1
|
Janneh AH, Kassir MF, Atilgan FC, Lee HG, Sheridan M, Oleinik N, Szulc Z, Voelkel-Johnson C, Nguyen H, Li H, Peterson YK, Marangoni E, Saatci O, Sahin O, Lilly M, Atkinson C, Tomlinson S, Mehrotra S, Ogretmen B. Crosstalk between pro-survival sphingolipid metabolism and complement signaling induces inflammasome-mediated tumor metastasis. Cell Rep 2022; 41:111742. [PMID: 36476873 PMCID: PMC9791981 DOI: 10.1016/j.celrep.2022.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/15/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Crosstalk between metabolic and signaling events that induce tumor metastasis remains elusive. Here, we determine how oncogenic sphingosine 1-phosphate (S1P) metabolism induces intracellular C3 complement activation to enhance migration/metastasis. We demonstrate that increased S1P metabolism activates C3 complement processing through S1P receptor 1 (S1PR1). S1P/S1PR1-activated intracellular C3b-α'2 is associated with PPIL1 through glutamic acid 156 (E156) and aspartic acid 111 (D111) residues, resulting in NLRP3/inflammasome induction. Inactivation mutations of S1PR1 to prevent S1P signaling or mutations of C3b-α'2 to prevent its association with PPIL1 attenuate inflammasome activation and reduce lung colonization/metastasis in mice. Also, activation of the S1PR1/C3/PPIL1/NLRP3 axis is highly associated with human metastatic melanoma tissues and patient-derived xenografts. Moreover, targeting S1PR1/C3/PPIL1/NLRP3 signaling using molecular, genetic, and pharmacologic tools prevents lung colonization/metastasis of various murine cancer cell lines using WT and C3a-receptor1 knockout (C3aR1-/-) mice. These data provide strategies for treating high-grade/metastatic tumors by targeting the S1PR1/C3/inflammasome axis.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - F Cansu Atilgan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Han Gyul Lee
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Megan Sheridan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Zdzislaw Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Christina Voelkel-Johnson
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Hung Nguyen
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Hong Li
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Public Health, College of Medicine, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Yuri K Peterson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | | | - Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, School of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, School of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Lilly
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Carl Atkinson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Stephen Tomlinson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Simón MV, Vera MS, Tenconi PE, Soto T, Prado Spalm FH, Torlaschi C, Mateos MV, Rotstein NP. Sphingosine-1-phosphate and ceramide-1-phosphate promote migration, pro-inflammatory and pro-fibrotic responses in retinal pigment epithelium cells. Exp Eye Res 2022; 224:109222. [PMID: 36041511 DOI: 10.1016/j.exer.2022.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Retinal pigment epithelium (RPE) cells, essential for preserving retina homeostasis, also contribute to the development of retina proliferative diseases, through their exacerbated migration, epithelial to mesenchymal transition (EMT) and inflammatory response. Uncovering the mechanisms inducing these changes is crucial for designing effective treatments for these pathologies. Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) are bioactive sphingolipids that promote migration and inflammation in several cell types; we recently established that they stimulate the migration of retina Müller glial cells (Simón et al., 2015; Vera et al., 2021). We here analyzed whether S1P and C1P regulate migration, inflammation and EMT in RPE cells. We cultured two human RPE cell lines, ARPE-19 and D407 cells, and supplemented them with either 5 μM S1P or 10 μM C1P, or their vehicles, for 24 h. Analysis of cell migration by the scratch wound assay showed that S1P addition significantly enhanced migration in both cell lines. Pre-treatment with W146 and BML-241, antagonists for S1P receptor 1 (S1P1) and 3 (S1P3), respectively, blocked exogenous S1P-induced migration. Inhibiting sphingosine kinase 1 (SphK1), the enzyme involved in S1P synthesis, significantly reduced cell migration and exogenous S1P only partially restored it. Addition of C1P markedly stimulated cell migration. Whereas inhibiting C1P synthesis did not affect C1P-induced migration, inhibiting S1P synthesis strikingly decreased it; noteworthy, addition of C1P promoted the transcription of SphK1. These results suggest that S1P and C1P stimulate RPE cell migration and their effect requires S1P endogenous synthesis. Both S1P and C1P increase the transcription of pro-inflammatory cytokines IL-6 and IL-8, and of EMT marker α-smooth muscle actin (α-SMA) in ARPE-19 cells. Collectively, our results suggest new roles for S1P and C1P in the regulation of RPE cell migration and inflammation; since the deregulation of sphingolipid metabolism is involved in several proliferative retinopathies, targeting their metabolism might provide new tools for treating these pathologies.
