellales: Micromonas, Ostreococcus and Bathycoccus, whose genetics and global distributions have been extensively studied. Conversely, the genus Mantoniella, despite its potential ecological importance, remains relatively under-characterised. In this study, we isolated and characterised a novel species of Mamiellophyceae, Mantoniella tinhauana, from subtropical coastal waters in the South China Sea. Morphologically, it resembles other Mantoniella species; however, a comparative analysis of the 18S and ITS2 marker genes revealed its genetic distinctiveness. Furthermore, we sequenced and assembled the first genome of Mantoniella tinhauana, uncovering significant differences from previously studied Mamiellophyceae species. Notably, the genome lacked any detectable outlier chromosomes and exhibited numerous unique orthogroups. We explored gene groups associated with meiosis, scale and flagella formation, shedding light on species divergence, yet further investigation is warranted. To elucidate the biogeography of Mantoniella tinhauana, we conducted a comprehensive analysis using global metagenomic read mapping to the newly sequenced genome. Our findings indicate this species exhibits a cosmopolitan distribution with a low-level prevalence worldwide. Understanding the intricate dynamics between Mamiellophyceae and the environment is crucial for comprehending their impact on the ocean ecosystem and accurately predicting their response to forthcoming environmental changes.
Collapse
Affiliation(s)
| | | | - Charmaine Cheuk Man Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Dubey H, Pradeep AR, Neog K, Debnath R, Aneesha PJ, Shah SK, Kamatchi I, Ponnuvel KM, Ramesha A, Vijayan K, Nongthomba U, Bora U, Vankadara S, VijayaKumari KM, Arunkumar KP. Genome sequencing and assembly of Indian golden silkmoth, Antheraea assamensis Helfer (Saturniidae, Lepidoptera). Genomics 2024; 116:110841. [PMID: 38599255 DOI: 10.1016/j.ygeno.2024.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Muga silkworm (Antheraea assamensis), one of the economically important wild silkmoths, is unique among saturniid silkmoths. It is confined to the North-eastern part of India. Muga silk has the highest value among the other silks. Unlike other silkmoths, A. assamensis has a low chromosome number (n = 15), and ZZ/ZO sex chromosome system. Here, we report the first high-quality draft genome of A. assamensis, assembled by employing the Illumina and PacBio sequencing platforms. The assembled genome of A. assamensis is 501.18 Mb long, with 2697 scaffolds and an N50 of 683.23 Kb. The genome encompasses 18,385 protein-coding genes, 86.29% of which were functionally annotated. Phylogenetic analysis of A. assamensis revealed its divergence from other Antheraea species approximately 28.7 million years ago. Moreover, an investigation into detoxification-related gene families, CYP450, GST, and ABC-transporter, revealed a significant expansion in A. assamensis as compared to the Bombyx mori. This expansion is comparable to Spodoptera litura, suggesting adaptive responses linked to the polyphagous behavior observed in these insects. This study provides valuable insights into the molecular basis of evolutionary divergence and adaptations in muga silkmoth. The genome assembly reported in this study will significantly help in the functional genomics studies on A. assamensis and other Antheraea species along with comparative genomics analyses of Bombycoidea insects.
Collapse
Affiliation(s)
- Himanshu Dubey
- Seribiotech Research Laboratory, Central Silk Board, Kodathi, Bangalore, India
| | - A R Pradeep
- Seribiotech Research Laboratory, Central Silk Board, Kodathi, Bangalore, India
| | - Kartik Neog
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, India
| | - Rajal Debnath
- Seribiotech Research Laboratory, Central Silk Board, Kodathi, Bangalore, India; Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, India
| | - P J Aneesha
- Seribiotech Research Laboratory, Central Silk Board, Kodathi, Bangalore, India
| | - Suraj Kumar Shah
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, India
| | - Indumathi Kamatchi
- Seribiotech Research Laboratory, Central Silk Board, Kodathi, Bangalore, India
| | - K M Ponnuvel
- Seribiotech Research Laboratory, Central Silk Board, Kodathi, Bangalore, India
| | - A Ramesha
- Seribiotech Research Laboratory, Central Silk Board, Kodathi, Bangalore, India
| | | | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Utpal Bora
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | | | - K M VijayaKumari
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, India
| | - Kallare P Arunkumar
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, India.
