1
|
Addo S, Lycan T, Soto-Pantoja DR, Tsai YT, Stoen E, Ahmed T, Evans JK, Hart L, Ruiz J, Triozzi P, Bonomi M, Petty WJ. Randomized phase 2 trial of pembrolizumab alone or in combination with low dose chemotherapy for patients with non-small cell lung cancer and poor performance status. Lung Cancer 2025; 203:108513. [PMID: 40203764 DOI: 10.1016/j.lungcan.2025.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE Immunotherapy alone or in combination with chemotherapy has become the standard of care for medically fit patients who have advanced non-small cell lung cancer (NSCLC) without a driver mutation. The optimal treatment for patients with poor performance status remains an active area of investigation. PATIENTS AND METHODS Patients with advanced NSCLC and an Eastern Cooperative Oncology Group performance status (PS) of 2 were randomized to single-agent pembrolizumab at 200 mg every 3 weeks (Arm A) or the same dose of pembrolizumab combined with weekly carboplatin area under the curve 1 and paclitaxel 25 mg/m2 (Arm B). The co-primary outcomes were differences in response rates between the Arms and comparison of each Arm to a historical control. Progression free survival (PFS) and overall survival (OS) were secondary outcomes using intent to treat analyses. Optional blood samples were obtained at baseline and after 2 cycles of treatment, and immune cells were measured using flow cytometry. A subset of post-treatment blood samples were analyzed using single-cell sequencing. RESULTS 43 patients enrolled with 20 patients evaluable for response in each arm. All enrolled patients were included in survival analyses. Therapy was generally well tolerated with no treatment-related deaths in either arm. Both Arms exceeded the predefined historical control response rate of 10 % (Arm A = 35 %, P = 0.0002; Arm B = 45 %, P < 0.0001). Response rates favored Arm B but the difference was not statistically significant (P = 0.75). Median PFS and OS were not significantly different between the two arms. To compare survival outcomes of either pembrolizumab-based therapy to historical control of platinum-based chemotherapy for patients with PS 2, the two arms were combined. Median PFS was similar to historical control of platinum-based chemotherapy (4.6 months vs 4.6 months historical control). However, overall survival favored pembrolizumab-based therapy at 12 months (44 % vs 31 % historical control, P = 0.062) and 24 months (33 % vs 11 % historical control, P = 0.0001). Twenty patients provided optional blood samples for biomarker analyses. Consistent with prior reports, a numerically longer (but not significant) OS was observed in patients with low regulatory T cells (CD4 + FoxP3 + ) at baseline (14.5 vs 4.6 months, P = 0.068). Abundance of myeloid derived suppressor cells (CD14 + HLA DR-) at baseline did not correlate with clinical outcomes. Single-cell sequencing identified several significant differences in gene expression profiles within the CD14 + cell population for responding and non-responding patients treated with chemoimmunotherapy. CONCLUSIONS For patients with poor performance status, adding very low dose chemotherapy to pembrolizumab did not significantly improve clinical outcomes compared to pembrolizumab alone. Patients receiving either of these pembrolizumab-based regimens demonstrated better long-term survival when compared to historical outcomes of platinum-based chemotherapy for the PS 2 population.
Collapse
Affiliation(s)
- Safoa Addo
- Department of Internal Medicine, Section on Hematology and Oncology, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Thomas Lycan
- Department of Internal Medicine, Section on Hematology and Oncology, Medical Center Blvd, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - David R Soto-Pantoja
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Yu-Ting Tsai
- Department of Cancer Biology, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Ericson Stoen
- Department of Internal Medicine, Section on Hematology and Oncology, Medical Center Blvd, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Tamjeed Ahmed
- Department of Internal Medicine, Section on Hematology and Oncology, Medical Center Blvd, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Joni K Evans
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Lowell Hart
- Department of Internal Medicine, Section on Hematology and Oncology, Medical Center Blvd, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Jimmy Ruiz
- Department of Internal Medicine, Section on Hematology and Oncology, Medical Center Blvd, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Pierre Triozzi
- Department of Internal Medicine, Section on Hematology and Oncology, Medical Center Blvd, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Medical Center Blvd, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Marcelo Bonomi
- Department of Internal Medicine, Section on Hematology and Oncology, Medical Center Blvd, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - W Jeffrey Petty
- Department of Internal Medicine, Section on Hematology and Oncology, Medical Center Blvd, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Medical Center Blvd, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
2
|
Chen S, Tang D, Deng L, Xu S. Asian-European differentiation of schizophrenia-associated genes driven by admixture and natural selection. iScience 2024; 27:109560. [PMID: 38638564 PMCID: PMC11024917 DOI: 10.1016/j.isci.2024.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/29/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
The European-centered genome-wide association studies of schizophrenia (SCZ) may not be well applied to non-European populations. We analyzed 1,592 reported SCZ-associated genes using the public genome data and found an overall higher Asian-European differentiation on the SCZ-associated variants than at the genome-wide level. Notable examples included 15 missense variants, a regulatory variant SLC5A10-rs1624825, and a damaging variant TSPAN18-rs1001292. Independent local adaptations in recent 25,000 years, after the Asian-European divergence, could have contributed to such genetic differentiation, as were identified at a missense mutation LTN1-rs57646126-A in Asians, and a non-risk allele ZSWIM6-rs72761442-G in Europeans. Altai-Neanderthal-derived alleles may have opposite effects on SCZ susceptibility between ancestries. Furthermore, adaptive introgression was detected on the non-risk haplotype at 1q21.2 in Europeans, while in Asians it was observed on the SCZ risk haplotype at 3p21.31 which is also potentially ultra-violet protective. This study emphasizes the importance of including more representative Asian samples in future SCZ studies.