Collapse
Affiliation(s)
- M Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina.
| | - Marcela S Vera
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Tamara Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Facundo H Prado Spalm
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Camila Torlaschi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Waszczuk K, Kucharska-Mazur J, Tyburski E, Rek-Owodziń K, Plichta P, Rudkowski K, Podwalski P, Grąźlewski T, Mak M, Misiak B, Michalczyk A, Tarnowski M, Sielatycka K, Szczęśniak A, Łuczkowska K, Dołęgowska B, Budkowska M, Ratajczak MZ, Samochowiec J. Psychopathology and Stem Cell Mobilization in Ultra-High Risk of Psychosis and First-Episode Psychosis Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106001. [PMID: 35627537 PMCID: PMC9141672 DOI: 10.3390/ijerph19106001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
Although regenerative and inflammatory processes are involved in the etiopathogenesis of many psychiatric disorders, their roles are poorly understood. We investigate the potential role of stem cells (SC) and factors influencing the trafficking thereof, such as complement cascade (CC) components, phospholipid substrates, and chemokines, in the etiology of schizophrenia. We measured sphingosine-1-phosphate (S1P), stromal-derived factor 1 (SDF-1), and CC cleavage fragments (C3a, C5a, and C5b-C9; also known as the membrane attack complex) in the peripheral blood of 49 unrelated patients: 9 patients with ultra-high risk of psychosis (UHR), 22 patients with first-episode psychosis (FEP), and 18 healthy controls (HC). When compared with the HC group, the UHR and FEP groups had higher levels of C3a. We found no significant differences in hematopoietic SC, very small embryonic-like stem cell (VSEL), C5a, S1P, or SDF-1 levels in the UHR and FEP groups. However, among FEP patients, there was a significant positive correlation between VSELs (CD133+) and negative symptoms. These preliminary findings support the role of the immune system and regenerative processes in the etiology of schizophrenia. To establish the relevance of SC and other factors affecting the trafficking thereof as potential biomarkers of schizophrenia, more studies on larger groups of individuals from across the disease spectrum are needed.
Collapse
Affiliation(s)
- Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
- Correspondence: ; Tel./Fax: +48-91-35-11-322
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (E.T.); (K.R.-O.); (P.P.); (M.M.)
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (E.T.); (K.R.-O.); (P.P.); (M.M.)
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (E.T.); (K.R.-O.); (P.P.); (M.M.)
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| | - Tomasz Grąźlewski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (E.T.); (K.R.-O.); (P.P.); (M.M.)
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian University of Medicine, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Katarzyna Sielatycka
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, Felczaka 3c, 71-415 Szczecin, Poland;
| | - Angelika Szczęśniak
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.S.); (B.D.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.S.); (B.D.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA;
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland; (J.K.-M.); (K.R.); (P.P.); (T.G.); (A.M.); (J.S.)
