1
|
Tavasoli AR, Kaki A, Ganji M, Kahani SM, Radmehr F, Mohammadi P, Heidari M, Ashrafi MR, Lewis KS. Trichothiodystrophy due to ERCC2 Variants: Uncommon Contributor to Progressive Hypomyelinating Leukodystrophy. Mol Genet Genomic Med 2025; 13:e70067. [PMID: 39976384 PMCID: PMC11840839 DOI: 10.1002/mgg3.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Accepted: 01/19/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Trichothiodystrophy (TTD) is caused by homozygous or compound heterozygous variants in genes associated with DNA repair. The ERCC2 gene encoded a protein, XPD, that is a subunit of the general transcription factor TFIIH and important in both DNA repair and transcription. Disease-causing variants in ERCC2 can partially inactivate these activities, giving rise to symptoms seen in TTD, Cockayne syndrome (CS) and xeroderma pigmentosa (XP). Although generalized cerebral white matter abnormalities is reported in TTD, myelination disorders specifically linked to ERCC2 gene variants are exceptionally uncommon. Here, we introduce a thorough investigation of a patient exhibiting classic TTD symptoms alongside progressive cerebral hypomyelination with ERCC2 variants. METHODS In a non-consanguineous family, we conducted Autism/ID gene Panel on a 5-year-old affected child who presented with microcephaly, failure to thrive, developmental delay, and progressive hypomyelination on three serial brain imaging over 5-years follow-up. Our investigation aimed to elucidate the genetic underpinnings of the observed phenotype. We also conducted a comprehensive review of the genetic profiles of all documented ERCC2-related patients exhibiting myelination disorders. RESULTS Autism/ID gene Panel identified a compound heterozygous variant in ERCC2 gene causing TTD. Clinical and paraclinical findings enabled differentiation of TTD from Cockayne syndrome and XP. Segregation analysis revealed that, the variation in the paternal allele was a splice junction loss (c.2190 + 1delG), and the other alteration in the maternal allele was a pathogenic variant (c.1479 + 2dupT). It has been noted that these variants were reported in previous studies in homozygous or compound heterozygous form in patients with TTD, but none of them exhibited hypomyelinating leukodystrophy. CONCLUSION The identification of hypomyelination in TTD due to ERCC2 sheds a light on the molecular diagnosis and contributing to the limited literature on ERCC2 variants and associated hypomyelinating leukodystrophy in patients with TTD.
Collapse
Affiliation(s)
- Ali Reza Tavasoli
- Neurology DivisionBarrow Neurological Institute, Phoenix Children'sPhoenixArizonaUSA
- Myelin Disorders Clinic, Children's Medical Center, Pediatric Center of ExcellenceTehran University of Medical SciencesTehranIran
| | - Arastoo Kaki
- Department of Medical Genetics, School of MedicineHamadan University of Medical SciencesHamadanIran
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research InstituteHamadan University of Medical SciencesHamadanIran
| | | | | | - Foozhan Radmehr
- Department of Molecular MedicineNational Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Pouria Mohammadi
- Myelin Disorders Clinic, Children's Medical Center, Pediatric Center of ExcellenceTehran University of Medical SciencesTehranIran
- Department of Medical GeneticsTarbiat Modares UniversityTehranIran
| | - Morteza Heidari
- Myelin Disorders Clinic, Children's Medical Center, Pediatric Center of ExcellenceTehran University of Medical SciencesTehranIran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Children's Medical Center, Pediatric Center of ExcellenceTehran University of Medical SciencesTehranIran
| | - Kara S. Lewis
- Neurology DivisionBarrow Neurological Institute, Phoenix Children'sPhoenixArizonaUSA
| |
Collapse
|
2
|
Zadurska M, Rakowska A, Czochrowska E, Laskowska M, Perkowski K, Strużycka I, Rudnicka L, Jurek A. Hair Evaluation in Orthodontic Patients with Oligodontia. Diagnostics (Basel) 2024; 14:945. [PMID: 38732359 PMCID: PMC11083739 DOI: 10.3390/diagnostics14090945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/03/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Oligodontia can be isolated or syndromic, associated with other ectodermal abnormalities. The aim of the study was to perform hair examination in orthodontic patients diagnosed with oligodontia with a low clinical expression of symptoms of ectodermal origin. All available orthodontic patients diagnosed with oligodontia in the permanent dentition were enrolled. Hair examination included clinical evaluation of the patients' hair, trichoscopy, trichogram and evaluation of the hair shafts under a polarized light microscope. In total, 25 patients, 18 males and 7 females, aged 6 to 24 years were evaluated for the presence of dental and hair abnormalities. The number of congenitally absent teeth ranged from 6 to 24 teeth and diastemas, microdontia, taurodontism and altered tooth shape were found in 23 patients. Hair disorders were found in 68% of the subjects. Hypotrichosis, the heterogeneity of shaft color and loss of pigment, androgenetic alopecia, telogen effluvium, trichoschisis, pili canaliculi, trichorrhexis nodosa and pseudomoniletrix were observed. Trichoscopy and trichogram are valid non-invasive diagnostic tests which could be used to differentiate between isolated and syndromic oligodontia in patients with a low clinical expression of ectodermal symptoms.
