1
|
Bracaglia L, Oliveti S, Felli IC, Pierattelli R. Decoding Order and Disorder in Proteins by NMR Spectroscopy. J Am Chem Soc 2025; 147:13146-13157. [PMID: 40223218 PMCID: PMC12022988 DOI: 10.1021/jacs.4c14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Proteins often have a complex architecture, consisting of both globular ordered domains and intrinsically disordered regions (IDRs). These multidomain proteins pose challenges for traditional structural biology techniques. One major difficulty arises from the dynamic and flexible nature of IDRs, which lack a stable three-dimensional structure. Indeed, this feature further complicates the application of traditional structural biology techniques. Characterizing these systems is typically simplified by isolating individual domains, which can provide valuable insights into the structure and function of specific regions. However, this approach overlooks the interactions and regulatory mechanisms that occur between domains. To capture the full functional and structural complexity of multidomain proteins, it is crucial to study larger constructs. In this study, we focused on the CREB binding protein (CBP), a pivotal protein involved in numerous cellular processes. CBP is characterized by its modular structure, featuring alternating globular domains and IDRs. We specifically examined the TAZ4 construct, encompassing the TAZ2 globular domain and the ID4 flexible linker region. To characterize this multidomain system, we designed NMR experiments that take advantage of the dynamic differences between the two domains to obtain 2D and 3D spectra enabling the selection of the signals based on their nuclear relaxation properties. These experiments allowed the sequence-specific assignment of the TAZ4 construct to be extended revealing a crosstalk between the disordered region and the globular domain.
Collapse
Affiliation(s)
- Lorenzo Bracaglia
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Silvia Oliveti
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Isabella C. Felli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Roberta Pierattelli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Sesto
Fiorentino 50019, Italy
| |
Collapse
|
2
|
Fichó E, Pancsa R, Magyar C, Kalman Z, Schád É, Németh B, Simon I, Dobson L, Tusnády G. MFIB 2.0: a major update of the database of protein complexes formed by mutual folding of the constituting protein chains. Nucleic Acids Res 2025; 53:D487-D494. [PMID: 39526403 PMCID: PMC11701542 DOI: 10.1093/nar/gkae976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
While the majority of proteins with available structures are able to fold independently and mediate interactions only after acquiring their folded state, a subset of the known protein complexes contains protein chains that are intrinsically disordered in isolation. The Mutual Folding Induced by Binding (MFIB) database collects and classifies protein complexes, wherein all constituent protein chains would be unstable/disordered in isolation but fold into a well-defined 3D complex structure upon binding. This phenomenon is often termed as cooperative folding and binding or mutual synergistic folding (MSF). Here we present a major update to the database: we collected and annotated hundreds of new protein complexes fulfilling the criteria of MSF, leading to an almost six-fold increase in the size of the database. Many novel features have also been introduced, such as clustering of the complexes based on structural similarity and domain types, assigning different evidence levels to each entry and adding the evidence coverage label that allowed us to include complexes of multi(sub)domain monomers with partial MSF. The MFIB 2.0 database is available at https://mfib.pbrg.hu.
Collapse
Affiliation(s)
- Erzsébet Fichó
- Department of Bioinformatics, Cytocast Hungary Kft, Petőfi Sándor utca 5/A, Budapest 1052, Hungary
| | - Rita Pancsa
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Csaba Magyar
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Zsofia E Kalman
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary
| | - Éva Schád
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Bálint Z Németh
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - István Simon
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
| | - Laszlo Dobson
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest 1094, Hungary
| | - Gábor E Tusnády
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 7, Budapest 1094, Hungary
| |
Collapse
|
3
|
Erkine AM, Oliveira MA, Class CA. The Enigma of Transcriptional Activation Domains. J Mol Biol 2024; 436:168766. [PMID: 39214280 DOI: 10.1016/j.jmb.2024.168766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Activation domains (ADs) of eukaryotic gene activators remain enigmatic for decades as short, extremely variable sequences which often are intrinsically disordered in structure and interact with an uncertain number of targets. The general absence of specificity increasingly complicates the utilization of the widely accepted mechanism of AD function by recruitment of coactivators. The long-standing enigma at the heart of molecular biology demands a fundamental rethinking of established concepts. Here, we review the experimental evidence supporting a novel mechanistic model of gene activation, based on ADs functioning via surfactant-like near-stochastic interactions with gene promoter nucleosomes. This new model is consistent with recent information-rich experimental data obtained using high-throughput synthetic biology and bioinformatics analysis methods, including machine learning. We clarify why the conventional biochemical principle of specificity for sequence, structures, and interactions fails to explain activation domain function. This perspective provides connections to the liquid-liquid phase separation model, signifies near-stochastic interactions as fundamental for the biochemical function, and can be generalized to other cellular functions.
Collapse
|
4
|
Uversky VN. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001113. [PMID: 39433443 DOI: 10.1124/pharmrev.124.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.
Collapse
|
5
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Wasim A, Menon S, Mondal J. Modulation of α-synuclein aggregation amid diverse environmental perturbation. eLife 2024; 13:RP95180. [PMID: 39087984 PMCID: PMC11293868 DOI: 10.7554/elife.95180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Intrinsically disordered protein α-synuclein (αS) is implicated in Parkinson's disease due to its aberrant aggregation propensity. In a bid to identify the traits of its aggregation, here we computationally simulate the multi-chain association process of αS in aqueous as well as under diverse environmental perturbations. In particular, the aggregation of αS in aqueous and varied environmental condition led to marked concentration differences within protein aggregates, resembling liquid-liquid phase separation (LLPS). Both saline and crowded settings enhanced the LLPS propensity. However, the surface tension of αS droplet responds differently to crowders (entropy-driven) and salt (enthalpy-driven). Conformational analysis reveals that the IDP chains would adopt extended conformations within aggregates and would maintain mutually perpendicular orientations to minimize inter-chain electrostatic repulsions. The droplet stability is found to stem from a diminished intra-chain interactions in the C-terminal regions of αS, fostering inter-chain residue-residue interactions. Intriguingly, a graph theory analysis identifies small-world-like networks within droplets across environmental conditions, suggesting the prevalence of a consensus interaction patterns among the chains. Together these findings suggest a delicate balance between molecular grammar and environment-dependent nuanced aggregation behavior of αS.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental ResearchHyderabadIndia
| | - Sneha Menon
- Tata Institute of Fundamental ResearchHyderabadIndia
| | | |
Collapse
|
7
|
Ashraf HN, Uversky VN. Intrinsic Disorder in the Host Proteins Entrapped in Rabies Virus Particles. Viruses 2024; 16:916. [PMID: 38932209 PMCID: PMC11209445 DOI: 10.3390/v16060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Hafiza Nimra Ashraf
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Natarajan L, De Sciscio ML, Nardi AN, Sekhar A, Del Giudice A, D’Abramo M, Naganathan AN. A finely balanced order-disorder equilibrium sculpts the folding-binding landscape of an antibiotic sequestering protein. Proc Natl Acad Sci U S A 2024; 121:e2318855121. [PMID: 38709926 PMCID: PMC11098121 DOI: 10.1073/pnas.2318855121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/24/2024] [Indexed: 05/08/2024] Open
Abstract
TipA, a MerR family transcription factor from Streptomyces lividans, promotes antibiotic resistance by sequestering broad-spectrum thiopeptide-based antibiotics, thus counteracting their inhibitory effect on ribosomes. TipAS, a minimal binding motif which is expressed as an isoform of TipA, harbors a partially disordered N-terminal subdomain that folds upon binding multiple antibiotics. The extent and nature of the underlying molecular heterogeneity in TipAS that shapes its promiscuous folding-function landscape is an open question and is critical for understanding antibiotic-sequestration mechanisms. Here, combining equilibrium and time-resolved experiments, statistical modeling, and simulations, we show that the TipAS native ensemble exhibits a pre-equilibrium between binding-incompetent and binding-competent substates, with the fully folded state appearing only as an excited state under physiological conditions. The binding-competent state characterized by a partially structured N-terminal subdomain loses structure progressively in the physiological range of temperatures, swells on temperature increase, and displays slow conformational exchange across multiple conformations. Binding to the bactericidal antibiotic thiostrepton follows a combination of induced-fit and conformational-selection-like mechanisms, via partial binding and concomitant stabilization of the binding-competent substate. These ensemble features are evolutionarily conserved across orthologs from select bacteria that infect humans, underscoring the functional role of partial disorder in the native ensemble of antibiotic-sequestering proteins belonging to the MerR family.