| |
Collapse
|
4
|
Shivshankar P, Fekry B, Eckel-Mahan K, Wetsel RA. Circadian Clock and Complement Immune System-Complementary Control of Physiology and Pathology? Front Cell Infect Microbiol 2020; 10:418. [PMID: 32923410 PMCID: PMC7456827 DOI: 10.3389/fcimb.2020.00418] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian species contain an internal circadian (i.e., 24-h) clock that is synchronized to the day and night cycles. Large epidemiological studies, which are supported by carefully controlled studies in numerous species, support the idea that chronic disruption of our circadian cycles results in a number of health issues, including obesity and diabetes, defective immune response, and cancer. Here we focus specifically on the role of the complement immune system and its relationship to the internal circadian clock system. While still an incompletely understood area, there is evidence that dysregulated proinflammatory cytokines, complement factors, and oxidative stress can be induced by circadian disruption and that these may feed back into the oscillator at the level of circadian gene regulation. Such a feedback cycle may contribute to impaired host immune response against pathogenic insults. The complement immune system including its activated anaphylatoxins, C3a and C5a, not only facilitate innate and adaptive immune response in chemotaxis and phagocytosis, but they can also amplify chronic inflammation in the host organism. Consequent development of autoimmune disorders, and metabolic diseases associated with additional environmental insults that activate complement can in severe cases, lead to accelerated tissue dysfunction, fibrosis, and ultimately organ failure. Because several promising complement-targeted therapeutics to block uncontrolled complement activation and treat autoimmune diseases are in various phases of clinical trials, understanding fully the circadian properties of the complement system, and the reciprocal regulation by these two systems could greatly improve patient treatment in the long term.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Baharan Fekry
- Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kristin Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rick A. Wetsel
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Budkowska M, Ostrycharz E, Wojtowicz A, Marcinowska Z, Woźniak J, Ratajczak MZ, Dołęgowska B. A Circadian Rhythm in both Complement Cascade (ComC) Activation and Sphingosine-1-Phosphate (S1P) Levels in Human Peripheral Blood Supports a Role for the ComC-S1P Axis in Circadian Changes in the Number of Stem Cells Circulating in Peripheral Blood. Stem Cell Rev Rep 2018; 14:677-685. [PMID: 29911288 PMCID: PMC6132735 DOI: 10.1007/s12015-018-9836-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The number of hematopoietic stem/progenitor cells (HSPCs) circulating in peripheral blood (PB) is regulated by a circadian rhythm, and more HSPCs circulate in PB in the morning hours than at night. Different mechanisms have been proposed that might regulate this process, including changes in tonus of β-adrenergic innervation of bone marrow (BM) tissue. Our group reported that in mice circadian changes in the number of HSPCs circulating in PB correlates with diurnal activation of the complement cascade (ComC) and that the mice deficient in C5 component of ComC (C5-KO mice) do not show circadian changes in the number of circulating HSPCs in PB. We also reported the existence of a gradient between PB and BM of a bioactive phosphosphingolipid, sphingosine-1-phosphate (S1P), which is a major PB chemottractant for BM-residing HSPCs. Based on these observations, we investigated activation of the ComC and the level of S1P in the PB of 66 healthy volunteers. We found that both ComC activation and the S1P level undergo changes in a circadian cycle. While the ComC becomes highly activated during deep sleep at 2 am, S1P becomes activated later, and its highest level is observed at 8 am, which precedes circadian egress of HSPCs from BM into PB. In sum, circadian activation of the ComC-S1P axis releases HSPCs from BM into PB.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Ewa Ostrycharz
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Adrianna Wojtowicz
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Zuzanna Marcinowska
- Centre for Human Structural and Functional Research, Faculty of Physical Education and Health Promotion, University of Szczecin, ul. Narutowicza 17C, 70-240, Szczecin, Poland
| | - Jarosław Woźniak
- Institute of Mathematics, Department of Mathematics and Physics, University of Szczecin, Ul. Wielkopolska 15, 70-451, Szczecin, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, ul. Banacha 1B, 02-097, Warsaw, Poland
| | - Barbara Dołęgowska
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
6
|
Bujko K, Rzeszotek S, Hoehlig K, Yan J, Vater A, Ratajczak MZ. Signaling of the Complement Cleavage Product Anaphylatoxin C5a Through C5aR (CD88) Contributes to Pharmacological Hematopoietic Stem Cell Mobilization. Stem Cell Rev Rep 2017; 13:793-800. [PMID: 28918528 PMCID: PMC5730632 DOI: 10.1007/s12015-017-9769-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several mechanisms have been postulated for orchestrating the mobilization of hematopoietic stem/progenitor cells (HSPCs), and we previously proposed that activation of the complement cascade plays a crucial role in the initiation and execution of the egress of HSPCs from bone marrow (BM) into peripheral blood (PB). In support of this notion, we demonstrated that mice deficient in the mannan-binding lectin (MBL) pathway, which activates the proximal part of the complement cascade, as well as mice deficient in the fifth component of the complement cascade (C5), which is part of the distal part of the complement cascade, are poor mobilizers. To further narrow down on the exact mechanisms and the molecules involved, we performed studies in mice that do not express the receptor C5aR, which binds the C5 cleavage fragments, C5a and C5adesArg. We also employed the plasma stable nucleic acid aptamer AON-D21 that binds and neutralizes C5a and C5adesArg. We present evidence that mice deficient in C5aR or treated with AON-D21 are poor HSPC mobilizers, thereby establishing a critical role for the C5a/C5adesArg-C5aR axis in the mobilization process. While enhancing mobilization is of clinical importance for poor mobilizers, inhibition of the complement cascade could be of therapeutic importance in patients suffering from paroxysmal nocturnal hemoglobinuria (PNH) or acquired hemolytic syndrome (aHUS).
