1
|
Jin YY, Guo Y, Xiong SW, Zhang N, Chen JH, Liu F. BALF editome profiling reveals A-to-I RNA editing associated with severity and complications of Mycoplasma pneumoniae pneumonia in children. mSphere 2025; 10:e0101224. [PMID: 39998235 PMCID: PMC11934315 DOI: 10.1128/msphere.01012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/26/2025] Open
Abstract
Mycoplasma pneumoniae is an important human respiratory pathogen that causes mild-to-moderate community-acquired M. pneumoniae pneumonia (MPP), particularly in children. RNA editing plays a vital role in pathogen infection and host immune response, but it remains largely unknown how it could be involved in the epigenetic regulation of host response to M. pneumoniae infection. In the present study, we performed an epitranscriptomic analysis of adenosine to inosine (A-to-I) editing in 39 bronchoalveolar lavage fluid (BALF) samples from the severe side (SS) and the opposite side (OS) of patients with MPP. Our editome profiling identified 87 differential RNA editing (DRE) events in 50 genes, especially missense editing events that recoded C-C motif chemokine receptor-like 2 (CCRL2, p.K147R) and cyclin I (CCNI, p.R75G). The expression of adenosine deaminase acting on RNA (ADAR) significantly increased on SS compared to OS and positively correlated with the average RNA editing level and individual DRE events. Meanwhile, functional enrichment analysis showed that DRE was observed in genes primarily associated with the negative regulation of innate immune response, type I interferon production, and cytokine production. Further comparison of SS between complicated MPP (CMPP) and non-complicated MPP (NCMPP) revealed RNA editing events associated with MPP complications, with a higher ADAR expression in CMPP than NCMPP. By identifying DRE events as biomarkers associated with MPP severity and complications, our editome profiling provides new insight into the potential role played by A-to-I RNA editing in modulating the host's immune system during M. pneumoniae infection.IMPORTANCEOur research investigates how Mycoplasma pneumoniae, a common respiratory pathogen, influences how our cells modify their genetic instructions. By studying RNA editing changes in bronchoalveolar lavage fluid from patients with M. pneumoniae pneumonia, we aim to investigate how M. pneumoniae infection alters epigenetics and contributes to the disease severity and complications. Understanding such epigenetic alterations not only sheds light on the mechanisms underlying M. pneumoniae infection but also holds potential implications for developing better diagnostic tools and therapies. Ultimately, this work may facilitate the design of more targeted treatments to alleviate the impact of respiratory infections caused by the pathogen. Our findings may also offer broader insights into how microbial infections reshape immune processes, highlighting the importance of RNA editing in host-pathogen interactions.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yun Guo
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi, Jiangsu, China
| | - Su-Wan Xiong
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi, Jiangsu, China
| | - Na Zhang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Liu
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Sun X, Yao M, Xu P, Jing L. Clinical Value of Different Test Methods in Diagnosing Mycoplasma pneumoniae Infection in Children. Clin Pediatr (Phila) 2025; 64:36-41. [PMID: 38606919 DOI: 10.1177/00099228241245343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This research aimed to investigate the diagnostic value of passive particle agglutination test, Mycoplasma pneumoniae (MP) culture, cold agglutination test (CAT), enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction-capillary electrophoresis fragment analysis (PCR-CEFA) for MP infection. Children with respiratory tract infections suspected to be MP infection were subjected to passive particle agglutination test, MP culture, CAT, ELISA, and PCR-CEFA. A total of 146 children (81 males, 65 females, mean age: 5.74 ± 3.32 years, and mean course of disease: 9.07 ± 5.18 days) met the inclusion criteria. The positivity rate of MP detection by MP culture was 69.18% (101/146). Using the MP culture method as the standard, higher sensitivity and positive predictive value were found in the PCR-CEFA compared with the other 3 methods. Appropriate methods are selected following the advantages and disadvantages of pathogen detection, and pediatric MP infection is analyzed by integrating various test results.
Collapse
Affiliation(s)
- Xiuling Sun
- Department of Pediatrics, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Mingzhu Yao
- Department of Pediatrics, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Peijuan Xu
- Department of Pediatrics, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Le Jing
- Department of Pediatrics, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Wang Y, Ma C, Hao X, Wang W, Luo H, Li M. Identification of Mycoplasma pneumoniae proteins interacting with NOD2 and their role in macrophage inflammatory response. Front Microbiol 2024; 15:1391453. [PMID: 38863748 PMCID: PMC11165193 DOI: 10.3389/fmicb.2024.1391453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Mycoplasma pneumoniae (M. pneumoniae, Mp) is a cell wall-deficient microorganism known to cause chronic respiratory infections in both children and adults. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor primarily responsible for identifying muramyl dipeptide (MDP) found in bacterial cell walls. Previous experiments have demonstrated that Mycoplasma ovipneumoniae induces macrophage autophagy through NOD2. In this study, we conducted RNA-seq analysis on macrophages infected with M. pneumoniae and observed an up-regulation in the expression of genes associated with the NOD2 signaling pathway. Mechanistic investigations further revealed the involvement of the NOD2 signaling pathway in the inflammatory response of macrophages activated by M. pneumoniae. We utilized GST pull-down technology in conjunction with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to pinpoint the M. pneumoniae proteins that interact with NOD2. Additionally, co-immunoprecipitation (Co-IP) and immunofluorescence co-localization techniques were used to confirm the interaction between DUF16 protein and NOD2. We found that DUF16 protein can enter macrophages and induce macrophage inflammatory response through the NOD2/RIP2/NF-κB pathway. Notably, the region spanning amino acids 13-90 was identified as a critical region necessary for DUF16-induced inflammation. This research not only broadens our comprehension of the recognition process of the intracellular receptor NOD2, but also deepens our understanding of the development of M. pneumoniae infection.
Collapse
Affiliation(s)
- Yongyu Wang
- Life Science School, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Chunji Ma
- Life Science School, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
- Ningxia Polytechnic College, Yinchuan, China
| | - Xiujing Hao
- Life Science School, Ningxia University, Yinchuan, China
| | - Weili Wang
- Life Science School, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Haixia Luo
- Life Science School, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Min Li
- Life Science School, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| |
Collapse
|