1
|
Cherta-Murillo A, Pugh JE, Alaraj-Alshehhi S, Hajjar D, Chambers ES, Frost GS. The effects of SCFAs on glycemic control in humans: a systematic review and meta-analysis. Am J Clin Nutr 2022; 116:335-361. [PMID: 35388874 PMCID: PMC9348993 DOI: 10.1093/ajcn/nqac085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Noncommunicable disease development is related to impairments in glycemic and insulinemic responses, which can be modulated by fiber intake. Fiber's beneficial effects upon metabolic health can be partially attributed to the production of SCFAs via microbial fermentation of fiber in the gastrointestinal tract. OBJECTIVES We aimed to determine the effects of SCFAs, acetate, propionate, and butyrate on glycemic control in humans. METHODS The CENTRAL, Embase, PubMed, Scopus, and Web of Science databases were searched from inception to 7 December 2021. Papers were included if they reported a randomized controlled trial measuring glucose and/or insulin compared to a placebo in adults. Studies were categorized by the type of SCFA and intervention duration. Random-effects meta-analyses were performed for glucose and insulin for those subject categories with ≥3 studies, or a narrative review was performed. RESULTS We identified 43 eligible papers, with 46 studies within those records (n = 913), and 44 studies were included in the meta-analysis. Vinegar intake decreased the acute glucose response [standard mean difference (SMD), -0.53; 95% CI, -0.92 to -0.14; n = 67] in individuals with impaired glucose tolerance or type 2 diabetes and in healthy volunteers (SMD, -0.27; 95% CI, -0.54 to 0.00; n = 186). The meta-analyses for acute acetate, as well as acute and chronic propionate studies, showed no significant effect. CONCLUSIONS Vinegar decreased the glucose response acutely in healthy and metabolically unhealthy individuals. Acetate, propionate, butyrate, and mixed SCFAs had no effect on blood glucose and insulin in humans. Significant heterogeneity, risks of bias, and publication biases were identified in several study categories, including the acute vinegar glucose response. As evidence was very uncertain, caution is urged when interpreting these results. Further high-quality research is required to determine the effects of SCFAs on glycemic control.
Collapse
Affiliation(s)
- Anna Cherta-Murillo
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | - Sumayya Alaraj-Alshehhi
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Dana Hajjar
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Gary S Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
2
|
Effect of butyrate and fermentation products on epithelial integrity in a mucus-secreting human colon cell line. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
3
|
Zhou Z, Cao X, Zhou JYH. Effect of resistant starch structure on short-chain fatty acids production by human gut microbiota fermentation in vitro. STARCH-STARKE 2013. [DOI: 10.1002/star.201200166] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Kovatcheva-Datchary P, Zoetendal EG, Venema K, de Vos WM, Smidt H. Tools for the tract: understanding the functionality of the gastrointestinal tract. Therap Adv Gastroenterol 2011; 2:9-22. [PMID: 21180550 DOI: 10.1177/1756283x09337646] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract comprises a series of complex and dynamic organs ranging from the stomach to the distal colon, which harbor immense microbial assemblages that are known to be vital for human health. Until recently, most of the details concerning our gut microbiota remained obscure. Over the past several years, however, a number of crucial technological and conceptual innovations have been introduced to shed more light on the composition and functionality of human gut microbiota. Recently developed high throughput approaches, including next-generation sequencing technologies and phylogenetic microarrays targeting ribosomal RNA gene sequences, allow for comprehensive analysis of the diversity and dynamics of the gut microbiota composition. Nevertheless, most of the microbes especially in the human large intestine still remain uncultured, and the in situ functions of distinct groups of the gut microbiota are therefore largely unknown, but pivotal to the understanding of their role in human physiology. Apart from functional and metagenomics approaches, stable isotope probing is a promising tool to link the metabolic activity and diversity of microbial communities, including yet uncultured microbes, in a complex environment. Advancements in current stable isotope probing approaches integrated with the application of high-throughput diagnostic microarray-based phylogenetic profiling and metabolic flux analysis should facilitate the understanding of human microbial ecology and will enable the development of innovative strategies to treat or prevent intestinal diseases of as yet unknown etiology.
