1
|
Bhattacharya M, Sarkar A, Wen ZH, Wu YJ, Chakraborty C. Rational Design of a Multi-epitope Vaccine Using Neoantigen Against Colorectal Cancer Through Structural Immunoinformatics and ML-Enabled Simulation Approach. Mol Biotechnol 2025; 67:2817-2831. [PMID: 39190054 DOI: 10.1007/s12033-024-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer poses a substantial global health burden. Regarding WHO, the global burden of colorectal cancer will be about 3.2 million new cases by the year 2040. Simultaneously, it indicated that this cancer will cause 6 million deaths per year. Despite advancements in chemotherapy and monoclonal antibody therapy, the disease remains a significant challenge due to the resistance of cancer stem cells. This study endeavors to design a multi-epitopic peptide (9-mer epitopes) neoantigen-based vaccine targeting the TLR4/MD2 complex as a potential vaccine candidate. These tumor-specific neoantigens (TSA) are considered novel antigens that can be used for vaccine development against cancer. To develop the neoantigen vaccine candidate, we used the SPENCER database, and 140 lncRNA-derived epitopes were retrieved. From 140 epitopes, we selected seven neoantigens with high antigenic properties for the vaccine construct. A novel vaccine containing epitopes, linkers (EAAAK and CPCPG), and adjuvants (ribosomal [50S] protein L7L12) was formulated utilizing immunoinformatics tools. The vaccine's biophysical properties were evaluated, revealing its antigenicity (0.6469), stability (instability index: 37.05), and potential for immune system interaction. In-depth structural analyses, molecular docking studies, and ML-enabled immune simulation profiling underscored the vaccine's structural integrity, binding affinity with TLR4, and ability to elicit robust immune responses against colorectal cancer antigens. These findings suggest that the multi-epitopic vaccine holds promise as a next-generation approach to combat colorectal cancer. Our in silico studies exhibit potentiality of the vaccine candidate; however, further in vivo and in vitro investigations are crucial to validate immunogenicity, safety, and efficacy before clinical implementation. Our study developed a first-time lncRNA-derived neoantigen-based cancer vaccine.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Anindita Sarkar
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Yueh-Jung Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
2
|
Sun J, Gong J, Gong L, Zhu C, Li-Yang L, Wang J, Yang Y, Zhang S, Liu S, Fu JJ, Xu P. High Manganese Content of Lipid NanoMn (LNM) by Microfluidic Technology for Enhancing Anti-Tumor Immunity. Pharmaceutics 2024; 16:556. [PMID: 38675217 PMCID: PMC11054818 DOI: 10.3390/pharmaceutics16040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Immunotherapy is a clinically effective method for treating tumors. Manganese can activate the cGAS-STING signaling pathway and induce an anti-tumor immune response. However, its efficacy is hindered by non-specific distribution and low uptake rates. In this study, we employed microfluidic technology to design and develop an innovative preparation process, resulting in the creation of a novel manganese lipid nanoparticle (LNM). The lipid manganese nanoparticle produced in this process boasts a high manganese payload, excellent stability, the capacity for large-scale production, and high batch repeatability. LNM has effectively demonstrated the ability to activate the cGAS-STING signaling pathway, induce the production of pro-inflammatory cytokines, and inhibit tumor development. Notably, LNM does not require combination chemotherapy drugs or other immune activators. Therefore, LNM presents a safe, straightforward, and efficient strategy for anti-tumor immune activation, with the potential for scalable production.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Pharmaceutics, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China; (J.S.); (S.L.)
| | - Jingjing Gong
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Lidong Gong
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Chuanda Zhu
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Longhao Li-Yang
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Jingya Wang
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Yuanyuan Yang
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Shiming Zhang
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Silu Liu
- Department of Pharmaceutics, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China; (J.S.); (S.L.)
| | - Ji-Jun Fu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Pengcheng Xu
- Department of Pharmaceutics, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China; (J.S.); (S.L.)
| |
Collapse
|
3
|
Hong E, Dobrovolskaia MA. Detection of Antigen Presentation by Murine Bone Marrow-Derived Dendritic Cells After Treatment with Nanoparticles. Methods Mol Biol 2024; 2789:161-169. [PMID: 38507002 DOI: 10.1007/978-1-0716-3786-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Nanoparticles are frequently considered in vaccine applications due to their ability to co-deliver multiple antigens and adjuvants to antigen-presenting cells. Some nanoparticles also have intrinsic adjuvant properties that further enhance their ability to stimulate immune cells. The delivery of tumor-specific antigens to antigen-presenting cells (APCs) with subsequent antigenic peptide presentation in the context of class I major histocompatibility complex (MHC-I) molecules represents an essential effort in developing nanotechnology-based cancer vaccines. Experimental models are, therefore, needed to gauge the efficiency of nanotechnology carriers in achieving peptide antigen delivery to APCs and presentation in the context of MHC-I. The assay described herein utilizes a model antigen ovalbumin and model APCs, murine bone marrow-derived dendritic cells. The 25-D1.16 antibody, specific to the ovalbumin (OVA) MHC-I peptide SIINFEKL, recognizes this peptide presented in the context of the murine H2-Kb class I MHC molecule, allowing the presentation of this antigen on APCs to be detected by flow cytometry after nanoparticle delivery.