Collapse
Affiliation(s)
- Sihan Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Die Tang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lian Deng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Karanwal S, Pal A, Chera JS, Batra V, Kumaresan A, Datta TK, Kumar R. Identification of protein candidates in spermatozoa of water buffalo ( Bubalus bubalis) bulls helps in predicting their fertility status. Front Cell Dev Biol 2023; 11:1119220. [PMID: 36891514 PMCID: PMC9986327 DOI: 10.3389/fcell.2023.1119220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The water buffalo (Bubalus bubalis) is an indispensable part of the Indian dairy sector and in several instances, the farmers incur economic losses due to failed pregnancy after artificial insemination (AI). One of the key factors for the failure of conception is the use of semen from the bulls of low fertilizing potential and hence, it becomes important to predict the fertility status before performing AI. In this study, the global proteomic profile of high fertile (HF) and low fertile (LF) buffalo bull spermatozoa was established using a high-throughput LC-MS/MS technique. A total of 1,385 proteins (≥1 high-quality PSM/s, ≥1 unique peptides, p < 0.05, FDR < 0.01) were identified out of which, 1,002 were common between both the HF and LF groups while 288 and 95 proteins were unique to HF and LF groups respectively. We observed 211 and 342 proteins were significantly high (log Fc ≥ 2) and low abundant (log Fc ≤ 0.5) in HF spermatozoa (p < 0.05). Gene ontology analysis revealed that the fertility associated high abundant proteins in HF were involved in spermatogenesis, sperm motility, acrosome integrity, zona pellucida binding and other associated sperm functions. Besides this, the low abundant proteins in HF were involved in glycolysis, fatty acid degradation and inflammation. Furthermore, fertility related differentially abundant proteins (DAPs) on sperm viz., AKAP3, Sp17, and DLD were validated through Western blotting and immunocytochemistry which was in coherence with the LC-MS/MS data. The DAPs identified in this study may be used as potential protein candidates for predicting fertility in buffaloes. Our findings provide an opportunity in mitigating the economic losses that farmers incur due to male infertility.
Collapse
Affiliation(s)
- Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Vipul Batra
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenelogy Laboratory, SRS of National Dairy Research Institute, Bengaluru, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
4
|
Cui Z, Zhang Z, Amevor FK, Du X, Li L, Tian Y, Kang X, Shu G, Zhu Q, Wang Y, Li D, Zhang Y, Zhao X. Circadian miR-449c-5p regulates uterine Ca 2+ transport during eggshell calcification in chickens. BMC Genomics 2021; 22:764. [PMID: 34702171 PMCID: PMC8547053 DOI: 10.1186/s12864-021-08074-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background miRNAs regulate circadian patterns by modulating the biological clocks of animals. In our previous study, we found that the clock gene exhibited a cosine expression pattern in the fallopian tube of chicken uterus. Clock-controlled miRNAs are present in mammals and Drosophila; however, whether there are clock-controlled miRNAs in the chicken uterus and, if so, how they regulate egg-laying rhythms is unclear. In this study, we selected 18 layer hens with similar ovipositional rhythmicity (each of three birds were sacrificed for study per 4 h throughout 24 h); their transcriptomes were scanned to identify the circadian miRNAs and to explore regulatory mechanisms within the uterus of chickens. Results We identified six circadian miRNAs that are mainly associated with several biological processes including ion trans-membrane transportation, response to calcium ion, and enrichment of calcium signaling pathways. Verification of the experimental results revealed that miR-449c-5p exhibited a cosine expression pattern in the chicken uterus. Ca2+-transporting ATPase 4 (ATP2B4) in the plasma membrane is the predicted target gene of circadian miR-449c-5p and is highly enriched in the calcium signaling pathway. We speculated that clock-controlled miR-449c-5p regulated Ca2+ transportation during eggshell calcification in the chicken uterus by targeting ATP2B4. ATP2B4 mRNA and protein were rhythmically expressed in the chicken uterus, and dual-luciferase reporter gene assays confirmed that ATP2B4 was directly targeted by miR-449c-5p. The expression of miR-449c-5p showed an opposite trend to that of ATP2B4 within a 24 h cycle in the chicken uterus; it inhibited mRNA and protein expression of ATP2B4 in the uterine tubular gland cells. In addition, overexpression of ATP2B4 significantly decreased intracellular Ca2+ concentration (P < 0.05), while knockdown of ATP2B4 accelerated intracellular Ca2+ concentrations. We found similar results after ATP2B4 knockdown by miR-449c-5p. Taken together, these results indicate that ATP2B4 promotes uterine Ca2+ trans-epithelial transport. Conclusions Clock-controlled miR-449c-5p regulates Ca2+ transport in the chicken uterus by targeting ATP2B4 during eggshell calcification. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08074-3.