Collapse
Affiliation(s)
- Petia Kovatcheva-Datchary
- TI Food and Nutrition, Wageningen, The Netherlands; and Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
5
|
Changes in starch physical characteristics following digestion of foods in the human small intestine. Br J Nutr 2010; 104:573-81. [PMID: 20412607 DOI: 10.1017/s0007114510000875] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Factors controlling the concentration of resistant starch (RS) in foods are of considerable interest on account of the potential for this type of fibre to deliver health benefits to consumers. The present study was aimed at establishing changes in starch granule morphology as a result of human small-intestinal digestion. Volunteers with ileostomy consumed six selected foods: breakfast cereal (muesli), white bread, oven-baked French fries, canned mixed beans and a custard containing either a low-amylose maize starch (LAMS) or a high-amylose maize starch (HAMS). Analysis showed that digesta total RS (as a fraction of ingested starch) was: muesli, 8.9 %; bread, 4.8 %; fries, 4.2 %; bean mix, 35.9 %; LAMS custard, 4.0 %; HAMS custard, 29.1 %. Chromatographic analysis showed that undigested food contained three major starch fractions. These had average molecular weights (MW) of 43,500 kDa, 420 kDa and 8.5 kDa and were rich in amylopectin, higher-MW amylose and low-MW amylose, respectively. The low-MW amylose fraction became enriched preferentially in the stomal effluent while the medium-MW starch fraction showed the greatest loss. Fourier transform IR spectroscopy showed that absorbance at 1022 per cm decreased after digestion while the absorbance band at 1047 per cm became greater. Such changes have been suggested to indicate shifts from less ordered to more ordered granule structures. Further analysis of amylose composition by scanning iodine spectra indicated that the MW of amylose in ileal digesta was lower than that of undigested amylose. It appears that high-MW amylose is preferentially digested and that MW, rather than amylose content alone, is associated with resistance of starch to digestion in the upper gut of humans.
Collapse
|
6
|
Wu SC, Chien PJ, Lee MH, Chau CF. Particle Size Reduction Effectively Enhances the Intestinal Health-Promotion Ability of an Orange Insoluble Fiber in Hamsters. J Food Sci 2007; 72:S618-21. [DOI: 10.1111/j.1750-3841.2007.00489.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Fermentation of non-starch polysaccharides in mixed diets and single fibre sources: comparative studies in human subjects andin vitro. Br J Nutr 2007. [DOI: 10.1017/s0007114598001305] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study investigated whether the extent of fermentation of NSP in human subjects could be predicted by anin vitrobatch system. Fibre sources studied were five mixed diets containing different amounts and types of fibre and three single fibre sources (citrus fibre concentrate, coarse and fine wholemeal rye bread). Fermentation in human subjects was determined in balance experiments in women who were also donors of the faecal inocula.In vitrofermentations were performed with fibre residues prepared from duplicates of the fibre-containing foods consumed during the balance trials. Fermentation of total NSPin vivowas between 65.8 and 88.6% for the mixed diets and 54.4, 58.0 and 96.9 % for the coarse and fine wholemeal rye breads and the citrus fibre concentrate respectively. For the mixed diets and the citrus fibre concentrate, mean differences between the extent of NSP degradation after 24 hin vitroincubation and thatin vivowere between −0.7 and 5.0 %. Differences were significant for one diet (P< 0.05). For the wholemeal rye breads, the fermentationin vitroexceeded thatin vivosignificantly, but the magnitude of the difference in each case was small and without physiological importance. Particle size of breads had no influence on the extent of NSP degradation. These results indicate that thein vitrobatch system used could provide quantitative data on the fermentationin vivoof NSP in mixed diets and some single fibre sources. Anin vitroincubation time of 24 h was sufficient to mimic the NSP degradationin vivo.