Collapse
Affiliation(s)
- Lawanya Natarajan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai600036, India
| | | | | | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru560 012, India
| | | | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome00185, Italy
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai600036, India
| |
Collapse
|
9
|
Hernández‐Sánchez I, Rindfleisch T, Alpers J, Dulle M, Garvey CJ, Knox‐Brown P, Miettinen MS, Nagy G, Pusterla JM, Rekas A, Shou K, Stadler AM, Walther D, Wolff M, Zuther E, Thalhammer A. Functional in vitro diversity of an intrinsically disordered plant protein during freeze-thawing is encoded by its structural plasticity. Protein Sci 2024; 33:e4989. [PMID: 38659213 PMCID: PMC11043620 DOI: 10.1002/pro.4989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.
Collapse
Affiliation(s)
- Itzell Hernández‐Sánchez
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center for Desert Agriculture, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Tobias Rindfleisch
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
| | - Jessica Alpers
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Patrick Knox‐Brown
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Present address:
Department of Discovery Pharmaceutical SciencesMerck & Co., Inc.South San FranciscoCaliforniaUSA
| | - Markus S. Miettinen
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
| | - Gergely Nagy
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Julio M. Pusterla
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | - Agata Rekas
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
| | - Keyun Shou
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Dirk Walther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Wolff
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
| | - Ellen Zuther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center of Artificial Intelligence in Public Health Research (ZKI‐PH)Robert Koch InstituteBerlinGermany
| | | |
Collapse
|
10
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 PMCID: PMC10966358 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew DelhiIndia
- Present address:
508/Block 3, Kirti Apartments, Mayur Vihar Phase 1 ExtensionDelhiIndia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
11
|
Epasto LM, Pötzl C, Peterlik H, Khalil M, Saint‐Pierre C, Gasparutto D, Sicoli G, Kurzbach D. NMR-identification of the interaction between BRCA1 and the intrinsically disordered monomer of the Myc-associated factor X. Protein Sci 2024; 33:e4849. [PMID: 38037490 PMCID: PMC10731500 DOI: 10.1002/pro.4849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The breast cancer susceptibility 1 (BRCA1) protein plays a pivotal role in modulating the transcriptional activity of the vital intrinsically disordered transcription factor MYC. In this regard, mutations of BRCA1 and interruption of its regulatory activity are related to hereditary breast and ovarian cancer (HBOC). Interestingly, so far, MYC's main dimerization partner MAX (MYC-associated factor X) has not been found to bind BRCA1 despite a high sequence similarity between both oncoproteins. Herein, we show that a potential reason for this discrepancy is the heterogeneous conformational space of MAX, which encloses a well-documented folded coiled-coil homodimer as well as a less common intrinsically disordered monomer state-contrary to MYC, which exists mostly as intrinsically disordered protein in the absence of any binding partner. We show that when the intrinsically disordered state of MAX is artificially overpopulated, the binding of MAX to BRCA1 can readily be observed. We characterize this interaction by nuclear magnetic resonance (NMR) spectroscopy chemical shift and relaxation measurements, complemented with ITC and SAXS data. Our results suggest that BRCA1 directly binds the MAX monomer to form a disordered complex. Though probed herein under biomimetic in-vitro conditions, this finding can potentially stimulate new perspectives on the regulatory network around BRCA1 and its involvement in MYC:MAX regulation.
Collapse
Affiliation(s)
- Ludovica Martina Epasto
- Faculty of Chemistry, Institute for Biological ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| | - Christopher Pötzl
- Faculty of Chemistry, Institute for Biological ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| | | | - Mahdi Khalil
- CNRS UMR 8516, LASIREUniversity of LilleVilleneuve d'Ascq CedexFrance
| | | | | | - Giuseppe Sicoli
- CNRS UMR 8516, LASIREUniversity of LilleVilleneuve d'Ascq CedexFrance
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| |
Collapse
|
12
|
Uversky VN. Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:179-210. [PMID: 38220424 DOI: 10.1016/bs.apcsb.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Intrinsically disordered proteins (IDPs), which are functional proteins without stable tertiary structure, and hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) constitute prominent parts of all proteomes collectively known as unfoldomes. IDPs/IDRs exist as highly dynamic structural ensembles of rapidly interconverting conformations and are characterized by the exceptional structural heterogeneity, where their different parts are (dis)ordered to different degree, and their overall structure represents a complex mosaic of foldons, inducible foldons, inducible morphing foldons, non-foldons, semifoldons, and even unfoldons. Despite their lack of unique 3D structures, IDPs/IDRs play crucial roles in the control of various biological processes and the regulation of different cellular pathways and are commonly involved in recognition and signaling, indicating that the disorder-based functional repertoire is complementary to the functions of ordered proteins. Furthermore, IDPs/IDRs are frequently multifunctional, and this multifunctionality is defined by their structural flexibility and heterogeneity. Intrinsic disorder phenomenon is at the roots of the structure-function continuum model, where the structure continuum is defined by the presence of differently (dis)ordered regions, and the function continuum arises from the ability of all these differently (dis)ordered parts to have different functions. In their everyday life, IDPs/IDRs utilize a broad spectrum of interaction mechanisms thereby acting as interaction specialists. They are crucial for the biogenesis of numerous proteinaceous membrane-less organelles driven by the liquid-liquid phase separation. This review introduces functional unfoldomics by representing some aspects of the intrinsic disorder-based functionality.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
13
|
Millar SR, Huang JQ, Schreiber KJ, Tsai YC, Won J, Zhang J, Moses AM, Youn JY. A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chem Rev 2023. [PMID: 36662637 PMCID: PMC10375481 DOI: 10.1021/acs.chemrev.2c00608] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stress granules (SGs) are cytosolic biomolecular condensates that form in response to cellular stress. Weak, multivalent interactions between their protein and RNA constituents drive their rapid, dynamic assembly through phase separation coupled to percolation. Though a consensus model of SG function has yet to be determined, their perceived implication in cytoprotective processes (e.g., antiviral responses and inhibition of apoptosis) and possible role in the pathogenesis of various neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and frontotemporal dementia) have drawn great interest. Consequently, new studies using numerous cell biological, genetic, and proteomic methods have been performed to unravel the mechanisms underlying SG formation, organization, and function and, with them, a more clearly defined SG proteome. Here, we provide a consensus SG proteome through literature curation and an update of the user-friendly database RNAgranuleDB to version 2.0 (http://rnagranuledb.lunenfeld.ca/). With this updated SG proteome, we use next-generation phase separation prediction tools to assess the predisposition of SG proteins for phase separation and aggregation. Next, we analyze the primary sequence features of intrinsically disordered regions (IDRs) within SG-resident proteins. Finally, we review the protein- and RNA-level determinants, including post-translational modifications (PTMs), that regulate SG composition and assembly/disassembly dynamics.
Collapse
Affiliation(s)
- Sean R Millar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karl J Schreiber
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yi-Cheng Tsai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jiyun Won
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jianping Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada.,The Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
14
|
Deutsch N, Pajkos M, Erdős G, Dosztányi Z. DisCanVis: Visualizing integrated structural and functional annotations to better understand the effect of cancer mutations located within disordered proteins. Protein Sci 2023; 32:e4522. [PMID: 36452990 PMCID: PMC9793970 DOI: 10.1002/pro.4522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Intrinsically disordered proteins (IDPs) play important roles in a wide range of biological processes and have been associated with various diseases, including cancer. In the last few years, cancer genome projects have systematically collected genetic variations underlying multiple cancer types. In parallel, the number and different types of disordered proteins characterized by experimental methods have also significantly increased. Nevertheless, the role of IDPs in various types of cancer is still not well understood. In this work, we present DisCanVis, a novel visualization tool for cancer mutations with a special focus on IDPs. In order to aid the interpretation of observed mutations, genome level information is combined with information about the structural and functional properties of proteins. The web server enables users to inspect individual proteins, collect examples with existing annotations of protein disorder and associated function or to discover currently uncharacterized examples with likely disease relevance. Through a REST API interface and precompiled tables the analysis can be extended to a group of proteins.
