1
|
Sohail A, Waqas FH, Braubach P, Czichon L, Samir M, Iqbal A, de Araujo L, Pleschka S, Steinert M, Geffers R, Pessler F. Differential transcriptomic host responses in the early phase of viral and bacterial infections in human lung tissue explants ex vivo. Respir Res 2024; 25:369. [PMID: 39395995 PMCID: PMC11471021 DOI: 10.1186/s12931-024-02988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND The first 24 h of infection represent a critical time window in interactions between pathogens and host tissue. However, it is not possible to study such early events in human lung during natural infection due to lack of clinical access to tissue this early in infection. We, therefore, applied RNA sequencing to ex vivo cultured human lung tissue explants (HLTE) from patients with emphysema to study global changes in small noncoding RNA, mRNA, and long noncoding RNA (lncRNA, lincRNA) populations during the first 24 h of infection with influenza A virus (IAV), Mycobacterium bovis Bacille Calmette-Guerin (BCG), and Pseudomonas aeruginosa. RESULTS Pseudomonas aeruginosa caused the strongest expression changes and was the only pathogen that notably affected expression of microRNA and PIWI-associated RNA. The major classes of long RNAs (> 100 nt) were represented similarly among the RNAs that were differentially expressed upon infection with the three pathogens (mRNA 77-82%; lncRNA 15-17%; pseudogenes 4-5%), but lnc-DDX60-1, RP11-202G18.1, and lnc-THOC3-2 were part of an RNA signature (additionally containing SNX10 and SLC8A1) specifically associated with IAV infection. IAV infection induced brisk interferon responses, CCL8 being the most strongly upregulated mRNA. Single-cell RNA sequencing identified airway epithelial cells and macrophages as the predominant IAV host cells, but inflammatory responses were also detected in cell types expressing few or no IAV transcripts. Combined analysis of bulk and single-cell RNAseq data identified a set of 6 mRNAs (IFI6, IFI44L, IRF7, ISG15, MX1, MX2) as the core transcriptomic response to IAV infection. The two bacterial pathogens induced qualitatively very similar changes in mRNA expression and predicted signaling pathways, but the magnitude of change was greater in P. aeruginosa infection. Upregulation of GJB2, VNN1, DUSP4, SerpinB7, and IL10, and downregulation of PKMYT1, S100A4, GGTA1P, and SLC22A31 were most strongly associated with bacterial infection. CONCLUSIONS Human lung tissue mounted substantially different transcriptomic responses to infection by IAV than by BCG and P. aeruginosa, whereas responses to these two divergent bacterial pathogens were surprisingly similar. This HLTE model should prove useful for RNA-directed pathogenesis research and tissue biomarker discovery during the early phase of infections, both at the tissue and single-cell level.
Collapse
Affiliation(s)
- Aaqib Sohail
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Fakhar H Waqas
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Laurien Czichon
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Mohamed Samir
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Azeem Iqbal
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Leonardo de Araujo
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
- Molecular and Experimental Mycobacteriology Group, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus-Liebig-Universität, 35390, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| | - Michael Steinert
- Institute for Microbiology, Technical University Braunschweig, Brunswick, Germany
| | - Robert Geffers
- Genome Analysis, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.
- Centre for Individualised Infection Medicine, Hannover, Germany.
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Brunswick, Germany.
| |
Collapse
|
2
|
Perocheau D, Gurung S, Touramanidou L, Duff C, Sharma G, Sebire N, Finn PF, Cavedon A, Siddiqui S, Rice L, Martini PG, Frassetto A, Baruteau J. Ex vivo precision-cut liver slices model disease phenotype and monitor therapeutic response for liver monogenic diseases. F1000Res 2024; 12:1580. [PMID: 38618017 PMCID: PMC11016166 DOI: 10.12688/f1000research.142014.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Background In academic research and the pharmaceutical industry, in vitro cell lines and in vivo animal models are considered as gold standards in modelling diseases and assessing therapeutic efficacy. However, both models have intrinsic limitations, whilst the use of precision-cut tissue slices can bridge the gap between these mainstream models. Precision-cut tissue slices combine the advantage of high reproducibility, studying all cell sub-types whilst preserving the tissue matrix and extracellular architecture, thereby closely mimicking a mini-organ. This approach can be used to replicate the biological phenotype of liver monogenic diseases using mouse models. Methods Here, we describe an optimised and easy-to-implement protocol for the culture of sections from mouse livers, enabling its use as a reliable ex-vivo model to assess the therapeutic screening of inherited metabolic diseases. Results We show that precision-cut liver sections can be a reliable model for recapitulating the biological phenotype of inherited metabolic diseases, exemplified by common urea cycle defects such as citrullinemia type 1 and argininosuccinic aciduria, caused by argininosuccinic synthase (ASS1) and argininosuccinic lyase (ASL) deficiencies respectively. Conclusions Therapeutic response to gene therapy such as messenger RNA replacement delivered via lipid nanoparticles can be monitored, demonstrating that precision-cut liver sections can be used as a preclinical screening tool to assess therapeutic response and toxicity in monogenic liver diseases.