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Sylwia Rzeszotek
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | | | - Jun Yan
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | | | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
7
|
Adamiak M, Abdelbaset-Ismail A, Moore JB, Zhao J, Abdel-Latif A, Wysoczynski M, Ratajczak MZ. Inducible Nitric Oxide Synthase (iNOS) Is a Novel Negative Regulator of Hematopoietic Stem/Progenitor Cell Trafficking. Stem Cell Rev Rep 2017; 13:92-103. [PMID: 27752990 PMCID: PMC5346113 DOI: 10.1007/s12015-016-9693-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) is a gaseous free radical molecule involved in several biological processes related to inflammation, tissue damage, and infections. Based on reports that NO inhibits migration of granulocytes and monocytes, we became interested in the role of inducible NO synthetase (iNOS) in pharmacological mobilization of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood (PB). To address the role of NO in HSPC trafficking, we upregulated or downregulated iNOS expression in hematopoietic cell lines. Next, we performed mobilization studies in iNOS-/- mice and evaluated engraftment of iNOS-/- HSPCs in wild type (control) animals. Our results indicate that iNOS is a novel negative regulator of hematopoietic cell migration and prevents egress of HSPCs into PB during mobilization. At the molecular level, downregulation of iNOS resulted in downregulation of heme oxygenase 1 (HO-1), and, conversely, upregulation of iNOS enhanced HO-1 activity. Since HO-1 is a negative regulator of cell migration, the inhibitory effects of iNOS identified by us can be at least partially explained by its enhancing the HO-1 level in BM cells.
Collapse
Affiliation(s)
- Mateusz Adamiak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street Rm. 107, Louisville, KY, 40202, USA
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street Rm. 107, Louisville, KY, 40202, USA
| | - Joseph B Moore
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - J Zhao
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY, USA
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street Rm. 107, Louisville, KY, 40202, USA.
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
8
|
Cooper ST, Sell SS, Fahrenkrog M, Wilkinson K, Howard DR, Bergen H, Cruz E, Cash SE, Andrews MT, Hampton M. Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels. Physiol Genomics 2016; 48:513-25. [PMID: 27207617 PMCID: PMC4967218 DOI: 10.1152/physiolgenomics.00120.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Mammalian hibernators adapt to prolonged periods of immobility, hypometabolism, hypothermia, and oxidative stress, each capable of reducing bone marrow activity. In this study bone marrow transcriptomes were compared among thirteen-lined ground squirrels collected in July, winter torpor, and winter interbout arousal (IBA). The results were consistent with a suppression of acquired immune responses, and a shift to innate immune responses during hibernation through higher complement expression. Consistent with the increase in adipocytes found in bone marrow of hibernators, expression of genes associated with white adipose tissue are higher during hibernation. Genes that should strengthen the bone by increasing extracellular matrix were higher during hibernation, especially the collagen genes. Finally, expression of heat shock proteins were lower, and cold-response genes were higher, during hibernation. No differential expression of hematopoietic genes involved in erythrocyte or megakaryocyte production was observed. This global view of the changes in the bone marrow transcriptome over both short term (torpor vs. IBA) and long term (torpor vs. July) hypothermia can explain several observations made about circulating blood cells and the structure and strength of the bone during hibernation.