Collapse
Affiliation(s)
- Norbert Deutsch
- Department of BiochemistryInstitute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Mátyás Pajkos
- Department of BiochemistryInstitute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Gábor Erdős
- Department of BiochemistryInstitute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Zsuzsanna Dosztányi
- Department of BiochemistryInstitute of Biology, ELTE Eötvös Loránd UniversityBudapestHungary
| |
Collapse
|
15
|
Functional benefit of structural disorder for the replication of measles, Nipah and Hendra viruses. Essays Biochem 2022; 66:915-934. [PMID: 36148633 DOI: 10.1042/ebc20220045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Measles, Nipah and Hendra viruses are severe human pathogens within the Paramyxoviridae family. Their non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the viral RNA-dependent-RNA-polymerase (RpRd) for transcription and replication. The RpRd is a complex made of the large protein (L) and of the phosphoprotein (P), the latter serving as an obligate polymerase cofactor and as a chaperon for N. Both the N and P proteins are enriched in intrinsically disordered regions (IDRs), i.e. regions devoid of stable secondary and tertiary structure. N possesses a C-terminal IDR (NTAIL), while P consists of a large, intrinsically disordered N-terminal domain (NTD) and a C-terminal domain (CTD) encompassing alternating disordered and ordered regions. The V and W proteins, two non-structural proteins that are encoded by the P gene via a mechanism of co-transcriptional edition of the P mRNA, are prevalently disordered too, sharing with P the disordered NTD. They are key players in the evasion of the host antiviral response and were shown to phase separate and to form amyloid-like fibrils in vitro. In this review, we summarize the available information on IDRs within the N, P, V and W proteins from these three model paramyxoviruses and describe their molecular partnership. We discuss the functional benefit of disorder to virus replication in light of the critical role of IDRs in affording promiscuity, multifunctionality, fine regulation of interaction strength, scaffolding functions and in promoting liquid-liquid phase separation and fibrillation.
Collapse
|
16
|
Nicolaou ST, Kannan S, Warwicker J, Verma CS. Activation of p53: How phosphorylated Ser15 triggers sequential phosphorylation of p53 at Thr18 by CK1δ. Proteins 2022; 90:2009-2022. [PMID: 35752942 PMCID: PMC9796392 DOI: 10.1002/prot.26393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 01/01/2023]
Abstract
The N-terminal transactivation domain (TAD) of p53 is a disordered region with multiple phosphorylation sites. Phosphorylation at Thr18 is crucial for the release of p53 from its negative regulator, MDM2. In stressed cells, CK1δ is responsible for phosphorylating Thr18, but requires Ser15 to be phosphorylated. To understand the mechanistic underpinnings of this sequential phosphorylation, molecular modeling and molecular dynamics simulation studies of these phosphorylation events were carried out. Our models suggest that a positively charged region on CK1δ near the adenosine triphosphate (ATP) binding pocket, which is conserved across species, sequesters the negatively charged pSer15, thereby constraining the positioning of the rest of the peptide, such that the side chain of Thr18 is positioned close to the γ-phosphate of ATP. Furthermore, our studies show that the phosphorylated p53 TAD1 (p53pSer15) peptide binds more strongly to CK1δ than does p53. p53 adopts a helical structure when bound to CK1δ, which is lost upon phosphorylation at Ser15, thus gaining higher flexibility and ability to morph into the binding site. We propose that upon phosphorylation at Ser15 the p53 TAD1 peptide binds to CK1δ through an electrostatically driven induced fit mechanism resulting in a flanking fuzzy complex.
Collapse
Affiliation(s)
- Sonia T. Nicolaou
- Faculty of Biology, Medicine and Health, School of Biological SciencesManchester Institute of Biotechnology, University of ManchesterManchesterUK,Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| | - Jim Warwicker
- Faculty of Biology, Medicine and Health, School of Biological SciencesManchester Institute of Biotechnology, University of ManchesterManchesterUK
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR)SingaporeSingapore,School of Biological SciencesNanyang Technological UniversitySingaporeSingapore,Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
17
|
Protein interactions: anything new? Essays Biochem 2022; 66:821-830. [PMID: 36416856 PMCID: PMC9760424 DOI: 10.1042/ebc20220044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
How do proteins interact in the cellular environment? Which interactions stabilize liquid-liquid phase separated condensates? Are the concepts, which have been developed for specific protein complexes also applicable to higher-order assemblies? Recent discoveries prompt for a universal framework for protein interactions, which can be applied across the scales of protein communities. Here, we discuss how our views on protein interactions have evolved from rigid structures to conformational ensembles of proteins and discuss the open problems, in particular related to biomolecular condensates. Protein interactions have evolved to follow changes in the cellular environment, which manifests in multiple modes of interactions between the same partners. Such cellular context-dependence requires multiplicity of binding modes (MBM) by sampling multiple minima of the interaction energy landscape. We demonstrate that the energy landscape framework of protein folding can be applied to explain this phenomenon, opening a perspective toward a physics-based, universal model for cellular protein behaviors.
Collapse
|
18
|
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol Life Sci 2022; 79:449. [PMID: 35882686 PMCID: PMC11072364 DOI: 10.1007/s00018-022-04468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Marina Abd El Malek
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Twinkle Bhatia
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julian Bender
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christin Brankatschk
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alessio Di Ianni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Dailen Garcia-Martinez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Hesselbarth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Janett Köppen
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Luca M Lauth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Laurin Lippik
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Machner
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Shubhra Sachan
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Schmidt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Robin Selle
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ioannis Skalidis
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oleksandr Sorokin
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniele Ubbiali
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bruno Voigt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alice Wedler
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan An Jung Wei
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Zorn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marcel Köhn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Andrea Sinz
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
19
|
Zeng X, Ruff KM, Pappu RV. Competing interactions give rise to two-state behavior and switch-like transitions in charge-rich intrinsically disordered proteins. Proc Natl Acad Sci U S A 2022; 119:e2200559119. [PMID: 35512095 PMCID: PMC9171777 DOI: 10.1073/pnas.2200559119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
The most commonly occurring intrinsically disordered proteins (IDPs) are polyampholytes, which are defined by the duality of low net charge per residue and high fractions of charged residues. Recent experiments have uncovered nuances regarding sequence–ensemble relationships of model polyampholytic IDPs. These include differences in conformational preferences for sequences with lysine vs. arginine and the suggestion that well-mixed sequences form a range of conformations, including globules, conformations with ensemble averages that are reminiscent of ideal chains, or self-avoiding walks. Here, we explain these observations by analyzing results from atomistic simulations. We find that polyampholytic IDPs generally sample two distinct stable states, namely, globules and self-avoiding walks. Globules are favored by electrostatic attractions between oppositely charged residues, whereas self-avoiding walks are favored by favorable free energies of hydration of charged residues. We find sequence-specific temperatures of bistability at which globules and self-avoiding walks can coexist. At these temperatures, ensemble averages over coexisting states give rise to statistics that resemble ideal chains without there being an actual counterbalancing of intrachain and chain-solvent interactions. At equivalent temperatures, arginine-rich sequences tilt the preference toward globular conformations whereas lysine-rich sequences tilt the preference toward self-avoiding walks. We also identify differences between aspartate- and glutamate-containing sequences, whereby the shorter aspartate side chain engenders preferences for metastable, necklace-like conformations. Finally, although segregation of oppositely charged residues within the linear sequence maintains the overall two-state behavior, compact states are highly favored by such systems.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| | - Kiersten M. Ruff
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
20
|
Antifeeva IA, Fonin AV, Fefilova AS, Stepanenko OV, Povarova OI, Silonov SA, Kuznetsova IM, Uversky VN, Turoverov KK. Liquid-liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cell Mol Life Sci 2022; 79:251. [PMID: 35445278 PMCID: PMC11073196 DOI: 10.1007/s00018-022-04276-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022]
Abstract
At the turn of the twenty-first century, fundamental changes took place in the understanding of the structure and function of proteins and then in the appreciation of the intracellular space organization. A rather mechanistic model of the organization of living matter, where the function of proteins is determined by their rigid globular structure, and the intracellular processes occur in rigidly determined compartments, was replaced by an idea that highly dynamic and multifunctional "soft matter" lies at the heart of all living things. According this "new view", the most important role in the spatio-temporal organization of the intracellular space is played by liquid-liquid phase transitions of biopolymers. These self-organizing cellular compartments are open dynamic systems existing at the edge of chaos. They are characterized by the exceptional structural and compositional dynamics, and their multicomponent nature and polyfunctionality provide means for the finely tuned regulation of various intracellular processes. Changes in the external conditions can cause a disruption of the biogenesis of these cellular bodies leading to the irreversible aggregation of their constituent proteins, followed by the transition to a gel-like state and the emergence of amyloid fibrils. This work represents a historical overview of changes in our understanding of the intracellular space compartmentalization. It also reflects methodological breakthroughs that led to a change in paradigms in this area of science and discusses modern ideas about the organization of the intracellular space. It is emphasized here that the membrane-less organelles have to combine a certain resistance to the changes in their environment and, at the same time, show high sensitivity to the external signals, which ensures the normal functioning of the cell.