Collapse
Affiliation(s)
- Zhifu Cui
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Zhichao Zhang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Felix Kwame Amevor
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaxia Du
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Liang Li
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yaofu Tian
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xincheng Kang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, People's Republic of China
| | - Qing Zhu
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yan Wang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Diyan Li
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yao Zhang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaoling Zhao
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China.
| |
Collapse
|
5
|
Ackerman WE, Buhimschi CS, Snedden A, Summerfield TL, Zhao G, Buhimschi IA. Molecular signatures of labor and nonlabor myometrium with parsimonious classification from 2 calcium transporter genes. JCI Insight 2021; 6:148425. [PMID: 33945511 PMCID: PMC8262336 DOI: 10.1172/jci.insight.148425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022] Open
Abstract
Clinical phenotyping of term and preterm labor is imprecise, and disagreement persists on categorization relative to underlying pathobiology, which remains poorly understood. We performed RNA sequencing (RNA-seq) of 31 specimens of human uterine myometrium from 10 term and 21 preterm cesarean deliveries with rich clinical context information. A molecular signature of 4814 transcripts stratified myometrial samples into quiescent (Q) and nonquiescent (NQ) phenotypes, independent of gestational age and incision site. Similar stratifications were achieved using expressed genes in Ca2+ signaling and TGF-β pathways. For maximal parsimony, we evaluated the expression of just 2 Ca2+ transporter genes, ATP2B4 (encoding PMCA4) and ATP2A2 (coding for SERCA2), and we found that their ratio reliably distinguished NQ and Q specimens in the current study, and also in 2 publicly available RNA-seq data sets (GSE50599 and GSE80172), with an overall AUC of 0.94. Cross-validation of the ATP2B4/ATP2A2 ratio by quantitative PCR in an expanded cohort (by 11 additional specimens) achieved complete separation (AUC of 1.00) of NQ versus Q specimens. While providing additional insight into the associations between clinical features of term and preterm labor and myometrial gene expression, our study also offers a practical algorithm for unbiased classification of myometrial biopsies by their overall contractile program.
Collapse
Affiliation(s)
- William E Ackerman
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Catalin S Buhimschi
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Ali Snedden
- The High Performance Computing Facility, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Taryn L Summerfield
- The Ohio State University College of Medicine, Department of Obstetrics & Gynecology, Columbus, Ohio, USA
| | - Guomao Zhao
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Irina A Buhimschi
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Zorio DAR, Monsma S, Sanes DH, Golding NL, Rubel EW, Wang Y. De novo sequencing and initial annotation of the Mongolian gerbil (Meriones unguiculatus) genome. Genomics 2019; 111:441-449. [PMID: 29526484 PMCID: PMC6129228 DOI: 10.1016/j.ygeno.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/28/2022]
Abstract
The Mongolian gerbil (Meriones unguiculatus) is a member of the rodent family that displays several features not found in mice or rats, including sensory specializations and social patterns more similar to those in humans. These features have made gerbils a valuable animal for research studies of auditory and visual processing, brain development, learning and memory, and neurological disorders. Here, we report the whole gerbil annotated genome sequence, and identify important similarities and differences to the human and mouse genomes. We further analyze the chromosomal structure of eight genes with high relevance for controlling neural signaling and demonstrate a high degree of homology between these genes in mouse and gerbil. This homology increases the likelihood that individual genes can be rapidly identified in gerbil and used for genetic manipulations. The availability of the gerbil genome provides a foundation for advancing our knowledge towards understanding evolution, behavior and neural function in mammals. ACCESSION NUMBER: The Whole Genome Shotgun sequence data from this project has been deposited at DDBJ/ENA/GenBank under the accession NHTI00000000. The version described in this paper is version NHTI01000000. The fragment reads, and mate pair reads have been deposited in the Sequence Read Archive under BioSample accession SAMN06897401.