Collapse
Affiliation(s)
- Scott T Cooper
- Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin;
| | - Shawn S Sell
- Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Molly Fahrenkrog
- Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Kory Wilkinson
- Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - David R Howard
- Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Hannah Bergen
- Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Estefania Cruz
- Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Steve E Cash
- Hematology/Oncology, Gundersen Lutheran Medical Foundation, La Crosse, Wisconsin
| | - Matthew T Andrews
- Department of Biology, University of Minnesota-Duluth, Duluth, Minnesota; and
| | - Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota-Duluth, Duluth, Minnesota
| |
Collapse
|
9
|
Kim J, Hall RR, Lesniak MS, Ahmed AU. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions. Viruses 2015; 7:6200-17. [PMID: 26633462 PMCID: PMC4690850 DOI: 10.3390/v7122921] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.
Collapse
Affiliation(s)
- Janice Kim
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Robert R Hall
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Maciej S Lesniak
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Atique U Ahmed
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adh Migr 2015; 8:563-77. [PMID: 25482635 PMCID: PMC4594522 DOI: 10.4161/19336918.2014.968501] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products.
Collapse
Affiliation(s)
- Sofieke Klamer
- a Department of Hematopoiesis; Sanquin Research; Landsteiner Laboratory; Academic Medical Centre ; University of Amsterdam ; Amsterdam , The Netherlands
| | | |
Collapse
|
11
|
Jadczyk T, Faulkner A, Madeddu P. Stem cell therapy for cardiovascular disease: the demise of alchemy and rise of pharmacology. Br J Pharmacol 2014; 169:247-68. [PMID: 22712727 DOI: 10.1111/j.1476-5381.2012.01965.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regenerative medicine holds great promise as a way of addressing the limitations of current treatments of ischaemic disease. In preclinical models, transplantation of different types of stem cells or progenitor cells results in improved recovery from ischaemia. Furthermore, experimental studies indicate that cell therapy influences a spectrum of processes, including neovascularization and cardiomyogenesis as well as inflammation, apoptosis and interstitial fibrosis. Thus, distinct strategies might be required for specific regenerative needs. Nonetheless, clinical studies have so far investigated a relatively small number of options, focusing mainly on the use of bone marrow-derived cells. Rapid clinical translation resulted in a number of small clinical trials that do not have sufficient power to address the therapeutic potential of the new approach. Moreover, full exploitation has been hindered so far by the absence of a solid theoretical framework and inadequate development plans. This article reviews the current knowledge on cell therapy and proposes a model theory for interpretation of experimental and clinical outcomes from a pharmacological perspective. Eventually, with an increased association between cell therapy and traditional pharmacotherapy, we will soon need to adopt a unified theory for understanding how the two practices additively interact for a patient's benefit.
Collapse
Affiliation(s)
- T Jadczyk
- Third Division of Cardiology, Medical University of Silesia, Katovice, Poland
| | | | | |
Collapse
|
12
|
Kucharska-Mazur J, Tarnowski M, Dołęgowska B, Budkowska M, Pędziwiatr D, Jabłoński M, Pełka-Wysiecka J, Kazimierczak A, Ratajczak MZ, Samochowiec J. Novel evidence for enhanced stem cell trafficking in antipsychotic-naïve subjects during their first psychotic episode. J Psychiatr Res 2014; 49:18-24. [PMID: 24246416 DOI: 10.1016/j.jpsychires.2013.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022]
Abstract
In this study, we tested the novel hypothesis that stem cells and those factors that modulate their trafficking may be biological markers for acute psychosis. Twenty-eight subjects during their first nonaffective psychotic episode were investigated before and after antipsychotic treatment and were compared with 35 healthy controls (CG); the psychotic group (PG) was divided into "schizophrenic" (SG) and "non-schizophrenic" (NG) subgroups. We examined the number of circulating Lin(-)/CD45(-)/CD34(+) and Lin(-)/CD45(-)/CD133(+) very small embryonic-like stem cells (VSELs), which express markers of the neural lineage, and also the plasma levels of factors that modulate their trafficking: the C3a, C5a, and C5b-9 activated complement cascade components, stromal-derived factor 1, and sphingosine-1-phosphate (S1P). We found that the mean numbers of Lin(-)/CD45(-)/CD34(+) VSELs and the plasma levels of S1P prior to treatment differ between the CG and PG and that these cells express markers of neural lineage. The number of Lin(-)/CD45(-)/CD133(+) VSELs in peripheral blood differed between the SG and NG prior to treatment. Using logistic regression analysis, we found that C3a and S1P are the best predictors of risk and are potential markers for the first psychotic episode. Furthermore, in the SG, the number of circulating Lin(-)/CD45(-)/CD34(+) VSELs and the S1P plasma level are the best predictors of risk and are proposed as novel markers for the first "schizophrenic" episode of psychosis.