Collapse
Affiliation(s)
- Iuliia A Antifeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Anna S Fefilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Sergey A Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
21
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
22
|
Abstract
This mini-review represents a brief, disorder-centric consideration of the interplay between order and disorder in proteins. The goal here is to show that inside the cell, folding, non-folding, and misfolding of proteins are interlinked on multiple levels. This is evidenced by the highly heterogeneous spatio-temporal structural organization of a protein molecule, where one can find differently (dis)ordered components that can undergo local or global order-to-disorder and disorder-to-order transitions needed for functionality. This is further illustrated by the fact that at particular moments of their life, most notably during their synthesis and degradation, all proteins are at least partially disordered. In addition to these intrinsic forms of disorder, proteins are constantly facing extrinsic disorder, which is intrinsic disorder in their functional partners. All this comprises the multileveled protein disorder cycle.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
23
|
Alghamdi M, Alamry SA, Bahlas SM, Uversky VN, Redwan EM. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 2021; 79:25. [PMID: 34971426 PMCID: PMC11072894 DOI: 10.1007/s00018-021-04020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by most cells for intracellular communication and transportation of biomolecules. EVs carry proteins, lipids, nucleic acids, and receptors that are involved in human physiology and pathology. EV cargo is variable and highly related to the type and state of the cellular origin. Three subtypes of EVs have been identified: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest and the most well-studied class of EVs that regulate different biological processes and participate in several diseases, such as cancers and autoimmune diseases. Proteomic analysis of exosomes succeeded in profiling numerous types of proteins involved in disease development and prognosis. In rheumatoid arthritis (RA), exosomes revealed a potential function in joint inflammation. These EVs possess a unique function, as they can transfer specific autoantigens and mediators between distant cells. Current proteomic data demonstrated that exosomes could provide beneficial effects against autoimmunity and exert an immunosuppressive action, particularly in RA. Based on these observations, effective therapeutic strategies have been developed for arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O Box 80215, Jeddah, 21589, Saudi Arabia
| | - Sami M Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah, 21589, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
24
|
Brylski O, Shrestha P, Gnutt P, Gnutt D, Mueller JW, Ebbinghaus S. Cellular ATP Levels Determine the Stability of a Nucleotide Kinase. Front Mol Biosci 2021; 8:790304. [PMID: 34966785 PMCID: PMC8710738 DOI: 10.3389/fmolb.2021.790304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The energy currency of the cell ATP, is used by kinases to drive key cellular processes. However, the connection of cellular ATP abundance and protein stability is still under investigation. Using Fast Relaxation Imaging paired with alanine scanning and ATP depletion experiments, we study the nucleotide kinase (APSK) domain of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) synthase, a marginally stable protein. Here, we show that the in-cell stability of the APSK is determined by ligand binding and directly connected to cellular ATP levels. The observed protein stability change for different ligand-bound states or under ATP-depleted conditions ranges from ΔGf 0 = -10.7 to +13.8 kJ/mol, which is remarkable since it exceeds changes measured previously, for example upon osmotic pressure, cellular stress or differentiation. The results have implications for protein stability during the catalytic cycle of APS kinase and suggest that the cellular ATP level functions as a global regulator of kinase activity.
Collapse
Affiliation(s)
- Oliver Brylski
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - Puja Shrestha
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Patricia Gnutt
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, United Kingdom
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| |
Collapse
|
25
|
Hatos A, Monzon AM, Tosatto SCE, Piovesan D, Fuxreiter M. FuzDB: a new phase in understanding fuzzy interactions. Nucleic Acids Res 2021; 50:D509-D517. [PMID: 34791357 PMCID: PMC8728163 DOI: 10.1093/nar/gkab1060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022] Open
Abstract
Fuzzy interactions are specific, variable contacts between proteins and other biomolecules (proteins, DNA, RNA, small molecules) formed in accord to the cellular context. Fuzzy interactions have recently been demonstrated to regulate biomolecular condensates generated by liquid-liquid phase separation. The FuzDB v4.0 database (https://fuzdb.org) assembles experimentally identified examples of fuzzy interactions, where disordered regions mediate functionally important, context-dependent contacts between the partners in stoichiometric and higher-order assemblies. The new version of FuzDB establishes cross-links with databases on structure (PDB, BMRB, PED), function (ELM, UniProt) and biomolecular condensates (PhaSepDB, PhaSePro, LLPSDB). FuzDB v4.0 is a source to decipher molecular basis of complex cellular interaction behaviors, including those in protein droplets.
Collapse
Affiliation(s)
- Andras Hatos
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Alexander Miguel Monzon
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy.,Department of Biochemistry and Molecular Biology, University of Debrecen, Nagyerdei krt 98, 4010 Debrecen, Hungary
| |
Collapse
|
26
|
Ecsédi P, Gógl G, Nyitray L. Studying the Structures of Relaxed and Fuzzy Interactions: The Diverse World of S100 Complexes. Front Mol Biosci 2021; 8:749052. [PMID: 34708078 PMCID: PMC8542695 DOI: 10.3389/fmolb.2021.749052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
S100 proteins are small, dimeric, Ca2+-binding proteins of considerable interest due to their associations with cancer and rheumatic and neurodegenerative diseases. They control the functions of numerous proteins by forming protein–protein complexes with them. Several of these complexes were found to display “fuzzy” properties. Examining these highly flexible interactions, however, is a difficult task, especially from a structural biology point of view. Here, we summarize the available in vitro techniques that can be deployed to obtain structural information about these dynamic complexes. We also review the current state of knowledge about the structures of S100 complexes, focusing on their often-asymmetric nature.
Collapse
Affiliation(s)
- Péter Ecsédi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
27
|
Pajkos M, Dosztányi Z. Functions of intrinsically disordered proteins through evolutionary lenses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:45-74. [PMID: 34656334 DOI: 10.1016/bs.pmbts.2021.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein sequences are the result of an evolutionary process that involves the balancing act of experimenting with novel mutations and selecting out those that have an undesirable functional outcome. In the case of globular proteins, the function relies on a well-defined conformation, therefore, there is a strong evolutionary pressure to preserve the structure. However, different evolutionary rules might apply for the group of intrinsically disordered regions and proteins (IDR/IDPs) that exist as an ensemble of fluctuating conformations. The function of IDRs can directly originate from their disordered state or arise through different types of molecular recognition processes. There is an amazing variety of ways IDRs can carry out their functions, and this is also reflected in their evolutionary properties. In this chapter we give an overview of the different types of evolutionary behavior of disordered proteins and associated functions in normal and disease settings.
Collapse
Affiliation(s)
- Mátyás Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
28
|
Sacquin-Mora S, Prévost C. When Order Meets Disorder: Modeling and Function of the Protein Interface in Fuzzy Complexes. Biomolecules 2021; 11:1529. [PMID: 34680162 PMCID: PMC8533853 DOI: 10.3390/biom11101529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
The degree of proteins structural organization ranges from highly structured, compact folding to intrinsic disorder, where each degree of self-organization corresponds to specific functions: well-organized structural motifs in enzymes offer a proper environment for precisely positioned functional groups to participate in catalytic reactions; at the other end of the self-organization spectrum, intrinsically disordered proteins act as binding hubs via the formation of multiple, transient and often non-specific interactions. This review focusses on cases where structurally organized proteins or domains associate with highly disordered protein chains, leading to the formation of interfaces with varying degrees of fuzziness. We present a review of the computational methods developed to provide us with information on such fuzzy interfaces, and how they integrate experimental information. The discussion focusses on two specific cases, microtubules and homologous recombination nucleoprotein filaments, where a network of intrinsically disordered tails exerts regulatory function in recruiting partner macromolecules, proteins or DNA and tuning the atomic level association. Notably, we show how computational approaches such as molecular dynamics simulations can bring new knowledge to help bridging the gap between experimental analysis, that mostly concerns ensemble properties, and the behavior of individual disordered protein chains that contribute to regulation functions.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- CNRS, Laboratoire de Biochimie Théorique, UPR9080, Université de Paris, 13 Rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75006 Paris, France
| | - Chantal Prévost
- CNRS, Laboratoire de Biochimie Théorique, UPR9080, Université de Paris, 13 Rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75006 Paris, France
| |
Collapse
|
29
|
Broyles BK, Gutierrez AT, Maris TP, Coil DA, Wagner TM, Wang X, Kihara D, Class CA, Erkine AM. Activation of gene expression by detergent-like protein domains. iScience 2021; 24:103017. [PMID: 34522860 PMCID: PMC8426559 DOI: 10.1016/j.isci.2021.103017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022] Open
Abstract
The mechanisms by which transcriptional activation domains (tADs) initiate eukaryotic gene expression have been an enigma for decades because most tADs lack specificity in sequence, structure, and interactions with targets. Machine learning analysis of data sets of tAD sequences generated in vivo elucidated several functionality rules: the functional tAD sequences should (i) be devoid of or depleted with basic amino acid residues, (ii) be enriched with aromatic and acidic residues, (iii) be with aromatic residues localized mostly near the terminus of the sequence, and acidic residues localized more internally within a span of 20-30 amino acids, (iv) be with both aromatic and acidic residues preferably spread out in the sequence and not clustered, and (v) not be separated by occasional basic residues. These and other more subtle rules are not absolute, reflecting absence of a tAD consensus sequence, enormous variability, and consistent with surfactant-like tAD biochemical properties. The findings are compatible with the paradigm-shifting nucleosome detergent mechanism of gene expression activation, contributing to the development of the liquid-liquid phase separation model and the biochemistry of near-stochastic functional allosteric interactions.