Collapse
|
8
|
In vitrofermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br J Nutr 2007. [DOI: 10.1017/bjn19960129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe in vitro degradation of dietary fibre from three brown seaweeds (Himanthalia elongata, Laminaria digitata and Undaria pinnatiJda) was studied, using human faecal flora. Two sets of fibre were tested: (1) total algal fibres extracted from the whole algae, mainly composed of alginates, and (2) purified fibres (sulphated fucans, Na-alginates and laminarans) representative of those contained in the whole brown algae. Mannuronate, one algal component, was also investigated. Substrate disappearance and short- chain fatty acid (SCFA) production were monitored after 6, 12 and 24 h fermentation. Gas production was followed hourly during the first 9 h and then at 12 and 24 h. Sugarbeet fibre was used as a fermentation reference substrate. According to the fermentative indices used, most of each of the total algal fibres disappeared after 24 h (range 60–76 %) hut, unlike the reference substrate, they were not completely metabolized to SCFA (range 47–62 %). Among the purified algal fibres, disappearance of laminarans was approximately 90% and metabolism to SCFA was approximately 85% in close agreement with the fermentation pattern of reference fibres. Sulphated fucans were not degraded. Na- alginates exhibited a fermentation pattern quite similar to those of the whole algal fibres with a more pronounced discrepancy between disappearance and production of SCFA: disappearance was approximately 83 % but metabolism was only approximately 57 YO. Mannuronate was slowly fermented hut its metabolism corresponded to its disappearance from the fermentative medium. Thus, the characteristic fermentation pattern of the total fibres from the three brown algae investigated was attributed to the peculiar fermentation of alginates, and mannuronate was shown not to be directly involved.
Collapse
|
9
|
Heavey PM, McKenna D, Rowland IR. Colorectal cancer and the relationship between genes and the environment. Nutr Cancer 2005; 48:124-41. [PMID: 15231447 DOI: 10.1207/s15327914nc4802_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a significant cause of morbidity and mortality in developed countries, with both genetic and environmental factors contributing to the etiology and progression of the disease. Several risk factors have been identified, including positive family history, red meat intake, smoking, and alcohol intake. Protective factors include vegetables, calcium, hormone replacement therapy, folate, nonsteroidal anti-inflammatory drugs, and physical activity. The interaction between these environmental factors, in particular diet and genes, is an area of growing interest. Currently, oncogenes, tumor suppressor genes, and mismatch repair genes are believed to play an essential role in colorectal carcinogenesis. When considering the genetics of CRC, only 10% of cases are inherited and only 2-6% can be ascribed to the highly penetrant genes, such as APC, hMLH and hMSH2. Lower penetrance genes combined with a Western-style diet contribute to the majority of sporadic CRCs. The purpose of this article is to give a brief overview of the epidemiologic studies that have been conducted and present the major findings. Here, we examine the molecular events in CRC, with particular focus on the interaction between genes and environment, and review the most current research in this area.
Collapse
Affiliation(s)
- Patricia M Heavey
- Northern Ireland Center for Diet and Health, Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA.
| | | | | |
Collapse
|
10
|
Khan KM, Edwards CA. In vitro fermentation characteristics of a mixture of Raftilose and guar gum by human faecal bacteria. Eur J Nutr 2004; 44:371-6. [PMID: 15526209 DOI: 10.1007/s00394-004-0537-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND The therapeutic effects of indigestible carbohydrates in the human colon are well known. Most fermentation studies have examined only single carbohydrates. Considering the idiosyncratic actions of individual carbohydrates and the dose required, it is unlikely that any one carbohydrate will provide ideal physiological actions without having some undesirable effects. Little is known of how mixing non-digestible carbohydrates affects their fermentation. This necessitates fermentation studies using different carbohydrates in mixtures. AIM OF THE STUDY The aim of this study was to test the effect of mixing Raftilose (R) and guar gum (G) on short chain fatty acid (SCFA) production in in vitro cultures of human faecal bacteria. METHOD The fermentation of the individual carbohydrates (10 mg/ml) was compared with that of a 50:50 mixture in anaerobic in vitro cultures of human faeces. RESULTS Cultures of R/G mixtures produced significantly more n-butyrate than 100 mg G alone at 8 and 24 hours (p < 0.02). There was no significant difference in the production of n-butyrate between cultures of 100 mg R and the R/G mixture at 8 and 24 hours. R (100 mg) produced a propionic/butyric (p/b) acid ratio of 1.18 compared with 3.88 for 100 mg G, whereas R/G mixture produced a p/b ratio of 2.01. CONCLUSION The fermentation of R/G mixture was different compared with 100 mg of R or G alone. There was no loss of n-butyrate in the culture containing R/G (50 mg of each) mixture compared with the 100 mg R culture.
