1
|
Pathogenic Correlates of Simian Immunodeficiency Virus-Associated B Cell Dysfunction. J Virol 2017; 91:JVI.01051-17. [PMID: 28931679 DOI: 10.1128/jvi.01051-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023] Open
Abstract
We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted," virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression.IMPORTANCE We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression.
Collapse
|
2
|
Dennis AM, Hué S, Pasquale D, Napravnik S, Sebastian J, Miller WC, Eron JJ. HIV Transmission Patterns Among Immigrant Latinos Illuminated by the Integration of Phylogenetic and Migration Data. AIDS Res Hum Retroviruses 2015. [PMID: 26214548 DOI: 10.1089/aid.2015.0089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Latinos represent a growing proportion of HIV cases in North Carolina (NC). Understanding how immigrants are involved in local HIV transmission is important to guide interventions. We used phylogenetics to characterize Latino involvement in local HIV transmission chains. Transmission clusters were identified from maximum-likelihood phylogenies constructed with HIV pol sequences from 177 Latinos and 1,496 non-Latinos receiving care in NC. Highly supported clusters involving one or more Latinos were characterized. Migration data were obtained from interviews and chart review. Factors associated with cluster membership were identified using log-binomial regression. Most Latinos were male (76%), immigrants (83%), and had HIV-1B (99%). Immigrants were more likely to report heterosexual risk (67% vs. 23%) than U.S.-born Latinos (p < 0.01). We identified 32 clusters that included one or more Latinos; these involved 53 Latinos (30%) and 41 non-Latinos. Immigrant and U.S.-born Latinos were equally likely to be in clusters, but immigrants were more likely to be in clusters with another Latino (78% vs. 29%; p = 0.02). Cluster composition by ethnicity and risk behavior varied by cluster size; larger clusters contained fewer immigrants and more men who have sex with men (MSM). Factors associated with immigrant membership in local transmission clusters included age <30 years [RR 2.34 (95% CI 1.47-3.73)], Mexican origin [RR 2.55 (95% CI 1.29-6.88)], and residing in the United States longer before diagnosis [RR 1.53 (95% CI 1.09-2.15), per 10 years]. While some Latinos immigrate with HIV infection, many immigrants are involved in transmission networks after arrival, particularly MSM. HIV testing and prevention interventions must consider this heterogeneity and may be better targeted by integrating phylogenetic analyses.
Collapse
Affiliation(s)
- Ann M. Dennis
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Stéphane Hué
- Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dana Pasquale
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Sonia Napravnik
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Joseph Sebastian
- Laboratory Corporation of America, Research Triangle Park, North Carolina
| | - William C. Miller
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Joseph J. Eron
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
3
|
In vivo administration of a JAK3 inhibitor during acute SIV infection leads to significant increases in viral load during chronic infection. PLoS Pathog 2014; 10:e1003929. [PMID: 24603870 PMCID: PMC3946395 DOI: 10.1371/journal.ppat.1003929] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022] Open
Abstract
The studies reported herein are the first to document the effect of the in vivo administration of a JAK3 inhibitor for defining the potential role of NK cells during acute SIV infection of a group of 15 rhesus macaques (RM). An additional group of 16 MHC/KIR typed RM was included as controls. The previously optimized in vivo dose regimen (20 mg/kg daily for 35 days) led to a marked depletion of each of the major NK cell subsets both in the blood and gastro-intestinal tissues (GIT) during acute infection. While such depletion had no detectable effects on plasma viral loads during acute infection, there was a significant sustained increase in plasma viral loads during chronic infection. While the potential mechanisms that lead to such increased plasma viral loads during chronic infection remain unclear, several correlates were documented. Thus, during acute infection, the administration of the JAK3 inhibitor besides depleting all NK cell subsets also decreased some CD8+ T cells and inhibited the mobilization of the plasmacytoid dendritic cells in the blood and their localization to the GIT. Of interest is the finding that the administration of the JAK3 inhibitor during acute infection also resulted in the sustained maintenance during chronic infection of a high number of naïve and central memory CD4+ T cells, increases in B cells in the blood, but decreases in the frequencies and function of NKG2a+ NK cells within the GIT and blood, respectively. These data identify a unique role for JAK3 inhibitor sensitive cells, that includes NK cells during acute infection that in concert lead to high viral loads in SIV infected RM during chronic infection without affecting detectable changes in antiviral humoral/cellular responses. Identifying the precise mechanisms by which JAK3 sensitive cells exert their influence is critical with important implications for vaccine design against lentiviruses. In efforts to define the potential role of innate immune effector mechanisms in influencing the course of SIV infection during the acute infection period, our lab utilized the in vivo daily administration of 20 mg/kg orally of a compound called Tofacitinib (a Janus kinase 3 inhibitor) to a group of 15 rhesus macaques starting at day −6 and until day 28 post intravenous SIVmac239 infection. An additional group of 16 similarly SIV infected rhesus macaques served as a placebo control. This drug targets the JAK/STAT pathway that is utilized by cells including the NK cell lineage, a major cell of the innate immune system. The dosage utilized was based on extensive previous PK studies that resulted in a marked depletion of the NK cells. Of interest while such drug administration had no effect on plasma viral loads during acute infection, such drug administration led to significant increases in plasma and gastro-intestinal tissues (GIT) viral loads during chronic infection. A series of phenotypic/functional studies were performed to determine the mechanisms for this delayed effect and the correlates identified. These data are the first to document the effect of JAK-3 inhibitor during acute SIV infection with implications for HIV vaccine design.