Collapse
Affiliation(s)
- Małgorzata Zadurska
- Department of Orthodontics, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Z.); (E.C.); (M.L.); (K.P.)
| | - Adriana Rakowska
- Department of Dermatology, Medical University of Warsaw, 02-097 Warsaw, Poland (L.R.)
| | - Ewa Czochrowska
- Department of Orthodontics, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Z.); (E.C.); (M.L.); (K.P.)
| | - Małgorzata Laskowska
- Department of Orthodontics, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Z.); (E.C.); (M.L.); (K.P.)
| | - Konrad Perkowski
- Department of Orthodontics, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Z.); (E.C.); (M.L.); (K.P.)
| | - Izabela Strużycka
- Department of Comprehensive Dentistry, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, 02-097 Warsaw, Poland (L.R.)
| | - Agnieszka Jurek
- Department of Orthodontics, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Z.); (E.C.); (M.L.); (K.P.)
| |
Collapse
|
3
|
Reduced levels of prostaglandin I 2 synthase: a distinctive feature of the cancer-free trichothiodystrophy. Proc Natl Acad Sci U S A 2021; 118:2024502118. [PMID: 34155103 DOI: 10.1073/pnas.2024502118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cancer-free photosensitive trichothiodystrophy (PS-TTD) and the cancer-prone xeroderma pigmentosum (XP) are rare monogenic disorders that can arise from mutations in the same genes, namely ERCC2/XPD or ERCC3/XPB Both XPD and XPB proteins belong to the 10-subunit complex transcription factor IIH (TFIIH) that plays a key role in transcription and nucleotide excision repair, the DNA repair pathway devoted to the removal of ultraviolet-induced DNA lesions. Compelling evidence suggests that mutations affecting the DNA repair activity of TFIIH are responsible for the pathological features of XP, whereas those also impairing transcription give rise to TTD. By adopting a relatives-based whole transcriptome sequencing approach followed by specific gene expression profiling in primary fibroblasts from a large cohort of TTD or XP cases with mutations in ERCC2/XPD gene, we identify the expression alterations specific for TTD primary dermal fibroblasts. While most of these transcription deregulations do not impact on the protein level, very low amounts of prostaglandin I2 synthase (PTGIS) are found in TTD cells. PTGIS catalyzes the last step of prostaglandin I2 synthesis, a potent vasodilator and inhibitor of platelet aggregation. Its reduction characterizes all TTD cases so far investigated, both the PS-TTD with mutations in TFIIH coding genes as well as the nonphotosensitive (NPS)-TTD. A severe impairment of TFIIH and RNA polymerase II recruitment on the PTGIS promoter is found in TTD but not in XP cells. Thus, PTGIS represents a biomarker that combines all PS- and NPS-TTD cases and distinguishes them from XP.
