1
|
Andrzejewski AL, Ferrar J, Kratzer-Charron M, Bowen ME, Choi UB. Structural Dynamics of SNARE Complex Assembly in the Ribbon Synapses Observed by smFRET. Methods Mol Biol 2025; 2887:185-196. [PMID: 39806155 DOI: 10.1007/978-1-0716-4314-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function. Here we provide a detailed method of using smFRET to monitor the conformational dynamics of syntaxin-3b from the ribbon synapses during assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex.
Collapse
Affiliation(s)
| | - Joshua Ferrar
- Department of Biochemistry, University of West Virginia, Morgantown, WV, USA
| | | | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
2
|
Gething C, Ferrar J, Misra B, Howells G, Andrzejewski AL, Bowen ME, Choi UB. Conformational change of Syntaxin-3b in regulating SNARE complex assembly in the ribbon synapses. Sci Rep 2022; 12:9261. [PMID: 35661757 PMCID: PMC9166750 DOI: 10.1038/s41598-022-09654-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Neurotransmitter release of synaptic vesicles relies on the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consisting of syntaxin and SNAP-25 on the plasma membrane and synaptobrevin on the synaptic vesicle. The formation of the SNARE complex progressively zippers towards the membranes, which drives membrane fusion between the plasma membrane and the synaptic vesicle. However, the underlying molecular mechanism of SNARE complex regulation is unclear. In this study, we investigated the syntaxin-3b isoform found in the retinal ribbon synapses using single-molecule fluorescence resonance energy transfer (smFRET) to monitor the conformational changes of syntaxin-3b that modulate the SNARE complex formation. We found that syntaxin-3b is predominantly in a self-inhibiting closed conformation, inefficiently forming the ternary SNARE complex. Conversely, a phosphomimetic mutation (T14E) at the N-terminal region of syntaxin-3b promoted the open conformation, similar to the constitutively open form of syntaxin LE mutant. When syntaxin-3b is bound to Munc18-1, SNARE complex formation is almost completely blocked. Surprisingly, the T14E mutation of syntaxin-3b partially abolishes Munc18-1 regulation, acting as a conformational switch to trigger SNARE complex assembly. Thus, we suggest a model where the conformational change of syntaxin-3b induced by phosphorylation initiates the release of neurotransmitters in the ribbon synapses.
Collapse
Affiliation(s)
- Claire Gething
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Joshua Ferrar
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Bishal Misra
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Giovanni Howells
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.,Quantum-Si, Inc, Guilford, CT, 06437, USA
| | - Ucheor B Choi
- Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,Quantum-Si, Inc, Guilford, CT, 06437, USA.
| |
Collapse
|
3
|
Kay TM, Aplin CP, Simonet R, Beenken J, Miller RC, Libal C, Boersma AJ, Sheets ED, Heikal AA. Molecular Brightness Approach for FRET Analysis of Donor-Linker-Acceptor Constructs at the Single Molecule Level: A Concept. Front Mol Biosci 2021; 8:730394. [PMID: 34595208 PMCID: PMC8476790 DOI: 10.3389/fmolb.2021.730394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In this report, we have developed a simple approach using single-detector fluorescence autocorrelation spectroscopy (FCS) to investigate the Förster resonance energy transfer (FRET) of genetically encoded, freely diffusing crTC2.1 (mTurquoise2.1-linker-mCitrine) at the single molecule level. We hypothesize that the molecular brightness of the freely diffusing donor (mTurquoise2.1) in the presence of the acceptor (mCitrine) is lower than that of the donor alone due to FRET. To test this hypothesis, the fluorescence fluctuation signal and number of molecules of freely diffusing construct were measured using FCS to calculate the molecular brightness of the donor, excited at 405 nm and detected at 475/50 nm, in the presence and absence of the acceptor. Our results indicate that the molecular brightness of cleaved crTC2.1 in a buffer is larger than that of the intact counterpart under 405-nm excitation. The energy transfer efficiency at the single molecule level is larger and more spread in values as compared with the ensemble-averaging time-resolved fluorescence measurements. In contrast, the molecular brightness of the intact crTC2.1, under 488 nm excitation of the acceptor (531/40 nm detection), is the same or slightly larger than that of the cleaved counterpart. These FCS-FRET measurements on freely diffusing donor-acceptor pairs are independent of the precise time constants associated with autocorrelation curves due to the presence of potential photophysical processes. Ultimately, when used in living cells, the proposed approach would only require a low expression level of these genetically encoded constructs, helping to limit potential interference with the cell machinery.