Collapse
Affiliation(s)
- Bradley K Broyles
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Andrew T Gutierrez
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Theodore P Maris
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Daniel A Coil
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Thomas M Wagner
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Caleb A Class
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Alexandre M Erkine
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|
30
|
Abstract
Flexibility in complexes between intrinsically disordered proteins and folded ligands is widespread in nature. However, timescales and spatial amplitudes of such dynamics remained unexplored for most systems. Our results show that the disordered cytoplasmic tail of the cell adhesion protein E-cadherin diffuses across the entire surface of its folded binding partner β-catenin at fast submillisecond timescales. The nanometer amplitude of these motions could allow kinases to access their recognition motifs without requiring a dissociation of the complex. We expect that the rugged energy landscape found in the E-cadherin/β-catenin complex is a defining feature of dynamic and partially disordered protein complexes. Intrinsically disordered proteins often form dynamic complexes with their ligands. Yet, the speed and amplitude of these motions are hidden in classical binding kinetics. Here, we directly measure the dynamics in an exceptionally mobile, high-affinity complex. We show that the disordered tail of the cell adhesion protein E-cadherin dynamically samples a large surface area of the protooncogene β-catenin. Single-molecule experiments and molecular simulations resolve these motions with high resolution in space and time. Contacts break and form within hundreds of microseconds without a dissociation of the complex. The energy landscape of this complex is rugged with many small barriers (3 to 4 kBT) and reconciles specificity, high affinity, and extreme disorder. A few persistent contacts provide specificity, whereas unspecific interactions boost affinity.
Collapse
|
31
|
Song J, Li J, Chan HS. Small-Angle X-ray Scattering Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles. J Phys Chem B 2021; 125:6451-6478. [PMID: 34115515 DOI: 10.1021/acs.jpcb.1c02453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An accurate account of disordered protein conformations is of central importance to deciphering the physicochemical basis of biological functions of intrinsically disordered proteins and the folding-unfolding energetics of globular proteins. Physically, disordered ensembles of nonhomopolymeric polypeptides are expected to be heterogeneous, i.e., they should differ from those homogeneous ensembles of homopolymers that harbor an essentially unique relationship between average values of end-to-end distance REE and radius of gyration Rg. It was posited recently, however, that small-angle X-ray scattering (SAXS) data on conformational dimensions of disordered proteins can be rationalized almost exclusively by homopolymer ensembles. Assessing this perspective, chain-model simulations are used to evaluate the discriminatory power of SAXS-determined molecular form factors (MFFs) with regard to homogeneous versus heterogeneous ensembles. The general approach adopted here is not bound by any assumption about ensemble encodability, in that the postulated heterogeneous ensembles we evaluated are not restricted to those entailed by simple interaction schemes. Our analysis of MFFs for certain heterogeneous ensembles with more narrowly distributed REE and Rg indicates that while they deviate from MFFs of homogeneous ensembles, the differences can be rather small. Remarkably, some heterogeneous ensembles with asphericity and REE drastically different from those of homogeneous ensembles can nonetheless exhibit practically identical MFFs, demonstrating that SAXS MFFs do not afford unique characterizations of basic properties of conformational ensembles in general. In other words, the ensemble to MFF mapping is practically many-to-one and likely nonsmooth. Heteropolymeric variations of the REE-Rg relationship were further showcased using an analytical perturbation theory developed here for flexible heteropolymers. Ramifications of our findings for interpretation of experimental data are discussed.
Collapse
Affiliation(s)
- Jianhui Song
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Jichen Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto Faculty of Medicine, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
32
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
33
|
Shao H, Huang W, Avilan L, Receveur-Bréchot V, Puppo C, Puppo R, Lebrun R, Gontero B, Launay H. A new type of flexible CP12 protein in the marine diatom Thalassiosira pseudonana. Cell Commun Signal 2021; 19:38. [PMID: 33761918 PMCID: PMC7992989 DOI: 10.1186/s12964-021-00718-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background CP12 is a small chloroplast protein that is widespread in various photosynthetic organisms and is an actor of the redox signaling pathway involved in the regulation of the Calvin Benson Bassham (CBB) cycle. The gene encoding this protein is conserved in many diatoms, but the protein has been overlooked in these organisms, despite their ecological importance and their complex and still enigmatic evolutionary background. Methods A combination of biochemical, bioinformatics and biophysical methods including electrospray ionization-mass spectrometry, circular dichroism, nuclear magnetic resonance spectroscopy and small X ray scattering, was used to characterize a diatom CP12. Results Here, we demonstrate that CP12 is expressed in the marine diatom Thalassiosira pseudonana constitutively in dark-treated and in continuous light-treated cells as well as in all growth phases. This CP12 similarly to its homologues in other species has some features of intrinsically disorder protein family: it behaves abnormally under gel electrophoresis and size exclusion chromatography, has a high net charge and a bias amino acid composition. By contrast, unlike other known CP12 proteins that are monomers, this protein is a dimer as suggested by native electrospray ionization-mass spectrometry and small angle X-ray scattering. In addition, small angle X-ray scattering revealed that this CP12 is an elongated cylinder with kinks. Circular dichroism spectra indicated that CP12 has a high content of α-helices, and nuclear magnetic resonance spectroscopy suggested that these helices are unstable and dynamic within a millisecond timescale. Together with in silico predictions, these results suggest that T. pseudonana CP12 has both coiled coil and disordered regions. Conclusions These findings bring new insights into the large family of dynamic proteins containing disordered regions, thus increasing the diversity of known CP12 proteins. As it is a protein that is more abundant in many stresses, it is not devoted to one metabolism and in particular, it is not specific to carbon metabolism. This raises questions about the role of this protein in addition to the well-established regulation of the CBB cycle. Choregraphy of metabolism by CP12 proteins in Viridiplantae and Heterokonta. While the monomeric CP12 in Viridiplantae is involved in carbon assimilation, regulating phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) through the formation of a ternary complex, in Heterokonta studied so far, the dimeric CP12 is associated with Ferredoxin-NADP reductase (FNR) and GAPDH. The Viridiplantae CP12 can bind metal ions and can be a chaperone, the Heterokonta CP12 is more abundant in all stresses (C, N, Si, P limited conditions) and is not specific to a metabolism. ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00718-x.