Collapse
Affiliation(s)
- Khalid M Khan
- Human Nutrition Section, Division of Developmental Medicine, University of Glasgow, Yorkhill Hospitals, Glasgow, G3 8SJ, UK
| | | |
Collapse
|
11
|
Ellis PR, Kendall CWC, Ren Y, Parker C, Pacy JF, Waldron KW, Jenkins DJA. Role of cell walls in the bioaccessibility of lipids in almond seeds. Am J Clin Nutr 2004; 80:604-13. [PMID: 15321799 DOI: 10.1093/ajcn/80.3.604] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Certain nutrients and phytochemicals in almonds may confer protection against cardiovascular disease, but little is known about factors that influence their bioavailability. A crucial and relevant aspect is the amount of these dietary components available for absorption in the intestine, which is a concept referred to as bioaccessibility. OBJECTIVE We investigated the role played by cell walls in influencing the bioaccessibility of intracellular lipid from almond seeds. DESIGN Quantitative analyses of nonstarch polysaccharides (NSPs) and phenolic compounds of cell walls were performed by gas-liquid chromatography and HPLC, respectively. In a series of experiments, the effects of mechanical disruption, chewing, and digestion on almond seed microstructure and intracellular lipid release were determined. In the digestibility study, fecal samples were collected from healthy subjects who had consumed diets with or without almonds. Almond seeds and fecal samples were examined by microscopy to identify cell walls and intracellular lipid. RESULTS Cell walls were found to be rich in NSPs, particularly arabinose-rich polysaccharides, with a high concentration of phenolic compounds detected in the seed coat cell wall. During disruption of almond tissue by mechanical methods or chewing, only the first layer of cells at the fractured surface was ruptured and able to release lipid. In fecal samples collected from subjects consuming the almond diet, we observed intact cotyledonary cells, in which the cell walls encapsulated intracellular lipid. This lipid appeared susceptible to colonic fermentation once the cotyledonary cell walls were breached by bacterial degradation. CONCLUSION The cell walls of almond seeds reduce lipid bioaccessibility by hindering the release of lipid available for digestion.
Collapse
Affiliation(s)
- Peter R Ellis
- Biopolymers Group, Department of Life Sciences, King's College London, University of London, 150 Stamford Street, London SE1 9NN, UK.
| | | | | | | | | | | | | |
Collapse
|
12
|
Christian MT, Edwards CA, Preston T, Johnston L, Varley R, Weaver LT. Starch fermentation by faecal bacteria of infants, toddlers and adults: importance for energy salvage. Eur J Clin Nutr 2004; 57:1486-91. [PMID: 14576763 DOI: 10.1038/sj.ejcn.1601715] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Little is known of the degree to which the colon salvages energy through starch fermentation in young children. Using a simulated colonic environment, we aimed to account for the fate of fermented raw and cooked starch in two groups of young children and in adults. DESIGN A slurry was prepared from faecal samples from six infants (7-10 months), six toddlers (16-21 months) and seven adults (24-56 y). Each slurry was anaerobically incubated with raw or cooked maize starch in MacCartney bottles in a shaking water bath. Parallel incubations were stopped at 4 and 24 h. The headspace gas volume was analysed for CO(2) and methane. The culture supernatant was analysed for short-chain fatty acids (SCFA), lactate and residual starch. RESULTS Different patterns of fermentation were seen at 4 and 24 h. For raw starch, the production of SCFA decreased with subject age at 4 h but not at 24 h. With both substrates at 4 h, toddler stools produced significantly more CO(2) than infants or adults, but there were no statistical differences at 24 h. Methane was detected in three adults only. Lactate was detected mainly at 4 h in children. CONCLUSIONS The results suggest that fermentation, particularly of raw starch, is a more rapid process in young children than in adults. A highly efficient energy salvage process may occur in the colon of young children.