Collapse
Affiliation(s)
- Diego A R Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | | | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY, USA
| | - Nace L Golding
- University of Texas at Austin, Department of Neuroscience, Center for Learning and Memory, Austin, TX, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
7
|
Xi MD, Li P, Du H, Qiao XM, Liu ZG, Wei QW. Disaccharide combinations and the expression of enolase3 and plasma membrane Ca2+ATPase isoform in sturgeon sperm cryopreservation. Reprod Domest Anim 2018; 53:472-483. [DOI: 10.1111/rda.13134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023]
Affiliation(s)
- MD Xi
- Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan China
- University of Chinese Academy of Science; Beijing China
- Key Laboratory of Freshwater Biodiversity Conservation; Ministry of Agriculture of China; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
| | - P Li
- Key Laboratory of Freshwater Biodiversity Conservation; Ministry of Agriculture of China; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
- University of South Bohemia in České Budějovice; Faculty of Fisheries and Protection of Waters; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses; Research Institute of Fish Culture and Hydrobiology; Vodňany Czech Republic
| | - H Du
- Key Laboratory of Freshwater Biodiversity Conservation; Ministry of Agriculture of China; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
| | - XM Qiao
- Key Laboratory of Freshwater Biodiversity Conservation; Ministry of Agriculture of China; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
| | - ZG Liu
- Key Laboratory of Freshwater Biodiversity Conservation; Ministry of Agriculture of China; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
| | - QW Wei
- Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan China
- University of Chinese Academy of Science; Beijing China
- Key Laboratory of Freshwater Biodiversity Conservation; Ministry of Agriculture of China; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
| |
Collapse
|
8
|
Minich RR, Li J, Tempel BL. Early growth response protein 1 regulates promoter activity of α-plasma membrane calcium ATPase 2, a major calcium pump in the brain and auditory system. BMC Mol Biol 2017; 18:14. [PMID: 28532435 PMCID: PMC5441030 DOI: 10.1186/s12867-017-0092-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/08/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Along with sodium/calcium (Ca2+) exchangers, plasma membrane Ca2+ ATPases (ATP2Bs) are main regulators of intracellular Ca2+ levels. There are four ATP2B paralogs encoded by four different genes. Atp2b2 encodes the protein pump with the fastest activation, ATP2B2. In mice, the Atp2b2 transcript has several alternate transcriptional start site variants: α, β, µ and δ. These variants are expressed in developmental and tissue specific manners. The α and β Atp2b2 transcripts are equally expressed in the brain. αAtp2b2 is the only transcript found in the outer hair cells of young mice (Silverstein RS, Tempel BL. in Neuroscience 141:245-257, 2006). Mutations in the coding region of the mouse Atp2b2 gene indicate a narrow window for tolerated dysfunction of the ATP2B2 protein, specifically in the auditory system. This highlights the necessity of tight regulation of this gene for normal cell physiology. RESULTS Although ATP2Bs are important regulators of Ca2+ in many cell types, little is known about their transcriptional regulation. This study identifies the proximal promoter of the αAtp2b2 transcript. Further investigations indicate that ATOH1 and EGR1 modulate promoter activity. Additionally, we report that EGR1 increases endogenous expression of Atp2b2 transcript in two cell lines. Electrophoretic mobility shift assays (EMSA) indicate that EGR1 binds to a specific site in the CpG island of the αAtp2b2 promoter. CONCLUSION This study furthers our understanding of Atp2b2 regulation by: (I) elucidating transcriptional regulatory mechanisms for Atp2b2, and (II) identifying transcription factors that modulate expression of Atp2b2 in the brain and peripheral auditory system and (III) allows for future studies modulating gene expression of Atp2b2.
Collapse
Affiliation(s)
- Rebecca R. Minich
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jin Li
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Bruce L. Tempel
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Otolaryngology-HNS, School of Medicine, University of Washington, Box 357923, Seattle, WA 98195 USA
- Virginia Merrill Bloedel Hearing Research Center, School of Medicine, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
9
|
Backman JD, O'Connell JR, Tanner K, Peer CJ, Figg WD, Spencer SD, Mitchell BD, Shuldiner AR, Yerges-Armstrong LM, Horenstein RB, Lewis JP. Genome-wide analysis of clopidogrel active metabolite levels identifies novel variants that influence antiplatelet response. Pharmacogenet Genomics 2017; 27:159-163. [PMID: 28207573 PMCID: PMC5346037 DOI: 10.1097/fpc.0000000000000272] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clopidogrel is one of the most commonly used therapeutics for the secondary prevention of cardiovascular events in patients with acute coronary syndromes. However, considerable interindividual variation in clopidogrel response has been documented, resulting in suboptimal therapy and an increased risk of recurrent events for some patients. In this investigation, we carried out the first genome-wide association study of circulating clopidogrel active metabolite levels in 513 healthy participants to directly measure clopidogrel pharmacokinetics. We observed that the CYP2C19 locus was the strongest genetic determinant of active metabolite formation (P=9.5×10). In addition, we identified novel genome-wide significant variants on chromosomes 3p25 (rs187941554, P=3.3×10) and 17q11 (rs80343429, P=1.3×10), as well as six additional loci that showed suggestive evidence of association (P≤1.0×10). Four of these loci showed nominal associations with on-clopidogrel ADP-stimulated platelet aggregation (P≤0.05). Evaluation of clopidogrel active metabolite concentration may help identify novel genetic determinants of clopidogrel response, which has implications for the development of novel therapeutics and improved antiplatelet treatment for at-risk patients in the future.