Collapse
Affiliation(s)
- Hui Shao
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Wenmin Huang
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Luisana Avilan
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | | | - Carine Puppo
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Rémy Puppo
- CNRS FR 3479, Plate-Forme Protéomique de L'Institut de Microbiologie de La Méditerranée (IMM), Aix Marseille Univ, 13009, Marseille, France
| | - Régine Lebrun
- CNRS FR 3479, Plate-Forme Protéomique de L'Institut de Microbiologie de La Méditerranée (IMM), Aix Marseille Univ, 13009, Marseille, France
| | - Brigitte Gontero
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| | - Hélène Launay
- CNRS, BIP UMR 7281, Aix Marseille Univ, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France.
| |
Collapse
|
34
|
Broendum SS, Williams DE, Hayes BK, Kraus F, Fodor J, Clifton BE, Geert Volbeda A, Codee JDC, Riley BT, Drinkwater N, Farrow KA, Tsyganov K, Heselpoth RD, Nelson DC, Jackson CJ, Buckle AM, McGowan S. High avidity drives the interaction between the streptococcal C1 phage endolysin, PlyC, with the cell surface carbohydrates of Group A Streptococcus. Mol Microbiol 2021; 116:397-415. [PMID: 33756056 DOI: 10.1111/mmi.14719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023]
Abstract
Endolysin enzymes from bacteriophage cause bacterial lysis by degrading the peptidoglycan cell wall. The streptococcal C1 phage endolysin PlyC, is the most potent endolysin described to date and can rapidly lyse group A, C, and E streptococci. PlyC is known to bind the Group A streptococcal cell wall, but the specific molecular target or the binding site within PlyC remain uncharacterized. Here we report for the first time, that the polyrhamnose backbone of the Group A streptococcal cell wall is the binding target of PlyC. We have also characterized the putative rhamnose binding groove of PlyC and found four key residues that were critical to either the folding or the cell wall binding action of PlyC. Based on our results, we suggest that the interaction between PlyC and the cell wall may not be a high-affinity interaction as previously proposed, but rather a high avidity one, allowing for PlyC's remarkable lytic activity. Resistance to our current antibiotics is reaching crisis levels and there is an urgent need to develop the antibacterial agents with new modes of action. A detailed understanding of this potent endolysin may facilitate future developments of PlyC as a tool against the rise of antibiotic resistance.
Collapse
Affiliation(s)
- Sebastian S Broendum
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia.,Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Daniel E Williams
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Brooke K Hayes
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Felix Kraus
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - James Fodor
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.,Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ben E Clifton
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Anne Geert Volbeda
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codee
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Blake T Riley
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.,Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA
| | - Nyssa Drinkwater
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Kylie A Farrow
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Kirill Tsyganov
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - Ryan D Heselpoth
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, MD, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, MD, USA
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Uversky VN. Recent Developments in the Field of Intrinsically Disordered Proteins: Intrinsic Disorder-Based Emergence in Cellular Biology in Light of the Physiological and Pathological Liquid-Liquid Phase Transitions. Annu Rev Biophys 2021; 50:135-156. [PMID: 33503380 DOI: 10.1146/annurev-biophys-062920-063704] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review deals with two important concepts-protein intrinsic disorder and proteinaceous membrane-less organelles (PMLOs). The past 20 years have seen an upsurge of scientific interest in these phenomena. However, neither are new discoveries made in this century, but instead are timely reincarnations of old ideas that were mostly ignored by the scientific community for a long time. Merging these concepts in the form of the intrinsic disorder-based biological liquid-liquid phase separation provides a basis for understanding the molecular mechanisms of PMLO biogenesis.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA; .,Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
36
|
Bauer V, Schmidtgall B, Gógl G, Dolenc J, Osz J, Nominé Y, Kostmann C, Cousido-Siah A, Mitschler A, Rochel N, Travé G, Kieffer B, Torbeev V. Conformational editing of intrinsically disordered protein by α-methylation. Chem Sci 2020; 12:1080-1089. [PMID: 34163874 PMCID: PMC8178997 DOI: 10.1039/d0sc04482b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) constitute a large portion of “Dark Proteome” – difficult to characterize or yet to be discovered protein structures. Here we used conformationally constrained α-methylated amino acids to bias the conformational ensemble in the free unstructured activation domain of transcriptional coactivator ACTR. Different sites and patterns of substitutions were enabled by chemical protein synthesis and led to distinct populations of α-helices. A specific substitution pattern resulted in a substantially higher binding affinity to nuclear coactivator binding domain (NCBD) of CREB-binding protein, a natural binding partner of ACTR. The first X-ray structure of the modified ACTR domain - NCBD complex visualized a unique conformation of ACTR and confirmed that the key α-methylated amino acids are localized within α-helices in the bound state. This study demonstrates a strategy for characterization of individual conformational states of IDPs. Control of protein conformation was achieved for intrinsically disordered protein by incorporation of α-methylated amino acids.![]()
Collapse
Affiliation(s)
- Valentin Bauer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS, UMR 7006 Strasbourg France
| | - Boris Schmidtgall
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS, UMR 7006 Strasbourg France
| | - Gergő Gógl
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM (U1258), University of Strasbourg, CNRS, UMR 7104 Illkirch France.,Équipe Labellisée Ligue contre le cancer France
| | - Jozica Dolenc
- Chemistry
- Biology
- Pharmacy Information Center, ETH Zurich Zurich Switzerland
| | - Judit Osz
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM (U1258), University of Strasbourg, CNRS, UMR 7104 Illkirch France
| | - Yves Nominé
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM (U1258), University of Strasbourg, CNRS, UMR 7104 Illkirch France.,Équipe Labellisée Ligue contre le cancer France
| | - Camille Kostmann
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM (U1258), University of Strasbourg, CNRS, UMR 7104 Illkirch France.,Équipe Labellisée Ligue contre le cancer France
| | - Alexandra Cousido-Siah
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM (U1258), University of Strasbourg, CNRS, UMR 7104 Illkirch France.,Équipe Labellisée Ligue contre le cancer France
| | - André Mitschler
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM (U1258), University of Strasbourg, CNRS, UMR 7104 Illkirch France.,Équipe Labellisée Ligue contre le cancer France
| | - Natacha Rochel
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM (U1258), University of Strasbourg, CNRS, UMR 7104 Illkirch France
| | - Gilles Travé
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM (U1258), University of Strasbourg, CNRS, UMR 7104 Illkirch France.,Équipe Labellisée Ligue contre le cancer France
| | - Bruno Kieffer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM (U1258), University of Strasbourg, CNRS, UMR 7104 Illkirch France
| | - Vladimir Torbeev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS, UMR 7006 Strasbourg France
| |
Collapse
|
37
|
Elrashdy F, Redwan EM, Uversky VN. Intrinsic disorder perspective of an interplay between the renin-angiotensin-aldosterone system and SARS-CoV-2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104510. [PMID: 32853823 PMCID: PMC7444473 DOI: 10.1016/j.meegid.2020.104510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
The novel severe acute respiratory syndrome (SARS) coronavirus SARS-CoV-2 walks the planet causing the rapid spread of the CoV disease 2019 (COVID-19) that has especially deleterious consequences for the patients with underlying cardiovascular diseases (CVDs). Entry of the SARS-CoV-2 into the host cell involves interaction of the virus (via the receptor-binding domain (RBD) of its spike glycoprotein) with the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) followed by the virus-ACE2 complex internalization by the cell. Since ACE2 is expressed in various tissues, such as brain, gut, heart, kidney, and lung, and since these organs represent obvious targets for the SARS-CoV-2 infection, therapeutic approaches were developed to either inhibit ACE2 or reduce its expression as a means of prevention of the virus entry into the corresponding host cells. The problem here is that in addition to be a receptor for the SARS-CoV-2 entry into the host cells, ACE2 acts as a key component of the renin-angiotensin-aldosterone system (RAAS) aimed at the generation of a cascade of vasoactive peptides coordinating several physiological processes. In RAAS, ACE2 degrades angiotensin II, which is a multifunctional CVD-promoting peptide hormone and converts it to a heptapeptide angiotensin-(1-7) acting as the angiotensin II antagonist. As protein multifunctionality is commonly associated with the presence of flexible or disordered regions, we analyze here the intrinsic disorder predisposition of major players related to the SARS-CoV-2 - RAAS axis. We show that all considered proteins contain intrinsically disordered regions that might have specific functions. Since intrinsic disorder might play a role in the functionality of query proteins and be related to the COVID-19 pathogenesis, this work represents an important disorder-based outlook of an interplay between the renin-angiotensin-aldosterone system and SARS-CoV-2. It also suggests that consideration of the intrinsic disorder phenomenon should be added to the modern arsenal of means for drug development.