Collapse
|
4
|
Kciuk M, Marciniak B, Mojzych M, Kontek R. Focus on UV-Induced DNA Damage and Repair-Disease Relevance and Protective Strategies. Int J Mol Sci 2020; 21:ijms21197264. [PMID: 33019598 PMCID: PMC7582305 DOI: 10.3390/ijms21197264] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The protective ozone layer is continually depleting due to the release of deteriorating environmental pollutants. The diminished ozone layer contributes to excessive exposure of cells to ultraviolet (UV) radiation. This leads to various cellular responses utilized to restore the homeostasis of exposed cells. DNA is the primary chromophore of the cells that absorbs sunlight energy. Exposure of genomic DNA to UV light leads to the formation of multitude of types of damage (depending on wavelength and exposure time) that are removed by effectively working repair pathways. The aim of this review is to summarize current knowledge considering cellular response to UV radiation with special focus on DNA damage and repair and to give a comprehensive insight for new researchers in this field. We also highlight most important future prospects considering application of the progressing knowledge of UV response for the clinical control of diverse pathologies.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
- Correspondence:
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| |
Collapse
|
5
|
Apostolou Z, Chatzinikolaou G, Stratigi K, Garinis GA. Nucleotide Excision Repair and Transcription-Associated Genome Instability. Bioessays 2019; 41:e1800201. [PMID: 30919497 DOI: 10.1002/bies.201800201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Transcription is a potential threat to genome integrity, and transcription-associated DNA damage must be repaired for proper messenger RNA (mRNA) synthesis and for cells to transmit their genome intact into progeny. For a wide range of structurally diverse DNA lesions, cells employ the highly conserved nucleotide excision repair (NER) pathway to restore their genome back to its native form. Recent evidence suggests that NER factors function, in addition to the canonical DNA repair mechanism, in processes that facilitate mRNA synthesis or shape the 3D chromatin architecture. Here, these findings are critically discussed and a working model that explains the puzzling clinical heterogeneity of NER syndromes highlighting the relevance of physiological, transcription-associated DNA damage to mammalian development and disease is proposed.
Collapse
Affiliation(s)
- Zivkos Apostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| |
Collapse
|
6
|
Lans H, Hoeijmakers JHJ, Vermeulen W, Marteijn JA. The DNA damage response to transcription stress. Nat Rev Mol Cell Biol 2019; 20:766-784. [DOI: 10.1038/s41580-019-0169-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 12/30/2022]
|
7
|
Ahmed A, Almohanna H, Griggs J, Tosti A. Genetic Hair Disorders: A Review. Dermatol Ther (Heidelb) 2019; 9:421-448. [PMID: 31332722 PMCID: PMC6704196 DOI: 10.1007/s13555-019-0313-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 12/23/2022] Open
Abstract
Hair loss in early childhood represents a broad differential diagnosis which can be a diagnostic and therapeutic challenge for a physician. It is important to consider the diagnosis of a genetic hair disorder. Genetic hair disorders are a large group of inherited disorders, many of which are rare. Genetic hair abnormalities in children can be an isolated phenomenon or part of genetic syndromes. Hair changes may be a significant finding or even the initial presentation of a syndrome giving a clue to the diagnosis, such as Netherton syndrome and trichothiodystrophy. Detailed history including family history and physical examination of hair and other ectodermal structures such as nails, sweat glands, and sebaceous glands with the use of dermoscopic devices and biopsy all provide important clues to establish the correct diagnosis. Understanding the pathophysiology of genetic hair defects will allow for better comprehension of their treatment and prognosis. For example, in patients with an isolated hair defect, the main problem is aesthetic. In contrast, when the hair defect is associated with a syndrome, the prognosis will depend mainly on the associated condition. Treatment of many genetic hair disorders is focused on treating the primary cause and minimizing trauma to the hair.
Collapse
Affiliation(s)
- Azhar Ahmed
- Department of Dermatology, King Fahad General Hospital, Medina, Saudi Arabia.