Collapse
Affiliation(s)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian University of Medicine, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Medical Analytics, Pomeranian University of Medicine, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian University of Medicine, Szczecin, Poland
| | - Daniel Pędziwiatr
- Department of Physiology, Pomeranian University of Medicine, Szczecin, Poland
| | - Marcin Jabłoński
- Department of Psychiatry, Pomeranian University of Medicine, Szczecin, Poland
| | | | | | - Mariusz Z Ratajczak
- Department of Physiology, Pomeranian University of Medicine, Szczecin, Poland; Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian University of Medicine, Szczecin, Poland.
| |
Collapse
|
13
|
Natarajan V, Dudek SM, Jacobson JR, Moreno-Vinasco L, Huang LS, Abassi T, Mathew B, Zhao Y, Wang L, Bittman R, Weichselbaum R, Berdyshev E, Garcia JGN. Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury. Am J Respir Cell Mol Biol 2013; 49:6-17. [PMID: 23449739 PMCID: PMC3727889 DOI: 10.1165/rcmb.2012-0411tr] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/26/2012] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) attributable to sepsis or mechanical ventilation and subacute lung injury because of ionizing radiation (RILI) share profound increases in vascular permeability as a key element and a common pathway driving increased morbidity and mortality. Unfortunately, despite advances in the understanding of lung pathophysiology, specific therapies do not yet exist for the treatment of ALI or RILI, or for the alleviation of unremitting pulmonary leakage, which serves as a defining feature of the illness. A critical need exists for new mechanistic insights that can lead to novel strategies, biomarkers, and therapies to reduce lung injury. Sphingosine 1-phosphate (S1P) is a naturally occurring bioactive sphingolipid that acts extracellularly via its G protein-coupled S1P1-5 as well as intracellularly on various targets. S1P-mediated cellular responses are regulated by the synthesis of S1P, catalyzed by sphingosine kinases 1 and 2, and by the degradation of S1P mediated by lipid phosphate phosphatases, S1P phosphatases, and S1P lyase. We and others have demonstrated that S1P is a potent angiogenic factor that enhances lung endothelial cell integrity and an inhibitor of vascular permeability and alveolar flooding in preclinical animal models of ALI. In addition to S1P, S1P analogues such as 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720), FTY720 phosphate, and FTY720 phosphonates offer therapeutic potential in murine models of lung injury. This translational review summarizes the roles of S1P, S1P analogues, S1P-metabolizing enzymes, and S1P receptors in the pathophysiology of lung injury, with particular emphasis on the development of potential novel biomarkers and S1P-based therapies for ALI and RILI.
Collapse
|
14
|
Schneider G, Bryndza E, Abdel-Latif A, Ratajczak J, Maj M, Tarnowski M, Klyachkin Y, Houghton P, Morris AJ, Vater A, Klussmann S, Kucia M, Ratajczak MZ. Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res 2013; 11:793-807. [PMID: 23615526 PMCID: PMC3720846 DOI: 10.1158/1541-7786.mcr-12-0600] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evidence suggests that bioactive lipids may regulate pathophysiologic functions such as cancer cell metastasis. Therefore, we determined that the bioactive lipid chemoattractants sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) strongly enhanced the in vitro motility and adhesion of human rhabdomyosarcoma (RMS) cells. Importantly, this effect was observed at physiologic concentrations for both bioactive lipids, which are present in biologic fluids, and were much stronger than the effects observed in response to known RMS prometastatic factors such as stromal derived factors-1 (SDF-1/CXCL12) or hepatocyte growth factor/scatter factor (HGF/SF). We also present novel evidence that the levels of S1P and C1P were increased in several organs after γ-irradiation or chemotherapy, which indicates an unwanted prometastatic environment related to treatment. Critically, we found that the metastasis of RMS cells in response to S1P can be effectively inhibited in vivo with the S1P-specific binder NOX-S93 that is based on a high-affinity Spiegelmer. These data indicate that bioactive lipids play a vital role in dissemination of RMS and contribute to the unwanted side effects of radio/chemotherapy by creating a prometastatic microenvironment.