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Vladimir N Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| |
Collapse
|
38
|
Kulkarni P. Intrinsically Disordered Proteins: Insights from Poincaré, Waddington, and Lamarck. Biomolecules 2020; 10:E1490. [PMID: 33126482 PMCID: PMC7692701 DOI: 10.3390/biom10111490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
The past quarter-century may justly be referred to as a period analogous to the "Cambrian explosion" in the history of proteins. This period is marked by the appearance of the intrinsically disordered proteins (IDPs) on the scene since their discovery in the mid-1990s. Here, I first reflect on how we accidentally stumbled on these fascinating molecules. Next, I describe our research on the IDPs over the past decade and identify six areas as important for future research in this field. In addition, I draw on discoveries others in the field have made to present a more comprehensive essay. More specifically, I discuss the role of IDPs in two fundamental aspects of life: in phenotypic switching, and in multicellularity that marks one of the major evolutionary transitions. I highlight how serendipity, imagination, and an interdisciplinary approach embodying empirical evidence and theoretical insights from the works of Poincaré, Waddington, and Lamarck, shaped our thinking, and how this led us to propose the MRK hypothesis, a conceptual framework addressing phenotypic switching, the emergence of new traits, and adaptive evolution via nongenetic and IDP conformation-based mechanisms. Finally, I present a perspective on the evolutionary link between phenotypic switching and the origin of multicellularity.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope, National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
39
|
Van Bibber NW, Haerle C, Khalife R, Dayhoff GW, Uversky VN. Intrinsic Disorder in Human Proteins Encoded by Core Duplicon Gene Families. J Phys Chem B 2020; 124:8050-8070. [PMID: 32880174 DOI: 10.1021/acs.jpcb.0c07676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Segmental duplications (i.e., highly homologous DNA fragments greater than 1 kb in length that are present within a genome at more than one site) are typically found in genome regions that are prone to rearrangements. A noticeable fraction of the human genome (∼5%) includes segmental duplications (or duplicons) that are assumed to play a number of vital roles in human evolution, human-specific adaptation, and genomic instability. Despite their importance for crucial events such as synaptogenesis, neuronal migration, and neocortical expansion, these segmental duplications continue to be rather poorly characterized. Of particular interest are the core duplicon gene (CDG) families, which are replicates sharing common "core" DNA among the randomly attached pieces and which expand along single chromosomes and might harbor newly acquired protein domains. Another important feature of proteins encoded by CDG families is their multifunctionality. Although it seems that these proteins might possess many characteristic features of intrinsically disordered proteins, to the best of our knowledge, a systematic investigation of the intrinsic disorder predisposition of the proteins encoded by core duplicon gene families has not been conducted yet. To fill this gap and to determine the degree to which these proteins might be affected by intrinsic disorder, we analyzed a set of human proteins encoded by the members of 10 core duplicon gene families, such as NBPF, RGPD, GUSBP, PMS2P, SPATA31, TRIM51, GOLGA8, NPIP, TBC1D3, and LRRC37. Our analysis revealed that the vast majority of these proteins are highly disordered, with their disordered regions often being utilized as means for the protein-protein interactions and/or targeted for numerous posttranslational modifications of different nature.
Collapse
Affiliation(s)
- Nathan W Van Bibber
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Cornelia Haerle
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Roy Khalife
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, Florida 33620, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States.,USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States.,Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 4 Institutskaya St., Pushchino, 142290, Moscow Region, Russia
| |
Collapse
|
40
|
Nambiar D, Sharma O, Duff MR, Howell EE. Effects of Osmolytes on Ligand Binding to Dihydropteroate Synthase from Bacillus anthracis. J Phys Chem B 2020; 124:6212-6224. [PMID: 32580556 DOI: 10.1021/acs.jpcb.0c03311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Osmolyte interactions with ligands can affect their affinity for proteins and are dependent upon the cosolute and the functional groups of the ligand. Here, we explored ligand binding to Bacillus anthracis dihydropteroate synthase (BaDHPS) under osmotic stress conditions. Osmolyte effects were specific to the cosolute and ligand, suggesting interaction of the osmolytes with the free ligands in solution. The association rates of pterin pyrophosphate were mostly unaffected by the osmolytes, except for a 2-fold decrease in the presence of 1 M trehalose, while the dissociation rates decreased in most osmolyte solutions. The viscosity and dielectric constant of the solution did not correlate with the effects of the osmolytes. Experimental results were compared with predicted preferential interaction coefficients (Δμ23/RT) between the osmolytes and ligands. The Δμ23/RT were able to predict the experimental data for most of the osmolytes. Trehalose and proline effects did not correlate with the predicted values, indicating that these two osmolytes may affect binding in more complex ways than simple preferential interactions. Additionally, osmolytes weakly interacted with the sulfa drug sulfathiazole, which altered its affinity for BaDHPS, suggesting that these types of weak interactions can also impact drug binding. As osmolytes affect ligands binding to two different folate cycle enzymes (DHFRs and DHPS), we predicted how ligand binding to other folate cycle enzymes will be altered by the presence of osmolytes.
Collapse
Affiliation(s)
- Deepika Nambiar
- Department of Biochemistry & Cellular and Molecular Biology Department, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Ojaswini Sharma
- Department of Biochemistry & Cellular and Molecular Biology Department, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Michael R Duff
- Department of Biochemistry & Cellular and Molecular Biology Department, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology Department, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
41
|
Sokolik CG, Qassem N, Chill JH. The Disordered Cellular Multi-Tasker WIP and Its Protein-Protein Interactions: A Structural View. Biomolecules 2020; 10:biom10071084. [PMID: 32708183 PMCID: PMC7407642 DOI: 10.3390/biom10071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/21/2023] Open
Abstract
WASp-interacting protein (WIP), a regulator of actin cytoskeleton assembly and remodeling, is a cellular multi-tasker and a key member of a network of protein-protein interactions, with significant impact on health and disease. Here, we attempt to complement the well-established understanding of WIP function from cell biology studies, summarized in several reviews, with a structural description of WIP interactions, highlighting works that present a molecular view of WIP's protein-protein interactions. This provides a deeper understanding of the mechanisms by which WIP mediates its biological functions. The fully disordered WIP also serves as an intriguing example of how intrinsically disordered proteins (IDPs) exert their function. WIP consists of consecutive small functional domains and motifs that interact with a host of cellular partners, with a striking preponderance of proline-rich motif capable of interactions with several well-recognized binding partners; indeed, over 30% of the WIP primary structure are proline residues. We focus on the binding motifs and binding interfaces of three important WIP segments, the actin-binding N-terminal domain, the central domain that binds SH3 domains of various interaction partners, and the WASp-binding C-terminal domain. Beyond the obvious importance of a more fundamental understanding of the biology of this central cellular player, this approach carries an immediate and highly beneficial effect on drug-design efforts targeting WIP and its binding partners. These factors make the value of such structural studies, challenging as they are, readily apparent.
Collapse
|
42
|
Bhardwaj T, Saumya KU, Kumar P, Sharma N, Gadhave K, Uversky VN, Giri R. Japanese encephalitis virus - exploring the dark proteome and disorder-function paradigm. FEBS J 2020; 287:3751-3776. [PMID: 32473054 DOI: 10.1111/febs.15427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Japanese encephalitis virus (JEV) is one of the major causes of viral encephalitis all around the globe. Approximately 3 billion people in endemic areas are at risk of Japanese encephalitis. To develop a wholistic understanding of the viral proteome, it is important to investigate both its ordered and disordered proteins. However, the functional and structural significance of disordered regions in the JEV proteome has not been systematically investigated as of yet. To fill this gap, we used here a set of bioinformatics tools to analyze the JEV proteome for the predisposition of its proteins for intrinsic disorder and for the presence of the disorder-based binding regions (also known as molecular recognition features, MoRFs). We also analyzed all JEV proteins for the presence of the probable nucleic acid-binding (DNA and RNA) sites. The results of these computational studies are experimentally validated using JEV capsid protein as an illustrative example. In agreement with bioinformatic analysis, we found that the N-terminal region of the JEV capsid (residues 1-30) is intrinsically disordered. We showed that this region is characterized by the temperature response typical for highly disordered proteins. Furthermore, we have experimentally shown that this disordered N-terminal domain of a capsid protein has a noticeable 'gain-of-structure' potential. In addition, using DOPS liposomes, we demonstrated the presence of pronounced membrane-mediated conformational changes in the N-terminal region of JEV capsid. In our view, this disorder-centric analysis would be helpful for a better understanding of the JEV pathogenesis.