Collapse
Affiliation(s)
- Taryn M Kay
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, MN, United States
| | - Cody P Aplin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Rowan Simonet
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Julie Beenken
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Robert C Miller
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Christin Libal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| |
Collapse
|
4
|
Rice LJ, Ecroyd H, van Oijen AM. Illuminating amyloid fibrils: Fluorescence-based single-molecule approaches. Comput Struct Biotechnol J 2021; 19:4711-4724. [PMID: 34504664 PMCID: PMC8405898 DOI: 10.1016/j.csbj.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
The aggregation of proteins into insoluble filamentous amyloid fibrils is a pathological hallmark of neurodegenerative diseases that include Parkinson's disease and Alzheimer's disease. Since the identification of amyloid fibrils and their association with disease, there has been much work to describe the process by which fibrils form and interact with other proteins. However, due to the dynamic nature of fibril formation and the transient and heterogeneous nature of the intermediates produced, it can be challenging to examine these processes using techniques that rely on traditional ensemble-based measurements. Single-molecule approaches overcome these limitations as rare and short-lived species within a population can be individually studied. Fluorescence-based single-molecule methods have proven to be particularly useful for the study of amyloid fibril formation. In this review, we discuss the use of different experimental single-molecule fluorescence microscopy approaches to study amyloid fibrils and their interaction with other proteins, in particular molecular chaperones. We highlight the mechanistic insights these single-molecule techniques have already provided in our understanding of how fibrils form, and comment on their potential future use in studying amyloid fibrils and their intermediates.
Collapse
Affiliation(s)
- Lauren J. Rice
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Sanders JC, Holmstrom ED. Integrating single-molecule FRET and biomolecular simulations to study diverse interactions between nucleic acids and proteins. Essays Biochem 2021; 65:37-49. [PMID: 33600559 PMCID: PMC8052285 DOI: 10.1042/ebc20200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The conformations of biological macromolecules are intimately related to their cellular functions. Conveniently, the well-characterized dipole-dipole distance-dependence of Förster resonance energy transfer (FRET) makes it possible to measure and monitor the nanoscale spatial dimensions of these conformations using fluorescence spectroscopy. For this reason, FRET is often used in conjunction with single-molecule detection to study a wide range of conformationally dynamic biochemical processes. Written for those not yet familiar with the subject, this review aims to introduce biochemists to the methodology associated with single-molecule FRET, with a particular emphasis on how it can be combined with biomolecular simulations to study diverse interactions between nucleic acids and proteins. In the first section, we highlight several conceptual and practical considerations related to this integrative approach. In the second section, we review a few recent research efforts wherein various combinations of single-molecule FRET and biomolecular simulations were used to study the structural and dynamic properties of biochemical systems involving different types of nucleic acids (e.g., DNA and RNA) and proteins (e.g., folded and disordered).
Collapse
Affiliation(s)
- Joshua C Sanders
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
| | - Erik D Holmstrom
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, U.S.A
| |
Collapse
|
6
|
Durham RJ, Latham DR, Sanabria H, Jayaraman V. Structural Dynamics of Glutamate Signaling Systems by smFRET. Biophys J 2020; 119:1929-1936. [PMID: 33096078 PMCID: PMC7732771 DOI: 10.1016/j.bpj.2020.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique for investigating the structural dynamics of biological macromolecules. smFRET reveals the conformational landscape and dynamic changes of proteins by building on the static structures found using cryo-electron microscopy, x-ray crystallography, and other methods. Combining smFRET with static structures allows for a direct correlation between dynamic conformation and function. Here, we discuss the different experimental setups, fluorescence detection schemes, and data analysis strategies that enable the study of structural dynamics of glutamate signaling across various timescales. We illustrate the versatility of smFRET by highlighting studies of a wide range of questions, including the mechanism of activation and transport, the role of intrinsically disordered segments, and allostery and cooperativity between subunits in biological systems responsible for glutamate signaling.