Collapse
Affiliation(s)
- Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville,
Louisville, KY
| | - Ewa Bryndza
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville,
Louisville, KY
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky,
Lexington, Kentucky, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville,
Louisville, KY
| | - Magdalena Maj
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville,
Louisville, KY
| | - Maciej Tarnowski
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Yurij Klyachkin
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky,
Lexington, Kentucky, USA
| | | | - Andrew J. Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky,
Lexington, Kentucky, USA
| | - Axel Vater
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Magdalena Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville,
Louisville, KY
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville,
Louisville, KY
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky,
Lexington, Kentucky, USA
| |
Collapse
|
15
|
Wallington-Beddoe CT, Bradstock KF, Bendall LJ. Oncogenic properties of sphingosine kinases in haematological malignancies. Br J Haematol 2013; 161:623-638. [PMID: 23521541 DOI: 10.1111/bjh.12302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sphingosine kinases (SphKs) have relatively recently been implicated in contributing to malignant cellular processes with particular interest in the oncogenic properties of SPHK1. Whilst SPHK1 has received considerable attention as a putative oncoprotein, SPHK2 has been much more difficult to study, with often conflicting data surrounding its role in cancer. Initial studies focused on non-haemopoietic malignancies, however a growing body of literature on the role of sphingolipid metabolism in haemopoietic malignancies is now emerging. This review provides an overview of the current state of knowledge of the SphKs and the bioactive lipid sphingosine 1-phosphate (S1P), the product of the reaction they catalyse. It then reviews the current literature regarding the roles of S1P and the SphKs in haemopoietic malignancies and discusses the compounds currently available that modulate sphingolipid metabolism and their potential and shortcomings as therapeutic agents for the treatment of haematological malignancies.
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- Westmead Institute for Cancer Research, Westmead Millennium Institute, The University of Sydney, Sydney, NSW, Australia
| | | | - Linda J Bendall
- Westmead Institute for Cancer Research, Westmead Millennium Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Hankins JL, Ward KE, Linton SS, Barth BM, Stahelin RV, Fox TE, Kester M. Ceramide 1-phosphate mediates endothelial cell invasion via the annexin a2-p11 heterotetrameric protein complex. J Biol Chem 2013; 288:19726-38. [PMID: 23696646 DOI: 10.1074/jbc.m113.481622] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The bioactive sphingolipid, ceramide 1-phosphate (C-1-P), has been implicated as an extracellular chemotactic agent directing cellular migration in hematopoietic stem/progenitor cells and macrophages. However, interacting proteins that could mediate these actions of C-1-P have, thus far, eluded identification. We have now identified and characterized interactions between ceramide 1-phosphate and the annexin a2-p11 heterotetramer constituents. This C-1-P-receptor complex is capable of facilitating cellular invasion. Herein, we demonstrate in both coronary artery macrovascular endothelial cells and retinal microvascular endothelial cells that C-1-P induces invasion through an extracellular matrix barrier. By employing surface plasmon resonance, lipid-binding ELISA, and mass spectrometry technologies, we have demonstrated that the heterotetramer constituents bind to C-1-P. Although the annexin a2-p11 heterotetramer constituents do not bind the lipid C-1-P exclusively, other structurally similar lipids, such as phosphatidylserine, sphingosine 1-phosphate, and phosphatidic acid, could not elicit the potent chemotactic stimulation observed with C-1-P. Further, we show that siRNA-mediated knockdown of either annexin a2 or p11 protein significantly inhibits C-1-P-directed invasion, indicating that the heterotetrameric complex is required for C-1-P-mediated chemotaxis. These results imply that extracellular C-1-P, acting through the extracellular annexin a2-p11 heterotetrameric protein, can mediate vascular endothelial cell invasion.