Collapse
Affiliation(s)
- Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Kumar Udit Saumya
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Nitin Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| |
Collapse
|
43
|
Intrinsic Disorder in Tetratricopeptide Repeat Proteins. Int J Mol Sci 2020; 21:ijms21103709. [PMID: 32466138 PMCID: PMC7279152 DOI: 10.3390/ijms21103709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
Among the realm of repeat containing proteins that commonly serve as “scaffolds” promoting protein-protein interactions, there is a family of proteins containing between 2 and 20 tetratricopeptide repeats (TPRs), which are functional motifs consisting of 34 amino acids. The most distinguishing feature of TPR domains is their ability to stack continuously one upon the other, with these stacked repeats being able to affect interaction with binding partners either sequentially or in combination. It is known that many repeat-containing proteins are characterized by high levels of intrinsic disorder, and that many protein tandem repeats can be intrinsically disordered. Furthermore, it seems that TPR-containing proteins share many characteristics with hybrid proteins containing ordered domains and intrinsically disordered protein regions. However, there has not been a systematic analysis of the intrinsic disorder status of TPR proteins. To fill this gap, we analyzed 166 human TPR proteins to determine the degree to which proteins containing TPR motifs are affected by intrinsic disorder. Our analysis revealed that these proteins are characterized by different levels of intrinsic disorder and contain functional disordered regions that are utilized for protein-protein interactions and often serve as targets of various posttranslational modifications.
Collapse
|
44
|
Li DW, Xie M, Brüschweiler R. Quantitative Cooperative Binding Model for Intrinsically Disordered Proteins Interacting with Nanomaterials. J Am Chem Soc 2020; 142:10730-10738. [DOI: 10.1021/jacs.0c01885] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Da-Wei Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mouzhe Xie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rafael Brüschweiler
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
45
|
Abstract
Intrinsically disordered proteins (IDPs) are now widely recognized as playing critical roles in a broad range of cellular functions as well as being implicated in diverse diseases. Their lack of stable secondary structure and tertiary interactions, coupled with their sensitivity to measurement conditions, stymies many traditional structural biology approaches. Single-molecule Förster resonance energy transfer (smFRET) is now widely used to characterize the physicochemical properties of these proteins in isolation and is being increasingly applied to more complex assemblies and experimental environments. This review provides an overview of confocal diffusion-based smFRET as an experimental tool, including descriptions of instrumentation, data analysis, and protein labeling. Recent papers are discussed that illustrate the unique capability of smFRET to provide insight into aggregation-prone IDPs, protein–protein interactions involving IDPs, and IDPs in complex experimental milieus.
Collapse
Affiliation(s)
- Lauren Ann Metskas
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
46
|
Tsytlonok M, Hemmen K, Hamilton G, Kolimi N, Felekyan S, Seidel CAM, Tompa P, Sanabria H. Specific Conformational Dynamics and Expansion Underpin a Multi-Step Mechanism for Specific Binding of p27 with Cdk2/Cyclin A. J Mol Biol 2020; 432:2998-3017. [PMID: 32088186 PMCID: PMC7254055 DOI: 10.1016/j.jmb.2020.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/27/2020] [Accepted: 02/09/2020] [Indexed: 12/12/2022]
Abstract
The protein p27, a prominent regulatory protein in eukaryotes and an intrinsically disordered protein (IDP), regulates cell division by causing cell cycle arrest when bound in ternary complex with cyclin-dependent kinase (Cdk2) and cyclins (e.g., Cdk2/Cyclin A). We present an integrative study of p27 and its binding to Cdk2/Cyclin A complex by performing single-molecule multiparameter fluorescence spectroscopy, stopped-flow experiments, and molecular dynamics simulations. Our results suggest that unbound p27 adopts a compact conformation and undergoes conformational dynamics across several orders of magnitude in time (nano-to milliseconds), reflecting a multi-step mechanism for binding Cdk2/Cyclin A. Mutagenesis studies reveal that the region D1 in p27 plays a significant role in mediating the association kinetics, undergoing conformational rearrangement upon initial binding. Additionally, FRET experiments indicate an expansion of p27 throughout binding. The detected local and long-range structural dynamics suggest that p27 exhibits a limited binding surface in the unbound form, and stochastic conformational changes in D1 facilitate initial binding to Cdk2/Cyclin A complex. Furthermore, the post-kinase inhibitory domain (post-KID) region of p27 exchanges between distinct conformational ensembles: an extended regime exhibiting worm-like chain behavior, and a compact ensemble, which may protect p27 against nonspecific interactions. In summary, the binding interaction involves three steps: (i) D1 initiates binding, (ii) p27 wraps around Cdk2/Cyclin A and D2 binds, and (iii) the fully-formed fuzzy ternary complex is formed concomitantly with an extension of the post-KID region. An understanding of how the IDP nature of p27 underpins its functional interactions with Cdk2/Cyclin A provides insight into the complex binding mechanisms of IDPs and their regulatory mechanisms.
Collapse
Affiliation(s)
- Maksym Tsytlonok
- VIB-VUB Center for Structural Biology (CSB), Vrije Universiteit Brussel, Brussels, Belgium
| | - Katherina Hemmen
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany; Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97078, Würzburg, Germany
| | - George Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Narendar Kolimi
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Suren Felekyan
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Claus A M Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Vrije Universiteit Brussel, Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Hugo Sanabria
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany; Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
47
|
Sequence-Based Prediction of Fuzzy Protein Interactions. J Mol Biol 2020; 432:2289-2303. [DOI: 10.1016/j.jmb.2020.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
|
48
|
Murthy AC, Fawzi NL. The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy. J Biol Chem 2020; 295:2375-2384. [PMID: 31911439 PMCID: PMC7039561 DOI: 10.1074/jbc.rev119.009847] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a phenomenon that underlies membraneless compartmentalization of the cell. The underlying molecular interactions that underpin biomolecular LLPS have been of increased interest due to the importance of membraneless organelles in facilitating various biological processes and the disease association of several of the proteins that mediate LLPS. Proteins that are able to undergo LLPS often contain intrinsically disordered regions and remain dynamic in solution. Solution-state NMR spectroscopy has emerged as a leading structural technique to characterize protein LLPS due to the variety and specificity of information that can be obtained about intrinsically disordered sequences. This review discusses practical aspects of studying LLPS by NMR, summarizes recent work on the molecular aspects of LLPS of various protein systems, and discusses future opportunities for characterizing the molecular details of LLPS to modulate phase separation.
Collapse
Affiliation(s)
- Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912.
| |
Collapse
|
49
|
Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. J Biosci 2020. [DOI: 10.1007/s12038-020-0010-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Mouhand A, Belfetmi A, Catala M, Larue V, Zargarian L, Brachet F, Gorelick RJ, Van Heijenoort C, Mirambeau G, Barraud P, Mauffret O, Tisné C. Modulation of the HIV nucleocapsid dynamics finely tunes its RNA-binding properties during virion genesis. Nucleic Acids Res 2019; 46:9699-9710. [PMID: 29986076 PMCID: PMC6182130 DOI: 10.1093/nar/gky612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
During HIV-1 assembly and budding, Gag protein, in particular the C-terminal domain containing the nucleocapsid domain (NCd), p1 and p6, is the site of numerous interactions with viral and cellular factors. Most in vitro studies of Gag have used constructs lacking p1 and p6. Here, using NMR spectroscopy, we show that the p1-p6 region of Gag (NCp15) is largely disordered, but interacts transiently with the NCd. These interactions modify the dynamic properties of the NCd. Indeed, using isothermal titration calorimetry (ITC), we have measured a higher entropic penalty to RNA-binding for the NCd precursor, NCp15, than for the mature form, NCp7, which lacks p1 and p6. We propose that during assembly and budding of virions, concomitant with Gag oligomerization, transient interactions between NCd and p1-p6 become salient and responsible for (i) a higher level of structuration of p6, which favours recruitment of budding partners; and (ii) a higher entropic penalty to RNA-binding at specific sites that favours non-specific binding of NCd at multiple sites on the genomic RNA (gRNA). The contributions of p6 and p1 are sequentially removed via proteolysis during Gag maturation such that the RNA-binding specificity of the mature protein is governed by the properties of NCd.
Collapse
Affiliation(s)
- Assia Mouhand
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Anissa Belfetmi
- LBPA, CNRS UMR 8113, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du Pdt Wilson, F-94235 Cachan, France
| | - Marjorie Catala
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Valéry Larue
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Loussiné Zargarian
- LBPA, CNRS UMR 8113, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du Pdt Wilson, F-94235 Cachan, France
| | - Franck Brachet
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, MD 21702-1201, USA
| | - Carine Van Heijenoort
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Gilles Mirambeau
- Infectious disease & AIDS Research unit, IDIBAPS, Barcelona, Barcelona, Spain.,Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927 des Sciences de la Vie, Paris, France
| | - Pierre Barraud
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivier Mauffret
- LBPA, CNRS UMR 8113, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du Pdt Wilson, F-94235 Cachan, France
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|