Collapse
Affiliation(s)
- Joshua D Backman
- aSchool of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland, Baltimore bGeriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore cClinical Pharmacology Program, National Cancer Institute, Bethesda dApplied and Developmental Research, SAIC-Frederick Inc., National Cancer Institute, Frederick, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Najyb O, Do Carmo S, Alikashani A, Rassart E. Apolipoprotein D Overexpression Protects Against Kainate-Induced Neurotoxicity in Mice. Mol Neurobiol 2016; 54:3948-3963. [PMID: 27271124 PMCID: PMC7091089 DOI: 10.1007/s12035-016-9920-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/03/2016] [Indexed: 01/23/2023]
Abstract
Excitotoxicity due to the excessive activation of glutamatergic receptors leads to neuronal dysfunction and death. Excitotoxicity has been implicated in the pathogenesis of a myriad of neurodegenerative diseases with distinct etiologies such as Alzheimer's and Parkinson's. Numerous studies link apolipoprotein D (apoD), a secreted glycoprotein highly expressed in the central nervous system (CNS), to maintain and protect neurons in various mouse models of acute stress and neurodegeneration. Here, we used a mouse model overexpressing human apoD in neurons (H-apoD Tg) to test the neuroprotective effects of apoD in the kainic acid (KA)-lesioned hippocampus. Our results show that apoD overexpression in H-apoD Tg mice induces an increased resistance to KA-induced seizures, significantly attenuates inflammatory responses and confers protection against KA-induced cell apoptosis in the hippocampus. The apoD-mediated protection against KA-induced toxicity is imputable in part to increased plasma membrane Ca2+ ATPase type 2 expression (1.7-fold), decreased N-methyl-D-aspartate receptor (NMDAR) subunit NR2B levels (30 %) and lipid metabolism alterations. Indeed, we demonstrate that apoD can attenuate intracellular cholesterol content in primary hippocampal neurons and in brain of H-apoD Tg mice. In addition, apoD can be internalised by neurons and this internalisation is accentuated in ageing and injury conditions. Our results provide additional mechanistic information on the apoD-mediated neuroprotection in neurodegenerative conditions.
Collapse
Affiliation(s)
- Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Sonia Do Carmo
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Azadeh Alikashani
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada.
| |
Collapse
|
11
|
Liu X, Bipolar Genome Study (BiGS), Kelsoe JR, Greenwood TA. A genome-wide association study of bipolar disorder with comorbid eating disorder replicates the SOX2-OT region. J Affect Disord 2016; 189:141-149. [PMID: 26433762 PMCID: PMC4640946 DOI: 10.1016/j.jad.2015.09.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bipolar disorder is a heterogeneous mood disorder associated with several important clinical comorbidities, such as eating disorders. This clinical heterogeneity complicates the identification of genetic variants contributing to bipolar susceptibility. Here we investigate comorbidity of eating disorders as a subphenotype of bipolar disorder to identify genetic variation that is common and unique to both disorders. METHODS We performed a genome-wide association analysis contrasting 184 bipolar subjects with eating disorder comorbidity against both 1370 controls and 2006 subjects with bipolar disorder only from the Bipolar Genome Study (BiGS). RESULTS The most significant genome-wide finding was observed bipolar with comorbid eating disorder vs. controls within SOX2-OT (p=8.9×10(-8) for rs4854912) with a secondary peak in the adjacent FXR1 gene (p=1.2×10(-6) for rs1805576) on chromosome 3q26.33. This region was also the most prominent finding in the case-only analysis (p=3.5×10(-7) and 4.3×10(-6), respectively). Several regions of interest containing genes involved in neurodevelopment and neuroprotection processes were also identified. LIMITATIONS While our primary finding did not quite reach genome-wide significance, likely due to the relatively limited sample size, these results can be viewed as a replication of a recent study of eating disorders in a large cohort. CONCLUSIONS These findings replicate the prior association of SOX2-OT with eating disorders and broadly support the involvement of neurodevelopmental/neuroprotective mechanisms in the pathophysiology of both disorders. They further suggest that different clinical manifestations of bipolar disorder may reflect differential genetic contributions and argue for the utility of clinical subphenotypes in identifying additional molecular pathways leading to illness.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- San Diego Veterans Affairs Healthcare System, San Diego, CA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA
| | | |
Collapse
|
12
|