Collapse
Affiliation(s)
- Ryan J Durham
- University of Texas Health Science Center at Houston, Houston, Texas
| | | | | | | |
Collapse
|
7
|
The Order-Disorder Continuum: Linking Predictions of Protein Structure and Disorder through Molecular Simulation. Sci Rep 2020; 10:2068. [PMID: 32034199 PMCID: PMC7005769 DOI: 10.1038/s41598-020-58868-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions within proteins (IDRs) serve an increasingly expansive list of biological functions, including regulation of transcription and translation, protein phosphorylation, cellular signal transduction, as well as mechanical roles. The strong link between protein function and disorder motivates a deeper fundamental characterization of IDPs and IDRs for discovering new functions and relevant mechanisms. We review recent advances in experimental techniques that have improved identification of disordered regions in proteins. Yet, experimentally curated disorder information still does not currently scale to the level of experimentally determined structural information in folded protein databases, and disorder predictors rely on several different binary definitions of disorder. To link secondary structure prediction algorithms developed for folded proteins and protein disorder predictors, we conduct molecular dynamics simulations on representative proteins from the Protein Data Bank, comparing secondary structure and disorder predictions with simulation results. We find that structure predictor performance from neural networks can be leveraged for the identification of highly dynamic regions within molecules, linked to disorder. Low accuracy structure predictions suggest a lack of static structure for regions that disorder predictors fail to identify. While disorder databases continue to expand, secondary structure predictors and molecular simulations can improve disorder predictor performance, which aids discovery of novel functions of IDPs and IDRs. These observations provide a platform for the development of new, integrated structural databases and fusion of prediction tools toward protein disorder characterization in health and disease.
Collapse
|
8
|
LeBlanc SJ, Kulkarni P, Weninger KR. Single Molecule FRET: A Powerful Tool to Study Intrinsically Disordered Proteins. Biomolecules 2018; 8:biom8040140. [PMID: 30413085 PMCID: PMC6315554 DOI: 10.3390/biom8040140] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are often modeled using ideas from polymer physics that suggest they smoothly explore all corners of configuration space. Experimental verification of this random, dynamic behavior is difficult as random fluctuations of IDPs cannot be synchronized across an ensemble. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) is one of the few approaches that are sensitive to transient populations of sub-states within molecular ensembles. In some implementations, smFRET has sufficient time resolution to resolve transitions in IDP behaviors. Here we present experimental issues to consider when applying smFRET to study IDP configuration. We illustrate the power of applying smFRET to IDPs by discussing two cases in the literature of protein systems for which smFRET has successfully reported phosphorylation-induced modification (but not elimination) of the disordered properties that have been connected to impacts on the related biological function. The examples we discuss, PAGE4 and a disordered segment of the GluN2B subunit of the NMDA receptor, illustrate the great potential of smFRET to inform how IDP function can be regulated by controlling the detailed ensemble of disordered states within biological networks.
Collapse
Affiliation(s)
- Sharonda J LeBlanc
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
9
|
Choi UB, Zhao M, White KI, Pfuetzner RA, Esquivies L, Zhou Q, Brunger AT. NSF-mediated disassembly of on- and off-pathway SNARE complexes and inhibition by complexin. eLife 2018; 7:36497. [PMID: 29985126 PMCID: PMC6130971 DOI: 10.7554/elife.36497] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022] Open
Abstract
SNARE complex disassembly by the ATPase NSF is essential for neurotransmitter release and other membrane trafficking processes. We developed a single-molecule FRET assay to monitor repeated rounds of NSF-mediated disassembly and reassembly of individual SNARE complexes. For ternary neuronal SNARE complexes, disassembly proceeds in a single step within 100 msec. We observed short- (<0.32 s) and long-lived (≥0.32 s) disassembled states. The long-lived states represent fully disassembled SNARE complex, while the short-lived states correspond to failed disassembly or immediate reassembly. Either high ionic strength or decreased αSNAP concentration reduces the disassembly rate while increasing the frequency of short-lived states. NSF is also capable of disassembling anti-parallel ternary SNARE complexes, implicating it in quality control. Finally, complexin-1 competes with αSNAP binding to the SNARE complex; addition of complexin-1 has an effect similar to that of decreasing the αSNAP concentration, possibly differentially regulating cis and trans SNARE complexes disassembly.