Collapse
Affiliation(s)
- M T Christian
- Department of Child Health, University of Glasgow, Yorkhill Hospital, Glasgow G3 8SJ, UK
| | | | | | | | | | | |
Collapse
|
13
|
Dongowski G, Lorenz A, Proll J. The degree of methylation influences the degradation of pectin in the intestinal tract of rats and in vitro. J Nutr 2002; 132:1935-44. [PMID: 12097673 DOI: 10.1093/jn/132.7.1935] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the degradation, metabolism, fate, and selected effects of pectin in the intestinal tract of rats. Conventional and germfree rats were fed for 3 wk diets containing 6.5% pectin (degree of methylation 34.5, 70.8 and 92.6%, respectively) or pectin-free diets. Pectin passes the small intestine as a macromolecule. The molecular weight distribution of pectins isolated from intestinal contents of germfree rats were unaffected by diet. No or very little galacturonan was found in cecum, colon or feces of most of the conventional rats. In colon contents of some conventional rats, di- and trigalacturonic acid were present. Total anaerobic and Bacteroides counts were greater in groups fed pectin. The concentration of short-chain fatty acids (SCFA) was higher in cecum and feces in all pectin-fed groups. With increasing degree of methylation, the formation rate of SCFA decreased in the cecum of conventional rats. During in vitro fermentation of pectin with fecal flora from rats, unsaturated oligogalacturonic acids appeared as intermediate products. Low-methoxyl pectin was fermented faster than high-methoxyl pectins in vivo and in vitro. Pectin-fed rats had greater ileum, cecum and colon weights. We conclude that structural parameters of pectin influence its microbial degradation in the intestinal tract.
Collapse
Affiliation(s)
- Gerhard Dongowski
- Department of Food Chemistry and Preventive Nutrition, Potsdam-Rehbrücke, Germany.
| | | | | |
Collapse
|
14
|
Abstracts of Original Communications. Proc Nutr Soc 2001. [DOI: 10.1017/s0029665101000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Dongowski G, Lorenz A, Anger H. Degradation of pectins with different degrees of esterification by Bacteroides thetaiotaomicron isolated from human gut flora. Appl Environ Microbiol 2000; 66:1321-7. [PMID: 10742206 PMCID: PMC91987 DOI: 10.1128/aem.66.4.1321-1327.2000] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A complete human fecal flora and cultures of defined species obtained from fecal flora were investigated in vitro to determine their ability to ferment the dietary fiber pectin. Bacteroides thetaiotaomicron was tested as a pectin-degrading microorganism alone and in coculture with Escherichia coli. Macromolecular pectins with different degrees of esterification were used as substrates in microbial degradation studies. The levels of oligogalacturonic acids formed in batch cultures were estimated during a 24- or 48-h incubation period by using high-performance thin-layer chromatography and high-performance anion-exchange chromatography. The spectrum and the amount of unsaturated oligogalacturonic acids formed as intermediate products of pectin fermentation changed permanently in the culture media during incubation with the complete fecal flora. After 24 h, no oligogalacturonic acids were detected. The pectin-degrading activities of pure cultures of B. thetaiotaomicron were lower than the pectin-degrading activity of a complete fecal flora. Cocultures of B. thetaiotaomicron and E. coli exhibited intermediate levels of degradation activity. In pure cultures of E. coli no pectin-degrading activity was found. Additionally, the rate of pectin degradation was affected by the degree of esterification of the substrate. Saturated oligogalacturonic acids were not found during pectin fermentation. The disappearance of oligogalacturonic acids in the later stages of fermentation with both the complete fecal flora and B. thetaiotaomicron was accompanied by increased formation of short-chain fatty acids.
Collapse
Affiliation(s)
- G Dongowski
- German Institute of Human Nutrition Potsdam-Rehbrücke, D-14558 Bergholz-Rehbrücke, Germany.
| | | | | |
Collapse
|