Brionne A, Nys Y, Hennequet-Antier C, Gautron J. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process. BMC Genomics 2014; 15:220. [PMID: 24649854 PMCID: PMC3999959 DOI: 10.1186/1471-2164-15-220] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The chicken eggshell is a natural mechanical barrier to protect egg components from physical damage and microbial penetration. Its integrity and strength is critical for the development of the embryo or to ensure for consumers a table egg free of pathogens. This study compared global gene expression in laying hen uterus in the presence or absence of shell calcification in order to characterize gene products involved in the supply of minerals and / or the shell biomineralization process. RESULTS Microarrays were used to identify a repertoire of 302 over-expressed genes during shell calcification. GO terms enrichment was performed to provide a global interpretation of the functions of the over-expressed genes, and revealed that the most over-represented proteins are related to reproductive functions. Our analysis identified 16 gene products encoding proteins involved in mineral supply, and allowed updating of the general model describing uterine ion transporters during eggshell calcification. A list of 57 proteins potentially secreted into the uterine fluid to be active in the mineralization process was also established. They were classified according to their potential functions (biomineralization, proteoglycans, molecular chaperone, antimicrobials and proteases/antiproteases). CONCLUSIONS Our study provides detailed descriptions of genes and corresponding proteins over-expressed when the shell is mineralizing. Some of these proteins involved in the supply of minerals and influencing the shell fabric to protect the egg contents are potentially useful biological markers for the genetic improvement of eggshell quality.
Collapse
Affiliation(s)
| | | | | | - Joël Gautron
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France.
| |
Collapse
|
13
|
Schmitz F. Presynaptic [Ca(2+)] and GCAPs: aspects on the structure and function of photoreceptor ribbon synapses. Front Mol Neurosci 2014; 7:3. [PMID: 24567702 PMCID: PMC3915146 DOI: 10.3389/fnmol.2014.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/15/2014] [Indexed: 12/21/2022] Open
Abstract
Changes in intracellular calcium ions [Ca2+] play important roles in photoreceptor signaling. Consequently, intracellular [Ca2+] levels need to be tightly controlled. In the light-sensitive outer segments (OS) of photoreceptors, Ca2+ regulates the activity of retinal guanylate cyclases thus playing a central role in phototransduction and light-adaptation by restoring light-induced decreases in cGMP. In the synaptic terminals, changes of intracellular Ca2+ trigger various aspects of neurotransmission. Photoreceptors employ tonically active ribbon synapses that encode light-induced, graded changes of membrane potential into modulation of continuous synaptic vesicle exocytosis. The active zones of ribbon synapses contain large electron-dense structures, synaptic ribbons, that are associated with large numbers of synaptic vesicles. Synaptic coding at ribbon synapses differs from synaptic coding at conventional (phasic) synapses. Recent studies revealed new insights how synaptic ribbons are involved in this process. This review focuses on the regulation of [Ca2+] in presynaptic photoreceptor terminals and on the function of a particular Ca2+-regulated protein, the neuronal calcium sensor protein GCAP2 (guanylate cyclase-activating protein-2) in the photoreceptor ribbon synapse. GCAP2, an EF-hand-containing protein plays multiple roles in the OS and in the photoreceptor synapse. In the OS, GCAP2 works as a Ca2+-sensor within a Ca2+-regulated feedback loop that adjusts cGMP levels. In the photoreceptor synapse, GCAP2 binds to RIBEYE, a component of synaptic ribbons, and mediates Ca2+-dependent plasticity at that site. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- Frank Schmitz
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Medical School Homburg/Saar, Saarland University Saarland, Germany
| |
Collapse
|
14
|
Lu X, Wang L, Chen S, He L, Yang X, Shi Y, Cheng J, Zhang L, Gu CC, Huang J, Wu T, Ma Y, Li J, Cao J, Chen J, Ge D, Fan Z, Li Y, Zhao L, Li H, Zhou X, Chen L, Liu D, Chen J, Duan X, Hao Y, Wang L, Lu F, Liu Z, Yao C, Shen C, Pu X, Yu L, Fang X, Xu L, Mu J, Wu X, Zheng R, Wu N, Zhao Q, Li Y, Liu X, Wang M, Yu D, Hu D, Ji X, Guo D, Sun D, Wang Q, Yang Y, Liu F, Mao Q, Liang X, Ji J, Chen P, Mo X, Li D, Chai G, Tang Y, Li X, Du Z, Liu X, Dou C, Yang Z, Meng Q, Wang D, Wang R, Yang J, Schunkert H, Samani NJ, Kathiresan S, Reilly MP, Erdmann J, Peng X, Wu X, Liu D, Yang Y, Chen R, Qiang B, Gu D. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet 2012; 44:890-894. [PMID: 22751097 PMCID: PMC3927410 DOI: 10.1038/ng.2337] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/05/2012] [Indexed: 02/07/2023]
Abstract
We performed a meta-analysis of 2 genome-wide association studies of coronary artery disease comprising 1,515 cases and 5,019 controls followed by replication studies in 15,460 cases and 11,472 controls, all of Chinese Han ancestry. We identify four new loci for coronary artery disease that reached the threshold of genome-wide significance (P < 5 × 10(-8)). These loci mapped in or near TTC32-WDR35, GUCY1A3, C6orf10-BTNL2 and ATP2B1. We also replicated four loci previously identified in European populations (in or near PHACTR1, TCF21, CDKN2A-CDKN2B and C12orf51). These findings provide new insights into pathways contributing to the susceptibility for coronary artery disease in the Chinese Han population.