Collapse
Affiliation(s)
- Dany Perocheau
- Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK
| | - Sonam Gurung
- Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK
| | - Loukia Touramanidou
- Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK
| | - Claire Duff
- Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK
| | - Garima Sharma
- Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK
| | - Neil Sebire
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, WC1N 3JH, UK
| | | | | | | | - Lisa Rice
- Moderna Inc., Cambridge, MA 02139, USA
| | | | | | - Julien Baruteau
- Great Ormond Street Institute of Child Health, University College London, London, England, WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, WC1N 3JH, UK
- National Institute of Health Research, Great Ormond Street Biomedical Research Centre, London, WC1N 1EH, UK
| |
Collapse
|
3
|
Leonard-Duke J, Bruce AC, Peirce SM, Taite LJ. Variations in mechanical stiffness alter microvascular sprouting and stability in a PEG hydrogel model of idiopathic pulmonary fibrosis. Microcirculation 2023; 30:e12817. [PMID: 37248193 PMCID: PMC10524245 DOI: 10.1111/micc.12817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/07/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Microvascular remodeling is governed by biomechanical and biochemical cues which are dysregulated in idiopathic pulmonary fibrosis. Understanding how these cues impact endothelial cell-pericyte interactions necessitates a model system in which both variables can be independently and reproducibly modulated. In this study we develop a tunable hydrogel-based angiogenesis assay to study how varying angiogenic growth factors and environmental stiffness affect sprouting and vessel organization. METHODS Lungs harvested from mice were cut into 1 mm long segments then cultured on hydrogels having one of seven possible stiffness and growth factor combinations. Time course, brightfield, and immunofluorescence imaging were used to observe and quantify sprout formation. RESULTS Our assay was able to support angiogenesis in a comparable manner to Matrigel in soft 2 kPa gels while enabling tunability to study the effects of stiffness on sprout formation. Matrigel and 2 kPa groups contained significantly more samples with sprouts when compared to the stiffer 10 and 20 kPa gels. Growth factor treatment did not have as obvious an effect, although the 20 kPa PDGF + FGF-treated group had significantly longer vessels than the vascular endothelial growth factor-treated group. CONCLUSIONS We have developed a novel, tunable hydrogel assay for the creation of lung explant vessel organoids which can be modulated to study the impact of specific environmental cues on vessel formation and maturation.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Lakeshia J Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Lam M, Lamanna E, Organ L, Donovan C, Bourke JE. Perspectives on precision cut lung slices-powerful tools for investigation of mechanisms and therapeutic targets in lung diseases. Front Pharmacol 2023; 14:1162889. [PMID: 37261291 PMCID: PMC10228656 DOI: 10.3389/fphar.2023.1162889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
Precision cut lung slices (PCLS) have emerged as powerful experimental tools for respiratory research. Pioneering studies using mouse PCLS to visualize intrapulmonary airway contractility have been extended to pulmonary arteries and for assessment of novel bronchodilators and vasodilators as therapeutics. Additional disease-relevant outcomes, including inflammatory, fibrotic, and regenerative responses, are now routinely measured in PCLS from multiple species, including humans. This review provides an overview of established and innovative uses of PCLS as an intermediary between cellular and organ-based studies and focuses on opportunities to increase their application to investigate mechanisms and therapeutic targets to oppose excessive airway contraction and fibrosis in lung diseases.
Collapse
Affiliation(s)
- Maggie Lam
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Emma Lamanna
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institut Pasteur, Unit of Antibodies in Therapy and Pathology, INSERM UMR1222, Paris, France
| | - Louise Organ
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|