Collapse
Affiliation(s)
- Jody L Hankins
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ratajczak MZ, Kim C, Ratajczak J, Janowska-Wieczorek A. Innate immunity as orchestrator of bone marrow homing for hematopoietic stem/progenitor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:219-232. [PMID: 23402030 PMCID: PMC5563259 DOI: 10.1007/978-1-4614-4118-2_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first step that precedes hematopoietic transplantation is elimination of pathological hematopoiesis by administration of myeloablative doses of radiochemotherapy. This eliminates hematolymphopoietic cells and at the same time damages hematopoietic microenvironment in bone marrow (BM). The damage of BM tissue leads to activation of complement cascade (CC), and bioactive CC cleavage fragments modulate several steps of BM recovery after transplantation of hematopoietic stem progenitor cells (HSPCs). Accordingly, C3 cleavage fragments (soluble C3a/desArgC3a and solid phase iC3b) and generation of soluble form of C5b-C9 also known as membrane attack complex (MAC) as well as release of antimicrobial cationic peptides from stromal cells (cathelicidin or LL-37 and beta-2 defensin) promote homing of HSPCs. To support this, C3 cleavage fragments and antimicrobial cationic peptides increase homing responsiveness of transplanted HSPCs to stroma-derived factor-1 (SDF-1) gradient. Furthermore, damaged BM cells release several other chemoattractants for HSPCs such as bioactive lipids sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) and chemotactic purines (ATP and UTP). In this chapter, we will discuss the current view on homing of transplanted HSPCs into BM that in addition to SDF-1 is orchestrated by CC, antimicrobial cationic peptides, and several other prohoming factors. We also propose modulation of CC as a novel strategy to optimize/accelerate homing of HSPCs.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
18
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
19
|
Bonig H, Papayannopoulou T. Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia 2012; 27:24-31. [PMID: 22951944 DOI: 10.1038/leu.2012.254] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite its specific clinical relevance, the field of hematopoietic stem cell mobilization has received broad attention, owing mainly to the belief that pharmacologic stem cell mobilization might provide clues as to how stem cells are retained in their natural environment, the bone marrow 'niche'. Inherent to this knowledge is also the desire to optimally engineer stem cells to interact with their target niche (such as after transplantation), or to lure malignant stem cells out of their protective niches (in order to kill them), and in general to decipher the niche's structural components and its organization. Whereas, with the exception of the recent addition of CXCR4 antagonists to the armamentarium for mobilization of patients refractory to granulocyte colony-stimulating factor alone, clinical stem cell mobilization has not changed significantly over the last decade or so, much effort has been made trying to explain the complex mechanism(s) by which hematopoietic stem and progenitor cells leave the marrow. This brief review will report some of the more recent advances about mobilization, with an attempt to reconcile some of the seemingly inconsistent data in mobilization and to interject some commonalities among different mobilization regimes.
Collapse
Affiliation(s)
- H Bonig
- Department of Medicine/Division of Hematology, University of Washington, Seattle, WA 98198-7720, USA
| | | |
Collapse
|
20
|
Ratajczak MZ, Kim CH, Abdel-Latif A, Schneider G, Kucia M, Morris AJ, Laughlin MJ, Ratajczak J. A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 2012; 26:63-72. [PMID: 21886175 PMCID: PMC5572626 DOI: 10.1038/leu.2011.242] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/09/2011] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem progenitor cells (HSPCs) respond robustly to α-chemokine stromal-derived factor-1 (SDF-1) gradients, and blockage of CXCR4, a seven-transmembrane-spanning G(αI)-protein-coupled SDF-1 receptor, mobilizes HSPCs into peripheral blood. Although the SDF-1-CXCR4 axis has an unquestionably important role in the retention of HSPCs in bone marrow (BM), new evidence shows that, in addition to SDF-1, the migration of HSPCs is directed by gradients of the bioactive lipids sphingosine-1 phosphate and ceramide-1 phosphate. Furthermore, the SDF-1 gradient may be positively primed/modulated by cationic peptides (C3a anaphylatoxin and cathelicidin) and, as previously demonstrated, HSPCs respond robustly even to very low SDF-1 gradients in the presence of priming factors. In this review, we discuss the role of bioactive lipids in stem cell trafficking and the consequences of HSPC priming by cationic peptides. Together, these phenomena support a picture in which the SDF-1-CXCR4 axis modulates homing, BM retention and mobilization of HSPCs in a more complex way than previously envisioned.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|