Collapse
Affiliation(s)
- Xiangfeng Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Interaction of plasma membrane Ca(2+)-ATPase isoform 4 with calcineurin A: implications for catecholamine secretion by PC12 cells. Biochem Biophys Res Commun 2011; 411:235-40. [PMID: 21740891 DOI: 10.1016/j.bbrc.2011.06.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
PMCA1-4 isoforms have been recently recognised as regulators of various signalling pathways in mammalian cells. PMCAs were found to interact with calcineurin A in an isoform specific manner. In this study we focus on the interaction of calcineurin A with PMCA4 and its effect on catecholamine secretion in PC12 cells with reduced PMCA2 or PMCA3 content. Reduction of synthesis of PMCA2 or PMCA3 led to upregulation of PMCA4 manifested by preferential interaction of PMCA4 with calcineurin A. On the other hand, we observed a significant reduction of dopamine secretion, which did not correspond with an increased [Ca(2+)](c). This result indicates that the interaction of PMCA4 with calcineurin A plays a regulatory role in the signalling during catecholamine secretion.
Collapse
|
16
|
Gilligan DM, Finney GL, Rynes E, Maccoss MJ, Lambert AJ, Peters LL, Robledo RF, Wooden JM. Comparative proteomics reveals deficiency of NHE-1 (Slc9a1) in RBCs from the beta-adducin knockout mouse model of hemolytic anemia. Blood Cells Mol Dis 2011; 47:85-94. [PMID: 21592827 DOI: 10.1016/j.bcmd.2011.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/22/2011] [Indexed: 11/29/2022]
Abstract
Hemolytic anemia is one of the most common inherited disorders. To identify candidate proteins involved in hemolytic anemia pathophysiology, we utilized a label-free comparative proteomic approach to detect differences in RBCs from normal and beta-adducin (Add2) knock-out mice. We detected 7 proteins that were decreased and 48 proteins that were increased in the beta-adducin knock-out RBC ghost. Since hemolytic anemias are characterized by reticulocytosis, we compared reticulocyte-enriched samples from phenylhydrazine-treated mice with mature RBCs from untreated mice. Label-free analysis identified 47 proteins that were increased in the reticulocyte-enriched samples and 21 proteins that were decreased. Among the proteins increased in Add2 knockout RBCs, only 11 were also found increased in reticulocytes. Among the proteins decreased in Add2 knockout RBCs, beta- and alpha-adducin showed the greatest intensity difference, followed by NHE-1 (Slc9a1), the sodium-hydrogen exchanger. We verified these mass spectrometry results by immunoblot. This is the first example of a deficiency of NHE-1 in hemolytic anemia and suggests new insights into the mechanisms leading to fragile RBCs. Our use of label-free comparative proteomics to make this discovery demonstrates the usefulness of this approach as opposed to metabolic or chemical isotopic labeling of mice.
Collapse
Affiliation(s)
- Diana M Gilligan
- Department of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Go W, Bessarab D, Korzh V. atp2b1a regulates Ca(2+) export during differentiation and regeneration of mechanosensory hair cells in zebrafish. Cell Calcium 2010; 48:302-13. [PMID: 21084119 DOI: 10.1016/j.ceca.2010.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 09/30/2010] [Indexed: 12/16/2022]
Abstract
The molecular mechanisms of development of mechanosensory hair cells have been tackled successfully due to in vivo studies in the zebrafish lateral line. The enhancer trap (ET) transgenic line, SqET4 was instrumental in these studies even despite a lack of a link of its GFP expression pattern to a particular gene(s). We mapped the Tol2 transposon insertion of the SqET4 transgenics onto Chr. 4 next to a gene encoding Atp2b1a (Pmca1) - one of the four PMCAs acting to export Ca(2+) from a cell. atp2b1a expression recapitulates that of GFP during the development of mechanoreceptors of the inner ear and lateral line. atp2b1a expression correlates with the regeneration of these cells. Thus, SqET4 represents the Tg:atp2b1a-GFP line, which links Ca(2+) metabolism and the differentiation of mechanoreceptors. The morpholino-mediated knockdown of atp2b1a blocks Ca(2+) export and affects the division of hair cell progenitors, resulting in their accumulation. Under the control of a master gene of hair cells, Atoh1a, Atp2b1a functions during progenitor cell proliferation and hair cell differentiation. Given the similarity between the phenotypes of atp2b1a morphants and embryos treated with the pan-PMCA inhibitor 5(6)-carboxyeosin, Atp2b1a emerges as member of the Atp2b family responsible for Ca(2+) export during the development of hair cells.
