1
|
Abstract
Different model systems have, over the years, contributed to our current understanding of the molecular mechanisms underpinning the various types of interaction between bacteria and their animal hosts. The genus
Photorhabdus
comprises Gram-negative insect pathogenic bacteria that are normally found as symbionts that colonize the gut of the infective juvenile stage of soil-dwelling nematodes from the family Heterorhabditis. The nematodes infect susceptible insects and release the bacteria into the insect haemolymph where the bacteria grow, resulting in the death of the insect. At this stage the nematodes feed on the bacterial biomass and, following several rounds of reproduction, the nematodes develop into infective juveniles that leave the insect cadaver in search of new hosts. Therefore
Photorhabdus
has three distinct and obligate roles to play during this life-cycle: (1)
Photorhabdus
must kill the insect host; (2)
Photorhabdus
must be capable of supporting nematode growth and development; and (3)
Photorhabdus
must be able to colonize the gut of the next generation of infective juveniles before they leave the insect cadaver. In this review I will discuss how genetic analysis has identified key genes involved in mediating, and regulating, the interaction between
Photorhabdus
and each of its invertebrate hosts. These studies have resulted in the characterization of several new families of toxins and a novel inter-kingdom signalling molecule and have also uncovered an important role for phase variation in the regulation of these different roles.
Collapse
Affiliation(s)
- David J Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Patrnogic J, Castillo JC, Shokal U, Yadav S, Kenney E, Heryanto C, Ozakman Y, Eleftherianos I. Pre-exposure to non-pathogenic bacteria does not protect Drosophila against the entomopathogenic bacterium Photorhabdus. PLoS One 2018; 13:e0205256. [PMID: 30379824 PMCID: PMC6209181 DOI: 10.1371/journal.pone.0205256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/22/2018] [Indexed: 01/27/2023] Open
Abstract
Immune priming in insects involves an initial challenge with a non-pathogenic microbe or exposure to a low dose of pathogenic microorganisms, which provides a certain degree of protection against a subsequent pathogenic infection. The protective effect of insect immune priming has been linked to the activation of humoral or cellular features of the innate immune response during the preliminary challenge, and these effects might last long enough to promote the survival of the infected animal. The fruit fly Drosophila melanogaster is a superb model to dissect immune priming processes in insects due to the availability of molecular and genetic tools, and the comprehensive understanding of the innate immune response in this organism. Previous investigations have indicated that the D. melanogaster immune system can be primed efficiently. Here we have extended these studies by examining the result of immune priming against two potent entomopathogenic bacteria, Photorhabdus luminescens and P. asymbiotica. We have found that rearing D. melanogaster on diet containing a non-pathogenic strain of Escherichia coli alone or in combination with Micrococcus luteus upregulates the antibacterial peptide immune response in young adult flies, but it does not prolong fly life span. Also, subsequent intrathoracic injection with P. luminescens or P. asymbiotica triggers the Immune deficiency and Toll signaling pathways in flies previously exposed to a live or heat-killed mix of the non-pathogenic bacteria, but the immune activation fails to promote fly survival against the pathogens. These findings suggest that immune priming in D. melanogaster, and probably in other insects, is determined by the type of microbes involved as well as the mode of microbial exposure, and possibly requires a comprehensive and precise alteration of immune signaling and function to provide efficient protection against pathogenic infection.
Collapse
Affiliation(s)
- Jelena Patrnogic
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Julio Cesar Castillo
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Upasana Shokal
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Shruti Yadav
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Eric Kenney
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Christa Heryanto
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Yaprak Ozakman
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
3
|
Shokal U, Eleftherianos I. Thioester-Containing Protein-4 Regulates the Drosophila Immune Signaling and Function against the Pathogen Photorhabdus. J Innate Immun 2016; 9:83-93. [PMID: 27771727 DOI: 10.1159/000450610] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
Despite important progress in identifying the molecules that participate in the immune response of Drosophila melanogaster to microbial infections, the involvement of thioester-containing proteins (TEPs) in the antibacterial immunity of the fly is not fully clarified. Previous studies mostly focused on identifying the function of TEP2, TEP3 and TEP6 molecules in the D. melanogaster immune system. Here, we investigated the role of TEP4 in the regulation and function of D. melanogaster host defense against 2 virulent pathogens from the genus Photorhabdus, i.e. the insect pathogenic bacterium Photorhabdus luminescens and the emerging human pathogen P. asymbiotica. We demonstrate that Tep4 is strongly upregulated in adult flies following the injection of Photorhabdus bacteria. We also show that Tep4 loss-of-function mutants are resistant to P. luminescens but not to P. asymbiotica infection. In addition, we find that inactivation of Tep4 results in the upregulation of the Toll and Imd immune pathways, and the downregulation of the Jak/Stat and Jnk pathways upon Photorhabdus infection. We document that loss of Tep4 promotes melanization and phenoloxidase activity in the mutant flies infected with Photorhabdus. Together, these findings generate novel insights into the immune role of TEP4 as a regulator and effector of the D. melanogaster antibacterial immune response.
Collapse
Affiliation(s)
- Upasana Shokal
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, D.C., USA
| | | |
Collapse
|
4
|
Kenney E, Eleftherianos I. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture. Int J Parasitol 2016; 46:13-9. [PMID: 26527129 PMCID: PMC4707073 DOI: 10.1016/j.ijpara.2015.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 12/22/2022]
Abstract
Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens.
Collapse
Affiliation(s)
- Eric Kenney
- Department of Biological Sciences, The George Washington University, 800 22nd Street NW, Washington DC 20052, United States
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, 800 22nd Street NW, Washington DC 20052, United States.
| |
Collapse
|
5
|
Castillo JC, Shokal U, Eleftherianos I. A novel method for infecting Drosophila adult flies with insect pathogenic nematodes. Virulence 2012; 3:339-47. [PMID: 22546901 DOI: 10.4161/viru.20244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Drosophila has been established as an excellent genetic and genomic model to investigate host-pathogen interactions and innate immune defense mechanisms. To date, most information on the Drosophila immune response derives from studies that involve bacterial, fungal or viral pathogens. However, immune reactions to insect parasitic nematodes are still not well characterized. The nematodes Heterorhabditis bacteriophora live in symbiosis with the entomopathogenic bacteria Photorhabdus luminescens, and they are able to invade and kill insects. Interestingly, Heterorhabditis nematodes are viable in the absence of Photorhabdus. Techniques for infecting Drosophila larvae with these nematodes have been previously reported. Here, we have developed a method for infecting Drosophila adult flies with Heterorhabditis nematodes carrying (symbiotic worms) or lacking (axenic worms) their associated bacteria. The protocol we present can be readily adapted for studying parasitic strategies of other insect nematodes using Drosophila as the host infection model.
Collapse
Affiliation(s)
- Julio Cesar Castillo
- Insect Infection and Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | | | |
Collapse
|