| |
Collapse
|
10
|
Wei J, Xiao Y, Liu J, Herrera-Ulloa A, Loh KH, Xu K. Chromosome-level genome assembly of the silver pomfret Pampus argenteus. Sci Data 2024; 11:234. [PMID: 38395996 PMCID: PMC10891316 DOI: 10.1038/s41597-024-03070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Pampus argenteus (Euphrasen, 1788) is one of the major fishery species in coastal China. Pampus argenteus has a highly specialized morphology, and its declining fishery resources have encouraged massive research efforts on its aquacultural biology. In this study, we reported the first high-quality chromosome-level genome of P. argenteus obtained by integrating Illumina, PacBio HiFi, and Hi-C sequencing techniques. The final size of the genome was 518.06 Mb, with contig and scaffold N50 values of 20.47 and 22.86 Mb, respectively. The sequences were anchored and oriented onto 24 pseudochromosomes based on Hi-C data corresponding to the 24-chromatid karyotype of P. argenteus. A colinear relationship was observed between the P. argenteus genome and that of a closely related species (Scomber japonicus). A total of 24,696 protein-coding genes were identified from the genome, 98.9% of which were complete BUSCOs. This report represents the first case of high-quality chromosome-level genome assembly for P. argenteus and can provide valuable information for future evolutionary, conservation, and aquacultural research.
Collapse
Affiliation(s)
- Jiehong Wei
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongshuang Xiao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jing Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | | | - Kar-Hoe Loh
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kuidong Xu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
11
|
Alves RM, de Abreu VAC, Oliveira RP, Almeida JVDA, de Oliveira MDM, Silva SR, Paschoal AR, de Almeida SS, de Souza PAF, Ferro JA, Miranda VFO, Figueira A, Domingues DS, Varani AM. Genomic decoding of Theobroma grandiflorum (cupuassu) at chromosomal scale: evolutionary insights for horticultural innovation. Gigascience 2024; 13:giae027. [PMID: 38837946 PMCID: PMC11152179 DOI: 10.1093/gigascience/giae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.
Collapse
Affiliation(s)
| | - Vinicius A C de Abreu
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Rafaely Pantoja Oliveira
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - João Victor dos Anjos Almeida
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Mauro de Medeiros de Oliveira
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Saura R Silva
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Alexandre R Paschoal
- Departamento de Ciência da Computação (DACOM), Grupo de e Bioinformática e Reconhecimento de Padrões (bioinfo-cp), Universidade Tecnológica Federal do Paraná (UTFPR), 80230-901 Cornélio Procópio, PR, Brazil
- Artificial Intelligence and Informatics, The Rosalind Franklin Institute, OX110QX Didcot, UK
| | - Sintia S de Almeida
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Pedro A F de Souza
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Jesus A Ferro
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Vitor F O Miranda
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, 13416-000 Piracicaba, SP, Brazil
| | - Douglas S Domingues
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), 13418-900 Piracicaba, SP, Brazil
| | - Alessandro M Varani
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
12
|
Simmons JR, Estrem B, Zagoskin MV, Oldridge R, Zadegan SB, Wang J. Chromosome fusion and programmed DNA elimination shape karyotypes of parasitic nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572835. [PMID: 38187595 PMCID: PMC10769430 DOI: 10.1101/2023.12.21.572835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A growing list of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and an increased number of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the horse parasite Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among ascarid nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these parasites, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes, leading to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms play a dynamic role in the Parascaris germline chromosome during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
Collapse
Affiliation(s)
- James R. Simmons
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Brandon Estrem
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Maxim V. Zagoskin
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Ryan Oldridge
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Sobhan Bahrami Zadegan
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Lead Contact
| |
Collapse
|
13
|