Collapse
Affiliation(s)
- William Go
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
| | | | | |
Collapse
|
18
|
Fakira AK, Elkabes S. Role of plasma membrane calcium ATPase 2 in spinal cord pathology. World J Biol Chem 2010; 1:103-8. [PMID: 21540996 PMCID: PMC3083954 DOI: 10.4331/wjbc.v1.i5.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/05/2023] Open
Abstract
A number of studies have indicated that plasma membrane calcium ATPases (PMCAs) are expressed in the brain and spinal cord and could play important roles not only in the maintenance of cellular calcium homeostasis but also in the survival and function of central nervous system cells under pathological conditions. The different regional and cellular distributions of the various PMCA isoforms and splice variants in the nervous system and the diverse phenotypes of PMCA knockout mice support the notion that each isoform might play a distinct role. Especially in the spinal cord, the survival of neurons and, in particular, motor neurons could be dependent on PMCA2. This is indicated by the knockdown of PMCA2 in pure spinal cord neuronal cultures that leads to cell death via a decrease in collapsing response mediator protein 1 levels. Moreover, the progressive decline in the number of motor neurons in PMCA2-null mice and heterozygous mice further supports this notion. Therefore, the reported reduction in PMCA2 mRNA and protein levels in the inflamed spinal cord of mice affected by experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, and after spinal cord contusion injury, suggests that changes in PMCA2 expression could be a cause of neuronal pathology and death during inflammation and injury. Glutamate excitotoxicity mediated via kainate receptors has been implicated in the neuropathology of both EAE and spinal cord injury, and has been identified as a trigger that reduces PMCA2 levels in pure spinal cord neuronal cultures through degradation of the pump by calpain without affecting PMCA2 transcript levels. It remains to be determined which other stimuli modulate PMCA2 mRNA expression in the aforementioned pathological conditions of the spinal cord.
Collapse
Affiliation(s)
- Amanda Kathleen Fakira
- Amanda Kathleen Fakira, Stella Elkabes, Department of Neurology and Neuroscience, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07003, United States
| | | |
Collapse
|
19
|
Wang Y, Cunningham DE, Tempel BL, Rubel EW. Compartment-specific regulation of plasma membrane calcium ATPase type 2 in the chick auditory brainstem. J Comp Neurol 2009; 514:624-40. [PMID: 19365819 PMCID: PMC2702515 DOI: 10.1002/cne.22045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium signaling plays a role in synaptic regulation of dendritic structure, usually on the time scale of hours or days. Here we use immunocytochemistry to examine changes in expression of plasma membrane calcium ATPase type 2 (PMCA2), a high-affinity calcium efflux protein, in the chick nucleus laminaris (NL) following manipulations of synaptic inputs. Dendrites of NL neurons segregate into dorsal and ventral domains, receiving excitatory input from the ipsilateral and contralateral ears, respectively, via nucleus magnocellularis (NM). Deprivation of the contralateral projection from NM to NL leads to rapid retraction of ventral, but not the dorsal, dendrites of NL neurons. Immunocytochemistry revealed symmetric distribution of PMCA2 in two neuropil regions of normally innervated NL. Electron microscopy confirmed that PMCA2 localizes in both NM terminals and NL dendrites. As early as 30 minutes after transection of the contralateral projection from NM to NL or unilateral cochlea removal, significant decreases in PMCA2 immunoreactivity were seen in the deprived neuropil of NL compared with the other neuropil that continued to receive normal input. The rapid decrease correlated with reductions in the immunoreactivity for microtubule-associated protein 2, which affects cytoskeleton stabilization. These results suggest that PMCA2 is regulated independently in ventral and dorsal NL dendrites and/or their inputs from NM in a way that is correlated with presynaptic activity. This provides a potential mechanism by which deprivation can change calcium transport that, in turn, may be important for rapid, compartment-specific dendritic remodeling.
Collapse
Affiliation(s)
- Yuan Wang
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
20
|
Aartsen WM, Arsanto JP, Chauvin JP, Vos RM, Versteeg I, Cardozo BN, Bivic AL, Wijnholds J. PSD95β regulates plasma membrane Ca(2+) pump localization at the photoreceptor synapse. Mol Cell Neurosci 2009; 41:156-65. [DOI: 10.1016/j.mcn.2009.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/27/2009] [Accepted: 02/10/2009] [Indexed: 01/05/2023] Open
|