Collapse
|
4
|
Liyanage NPM, Gordon SN, Doster MN, Pegu P, Vaccari M, Shukur N, Schifanella L, Pise-Masison CA, Lipinska D, Grubczak K, Moniuszko M, Franchini G. Antiretroviral therapy partly reverses the systemic and mucosal distribution of NK cell subsets that is altered by SIVmac₂₅₁ infection of macaques. Virology 2014; 450-451:359-68. [PMID: 24503100 DOI: 10.1016/j.virol.2013.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 01/06/2023]
Abstract
We characterized three subsets of NK cells in blood, and two subsets in mucosal tissues. SIVmac251 infection increased total and CD16(+) NK cells in the blood. In the rectum, we observed a significant increase in total and NKG2A(+) NK cells during SIV infection. In contrast, the NKp44(+) subset significantly depleted in acute infection and continued to decline in frequency during chronic phase. During SIV infection, blood CD16 and mucosal NKG2A(+) subsets had increased cytotoxic potential. Intriguingly, the NKp44(+) NK cell subtype that likely mediates mucosal homeostasis via the production of cytokines, acquired cytotoxicity. Antiretroviral therapy significantly increased the frequency of mucosal NKG2A(+) NK cells and peripheral CD16(+) NK cells. However, it failed to restore the normal frequency of NKp44(+) NK cells in the rectum. Thus, SIVmac251 infection causes changes in the distribution and function of NK cells and antiretroviral therapy during chronic infection only partially restores NK homeostasis and function.
Collapse
Affiliation(s)
- Namal P M Liyanage
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Shari N Gordon
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Melvin N Doster
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Poonam Pegu
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Monica Vaccari
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Nebiyu Shukur
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | - Luca Schifanella
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Danuta Lipinska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Kamil Grubczak
- Department of Immunology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland; Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Genoveffa Franchini
- Animal Models & Retroviral Vaccines Section, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Takahashi Y, Mayne AE, Khowawisetsut L, Pattanapanyasat K, Little D, Villinger F, Ansari AA. In vivo administration of a JAK3 inhibitor to chronically siv infected rhesus macaques leads to NK cell depletion associated with transient modest increase in viral loads. PLoS One 2013; 8:e70992. [PMID: 23923040 PMCID: PMC3724739 DOI: 10.1371/journal.pone.0070992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/30/2013] [Indexed: 01/31/2023] Open
Abstract
Innate immune responses are reasoned to play an important role during both acute and chronic SIV infection and play a deterministic role during the acute stages on the rate of infection and disease progression. NK cells are an integral part of the innate immune system but their role in influencing the course of SIV infection has been a subject of debate. As a means to delineate the effect of NK cells on SIV infection, use was made of a Janus kinase 3 (JAK3) inhibitor that has previously been shown to be effective in the depletion of NK cells in vivo in nonhuman primates (NHP). Extensive safety and in vitro/in vivo PK studies were conducted and an optimal dose that depletes NK cells and NK cell function in vivo identified. Six chronically SIV infected rhesus macaques, 3 with undetectable/low plasma viral loads and 3 with high plasma viral loads were administered a daily oral dose of 10 mg/kg for 35 days. Data obtained showed that, at the dose tested, the major cell lineage affected both in the blood and the GI tissues were the NK cells. Such depletion appeared to be associated with a transient increase in plasma and GI tissue viral loads. Whereas the number of NK cells returned to baseline values in the blood, the GI tissues remained depleted of NK cells for a prolonged period of time. Recent findings show that the JAK3 inhibitor utilized in the studies reported herein has a broader activity than previously reported with dose dependent effects on both JAK2 and JAK1 suggests that it is likely that multiple pathways are affected with the administration of this drug that needs to be taken into account. The findings reported herein are the first studies on the use of a JAK3 inhibitor in lentivirus infected NHP.
Collapse
Affiliation(s)
- Yoshiaki Takahashi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ann E. Mayne
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ladawan Khowawisetsut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dawn Little
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Francois Villinger
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Demberg T, Robert-Guroff M. Controlling the HIV/AIDS epidemic: current status and global challenges. Front Immunol 2012; 3:250. [PMID: 22912636 PMCID: PMC3418522 DOI: 10.3389/fimmu.2012.00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022] Open
Abstract
This review provides an overview of the current status of the global HIV pandemic and strategies to bring it under control. It updates numerous preventive approaches including behavioral interventions, male circumcision (MC), pre- and post-exposure prophylaxis (PREP and PEP), vaccines, and microbicides. The manuscript summarizes current anti-retroviral treatment options, their impact in the western world, and difficulties faced by emerging and resource-limited nations in providing and maintaining appropriate treatment regimens. Current clinical and pre-clinical approaches toward a cure for HIV are described, including new drug compounds that target viral reservoirs and gene therapy approaches aimed at altering susceptibility to HIV infection. Recent progress in vaccine development is summarized, including novel approaches and new discoveries.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, Section on Immune Biology of Retroviral Infection, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|