Collapse
Affiliation(s)
- Enping Hong
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
4
|
Hong E, Dobrovolskaia MA. Antigen-Specific Stimulation of CD8 + T Cells by Murine Bone Marrow-Derived Dendritic Cells After Treatment with Nanoparticles. Methods Mol Biol 2024; 2789:171-184. [PMID: 38507003 DOI: 10.1007/978-1-0716-3786-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The assessment of antigen presentation by dendritic cells and subsequent antigen-dependent activation of T lymphocytes is a critical step underlying the efficacy of nanoparticle-based therapeutic vaccines. Since nanoparticle physicochemical properties determine their interactions with the immune system, the early stages of nanotechnology-based vaccine development commonly involve optimizing the particles' properties to create a formulation with desired stability, antigen release, targeting of desired cell populations, and efficacy. To accelerate this process, in vitro models suitable for the rapid assessment of a novel vaccine candidate's efficacy are highly desirable. One such model is described in this protocol. Herein, nanoparticles are formulated to deliver a model antigen, SIINFEKL (OVA257-264), the immunodominant class I peptide derived from ovalbumin. These nanoparticles are added to the culture of murine bone marrow-derived dendritic cells, which are subsequently co-incubated with CD8+ T cells from OT-I transgenic mice. The efficient antigen presentation by dendritic cells results in the antigen-dependent proliferation of CD8+ T cells, which is detected by flow cytometry.
Collapse
Affiliation(s)
- Enping Hong
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
5
|
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the clonal proliferation of malignant plasma cells in the bone marrow and the development of osteolytic bone lesions. MM has emerged as a paradigm within the cancers for the success of drug discovery and translational medicine. This article discusses immunotherapy as an encouraging option for the goal of inducing effective and long-lasting therapeutic outcome. Divided into two distinct approaches, passive or active, immunotherapy, which targets tumor-associated antigens has shown promising results in multiple preclinical and clinical studies.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
6
|
Bae J, Tai YT, Anderson KC, Munshi NC. Novel epitope evoking CD138 antigen-specific cytotoxic T lymphocytes targeting multiple myeloma and other plasma cell disorders. Br J Haematol 2011; 155:349-61. [PMID: 21902685 DOI: 10.1111/j.1365-2141.2011.08850.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of an immunotherapeutic strategy targeting CD138 antigen could potentially represent a new treatment option for multiple myeloma (MM). This study evaluated the immune function of CD138 peptide-specific cytotoxic T lymphocytes (CTL), generated ex vivo using an HLA-A2-specific CD138 epitope against MM cells. A novel immunogenic HLA-A2-specific CD138(260-268) (GLVGLIFAV) peptide was identified from the full-length protein sequence of the CD138 antigen, which induced CTL specific to primary CD138(+) MM cells. The peptide-induced CD138-CTL contained a high percentage of CD8(+) activated/memory T cells with a low percentage of CD4(+) T cell and naive CD8(+) T cell subsets. The CTL displayed HLA-A2-restricted and CD138 antigen-specific cytotoxicity against MM cell lines. In addition, CD138-CTL demonstrated increased degranulation, proliferation and γ-interferon secretion to HLA-A2(+) /CD138(+) myeloma cells, but not HLA-A2(-) /CD138(+) or HLA-A2(+) /CD138(-) cells. The immune functional properties of the CD138-CTL were also demonstrated using primary HLA-A2(+) /CD138(+) cells isolated from myeloma patients. In conclusion, a novel immunogenic CD138(260-268) (GLVGLIFAV) peptide can induce antigen-specific CTL, which might be useful for the treatment of MM patients with peptide-based vaccine or cellular immunotherapy strategies.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | |
Collapse
|
7
|
Cooperativity of adaptive and innate immunity: implications for cancer therapy. Cancer Immunol Immunother 2011; 60:1061-74. [PMID: 21656157 DOI: 10.1007/s00262-011-1053-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/26/2011] [Indexed: 02/07/2023]
Abstract
The dichotomy of immunology into innate and adaptive immunity has created conceptual barriers in appreciating the intrinsic two-way interaction between immune cells. An emerging body of evidence in various models of immune rejection, including cancer, indicates an indispensable regulation of innate effector functions by adaptive immune cells. This bidirectional cooperativity in innate and adaptive immune functions has broad implications for immune responses in general and for regulating the tumor-associated inflammation that overrides the protective antitumor immunity. Mechanistic understanding of this two-way immune cross-talk could provide insights into novel strategies for designing better immunotherapy approaches against cancer and other diseases that normally defy immune control.
Collapse
|