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, University of Miami Hospital, Miami, FL, USA.
| | - Hind Almohanna
- Department of Dermatology and Dermatologic Surgery, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Jacob Griggs
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, University of Miami Hospital, Miami, FL, USA
| | - Antonella Tosti
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, University of Miami Hospital, Miami, FL, USA
| |
Collapse
|
8
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 17. Other Hypergonadotropic Hypogonadisms. Pediatr Dev Pathol 2016; 19:278-90. [PMID: 26809023 DOI: 10.2350/16-01-1755-pb.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | | | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
9
|
Abstract
Facial involvement represents a characteristic feature of a wide range of genodermatoses. Specific facial findings often help point to the correct diagnosis, which improves counseling and management. In particular, this can facilitate the identification and treatment of associated extracutaneous disease. The highly visible nature of facial lesions in genodermatoses and facial birthmarks can result in stigmatization and frequently leads to particular concern in patients and their family members. It is therefore critical for dermatologists to be aware of the broad spectrum of facial manifestations in genetic skin disease, especially when these findings have important implications with regard to monitoring and treatment. In this contribution, facial involvement in genodermatoses is divided into five morphologic categories based on the most prominent feature: Papules, scaling, photosensitivity/findings associated with aging (eg, telangiectasias, atrophy, lentigines), blisters/erosions, and birthmarks. Hopefully, this will provide a practical and clinically useful approach to a large and diverse assortment of genetic skin conditions.
Collapse
|
10
|
Ferrando J, Mir-Bonafé JM, Cepeda-Valdés R, Domínguez A, Ocampo-Candiani J, García-Veigas J, Gómez-Flores M, Salas-Alanis JC. Further insights in trichothiodistrophy: a clinical, microscopic, and ultrastructural study of 20 cases and literature review. Int J Trichology 2013. [PMID: 23180925 PMCID: PMC3500055 DOI: 10.4103/0974-7753.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Trichothiodistrophy (TTD) is a rare autosomal recessive condition that is characterized by a specific congenital hair shaft dysplasia caused by deficiency of sulfur associated with a wide spectrum of multisystem abnormalities. In this article, we study clinical, microscopic, and ultrastructural findings of 20 patients with TTD with the aim to add further insights regarding to this rare condition. Additionally, analyses of our results are compared with those extracted from the literature in order to enhance its comprehensibility. MATERIALS AND METHODS TWENTY CASES OF TTD WERE INCLUDED: 7 from Mexico and 14 from Spain. Clinical, microscopic, scanning electron microscopy (SEM) studies and X-ray microanalysis (XrMa) were carried out in all of them. Genetic studies were performed in all seven Mexican cases. Patients with xeroderma pigmentosum and xeroderma pigmentosum/TTD-complex were excluded. RESULTS Cuticular changes and longitudinal crests of the hair shaft were demonstrated. These crests were irregular, disorganized, following the hair longest axis. Hair shaft sulfur deficiency was disposed discontinuously and intermittently rather than uniformly. This severe decrease of sulfur contents was located close to the trichoschisis areas. Only five patients did not show related disturbances. Micro-dolichocephaly was observed in five cases and represented the most frequent facial dysmorphism found. It is also remarkable that all patients with urologic malformations also combined diverse neurologic disorders. Moreover, three Mexican sisters demonstrated the coexistence of scarce pubic vellus hair, developmental delay, onychodystrophy, and maxillar/mandibullar hypoplasia. CONCLUSIONS TTD phenotype has greatly varied from very subtle forms to severe alterations such as neurologic abnormalities, blindness, lamellar ichthyosis and gonadal malformations. Herein, a multisystem study should be performed mandatorily in patients diagnosed with TTD.
Collapse
Affiliation(s)
- Juan Ferrando
- Department of Dermatology, Hospital Clinic, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Castelo-Soccio LA. Hair manifestations of systemic disease. Curr Probl Pediatr Adolesc Health Care 2012; 42:198-203. [PMID: 22884026 DOI: 10.1016/j.cppeds.2012.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 02/27/2012] [Indexed: 01/19/2023]
Affiliation(s)
- Leslie A Castelo-Soccio
- Section of Dermatology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|