Ranawaka B, An J, Lorenc MT, Jung H, Sulli M, Aprea G, Roden S, Llaca V, Hayashi S, Asadyar L, LeBlanc Z, Ahmed Z, Naim F, de Campos SB, Cooper T, de Felippes FF, Dong P, Zhong S, Garcia-Carpintero V, Orzaez D, Dudley KJ, Bombarely A, Bally J, Winefield C, Giuliano G, Waterhouse PM. A multi-omic Nicotiana benthamiana resource for fundamental research and biotechnology. NATURE PLANTS 2023; 9:1558-1571. [PMID: 37563457 PMCID: PMC10505560 DOI: 10.1038/s41477-023-01489-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Nicotiana benthamiana is an invaluable model plant and biotechnology platform with a ~3 Gb allotetraploid genome. To further improve its usefulness and versatility, we have produced high-quality chromosome-level genome assemblies, coupled with transcriptome, epigenome, microRNA and transposable element datasets, for the ubiquitously used LAB strain and a related wild accession, QLD. In addition, single nucleotide polymorphism maps have been produced for a further two laboratory strains and four wild accessions. Despite the loss of five chromosomes from the ancestral tetraploid, expansion of intergenic regions, widespread segmental allopolyploidy, advanced diploidization and evidence of recent bursts of Copia pseudovirus (Copia) mobility not seen in other Nicotiana genomes, the two subgenomes of N. benthamiana show large regions of synteny across the Solanaceae. LAB and QLD have many genetic, metabolic and phenotypic differences, including disparate RNA interference responses, but are highly interfertile and amenable to genome editing and both transient and stable transformation. The LAB/QLD combination has the potential to be as useful as the Columbia-0/Landsberg errecta partnership, utilized from the early pioneering days of Arabidopsis genomics to today.
Collapse
Affiliation(s)
- Buddhini Ranawaka
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Jiyuan An
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia.
| | - Michał T Lorenc
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Hyungtaek Jung
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Giuseppe Aprea
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Sally Roden
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Victor Llaca
- Genomics Technologies, Corteva Agriscience, Johnston, IA, USA
| | - Satomi Hayashi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Leila Asadyar
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Zacharie LeBlanc
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Zuba Ahmed
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Fatima Naim
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Samanta Bolzan de Campos
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Tal Cooper
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Felipe F de Felippes
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Pengfei Dong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Victor Garcia-Carpintero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politècnica de Valencia, Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politècnica de Valencia, Valencia, Spain
| | - Kevin J Dudley
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- QUT Central Analytical Research Facility, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politècnica de Valencia, Valencia, Spain
- Università degli Studi di Milano, Milan, Italy
| | - Julia Bally
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia
| | - Christopher Winefield
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia.
- Department of Wine Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand.
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Peter M Waterhouse
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Brisbane, Queensland, Australia.
| |
Collapse
|
14
|
Xu J, Zhu C, Su M, Li S, Chao H, Chen M. CropGF: a comprehensive visual platform for crop gene family mining and analysis. Database (Oxford) 2023; 2023:baad051. [PMID: 37410917 PMCID: PMC10325484 DOI: 10.1093/database/baad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
A gene family refers to a group of genes that share a common ancestry and encode proteins or RNA molecules with similar functions or structural features. Gene families play a crucial role in determining the traits of plants and can be utilized to develop new crop varieties. Therefore, a comprehensive database of gene family is significant for gaining deep insight into crops. To address this need, we have developed CropGF (https://bis.zju.edu.cn/cropgf), a comprehensive visual platform that encompasses six important crops (rice, wheat, maize, barley, sorghum and foxtail millet) and one model plant (Arabidopsis), as well as genomics, transcriptomics and proteomics data for gene family mining and analysis, covering a total of 314 611 genes and 4399 types of domains. CropGF provides a versatile search system that allows for the identification of gene families and their members in a single crop or multiple crops. Users can customize their search based on gene family domains and/or homology using keywords or BLAST. To enhance usability, we have collected the corresponding ID information from various public databases for both genes and domains. Furthermore, CropGF comprises numerous downstream analysis modules, such as ka/ks analysis, phylogenetic tree construction, subcellular localization analysis and more. These visually-displayed modules provide intuitive insights into gene expression patterns, gene family expansion and functional relationships across different molecular levels and different species. We believe that CropGF will be a valuable resource for deep mining and analysis in future studies of crop gene families. Database URL https://bis.zju.edu.cn/cropgf.
Collapse
Affiliation(s)
- Jingtian Xu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Can Zhu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minzeng Su
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sida Li
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|