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
10
|
Lai Y, Choi UB, Leitz J, Rhee HJ, Lee C, Altas B, Zhao M, Pfuetzner RA, Wang AL, Brose N, Rhee J, Brunger AT. Molecular Mechanisms of Synaptic Vesicle Priming by Munc13 and Munc18. Neuron 2017; 95:591-607.e10. [PMID: 28772123 DOI: 10.1016/j.neuron.2017.07.004] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 05/08/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022]
Abstract
Munc13 catalyzes the transit of syntaxin from a closed complex with Munc18 into the ternary SNARE complex. Here we report a new function of Munc13, independent of Munc18: it promotes the proper syntaxin/synaptobrevin subconfiguration during assembly of the ternary SNARE complex. In cooperation with Munc18, Munc13 additionally ensures the proper syntaxin/SNAP-25 subconfiguration. In a reconstituted fusion assay with SNAREs, complexin, and synaptotagmin, inclusion of both Munc13 and Munc18 quadruples the Ca2+-triggered amplitude and achieves Ca2+ sensitivity at near-physiological concentrations. In Munc13-1/2 double-knockout neurons, expression of a constitutively open mutant of syntaxin could only minimally restore neurotransmitter release relative to Munc13-1 rescue. Together, the physiological functions of Munc13 may be related to regulation of proper SNARE complex assembly.
Collapse
Affiliation(s)
- Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hong Jun Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Choongku Lee
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Minglei Zhao
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Austin L Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Wang S, Choi UB, Gong J, Yang X, Li Y, Wang AL, Yang X, Brunger AT, Ma C. Conformational change of syntaxin linker region induced by Munc13s initiates SNARE complex formation in synaptic exocytosis. EMBO J 2017; 36:816-829. [PMID: 28137749 PMCID: PMC5350566 DOI: 10.15252/embj.201695775] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 01/04/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1 adopts a closed conformation when bound to Munc18-1, preventing binding to synaptobrevin-2 and SNAP-25 to form the ternary SNARE complex. Although it is known that the MUN domain of Munc13-1 catalyzes the transition from the Munc18-1/syntaxin-1 complex to the SNARE complex, the molecular mechanism is unclear. Here, we identified two conserved residues (R151, I155) in the syntaxin-1 linker region as key sites for the MUN domain interaction. This interaction is essential for SNARE complex formation in vitro and synaptic vesicle priming in neuronal cultures. Moreover, this interaction is important for a tripartite Munc18-1/syntaxin-1/MUN complex, in which syntaxin-1 still adopts a closed conformation tightly bound to Munc18-1, whereas the syntaxin-1 linker region changes its conformation, similar to that of the LE mutant of syntaxin-1 when bound to Munc18-1. We suggest that the conformational change of the syntaxin-1 linker region induced by Munc13-1 initiates ternary SNARE complex formation in the neuronal system.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ucheor B Choi
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jihong Gong
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Xiaoyu Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Austin L Wang
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Axel T Brunger
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Choi UB, Zhao M, Zhang Y, Lai Y, Brunger AT. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex. eLife 2016; 5. [PMID: 27253060 PMCID: PMC4927292 DOI: 10.7554/elife.16886] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 01/14/2023] Open
Abstract
Complexin regulates spontaneous and activates Ca2+-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. The complexin-1 induced conformation of the ternary SNARE complex may be related to a conformation that is juxtaposing the synaptic vesicle and plasma membranes. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release. DOI:http://dx.doi.org/10.7554/eLife.16886.001 Nerve cells communicate via electrical signals that travel at high speeds. However, these signals cannot pass across the gaps – called synapses – that separate one nerve cell from the next. Instead, signals pass between nerve cells via molecules called neurotransmitters that are released from the membrane of the first cell and recognized by receptors in the membrane of the next. Prior to being released, neurotransmitters are packaged inside bubble-like structures called vesicles. The synaptic vesicles must fuse with the cell membrane in order to release their contents into the synaptic cleft. Proteins called SNAREs work together with other proteins to allow this membrane fusion to occur rapidly after the electrical signal arrives. Complexin is a synaptic protein that binds tightly to a complex of SNARE proteins to regulate membrane fusion. This protein activates the quick release of neurotransmitters, which is triggered by an increase in calcium ions as the electrical signal reachess the synapse. Complexin also regulates a different type of neurotransmitter release, which is known as “spontaneous release”. The complexin protein is made up of different regions, each of which is required for one or more of the protein’s activities. However, it is not clear how these regions, or domains, interact with SNAREs and other proteins to enable complexin to perform these roles. Choi et al. have now investigated whether the different activities of mammalian complexin are related to the structure that it adopts when it interacts with the SNARE complex. Complexes of SNARE proteins were assembled with one of the SNARE proteins tethered to a surface for imaging. Next, a light-based imaging technique called single molecule Förster resonance energy transfer (or FRET) was used to monitor how complexin interacts with the SNARE complex. This technique allows individual proteins that have been labeled with fluorescent markers to be followed under a microscope and can show how they interact in real-time. Using this approach, Choi et al. showed that complexin could adopt two different shapes or conformations when it binds to the SNARE complex. In one, complexin interacted closely with the SNARE complex so that it made part of the complex change shape. In the other, complexin was able to bridge two SNARE complexes. Complexin can therefore interact with SNARE complexes in different ways by using different regions of the protein. These findings provide insight into how complexin may regulate membrane fusion via the SNARE complex. In the future, single molecule FRET could be used to study other proteins found at synapses and understand the other steps that regulate the release of neurotransmitters. DOI:http://dx.doi.org/10.7554/eLife.16886.002
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Minglei Zhao
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Yunxiang Zhang
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
13
|
Gauer J, LeBlanc S, Hao P, Qiu R, Case B, Sakato M, Hingorani M, Erie D, Weninger K. Single-Molecule FRET to Measure Conformational Dynamics of DNA Mismatch Repair Proteins. Methods Enzymol 2016; 581:285-315. [PMID: 27793283 PMCID: PMC5423442 DOI: 10.1016/bs.mie.2016.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Single-molecule FRET measurements have a unique sensitivity to protein conformational dynamics. The FRET signals can either be interpreted quantitatively to provide estimates of absolute distance in a molecule configuration or can be qualitatively interpreted as distinct states, from which quantitative kinetic schemes for conformational transitions can be deduced. Here we describe methods utilizing single-molecule FRET to reveal the conformational dynamics of the proteins responsible for DNA mismatch repair. Experimental details about the proteins, DNA substrates, fluorescent labeling, and data analysis are included. The complementarity of single molecule and ensemble kinetic methods is discussed as well.
Collapse
Affiliation(s)
- J.W. Gauer
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - S. LeBlanc
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - P. Hao
- North Carolina State University, Raleigh, NC, United States
| | - R. Qiu
- North Carolina State University, Raleigh, NC, United States
| | - B.C. Case
- Wesleyan University, Middletown, CT, United States
| | - M. Sakato
- Wesleyan University, Middletown, CT, United States
| | | | - D.A. Erie
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Corresponding authors: ;
| | - K.R. Weninger
- North Carolina State University, Raleigh, NC, United States,Corresponding authors: ;
| |
Collapse
|
14
|
McCann JJ, Choi UB, Bowen ME. Reconstitution of multivalent PDZ domain binding to the scaffold protein PSD-95 reveals ternary-complex specificity of combinatorial inhibition. Structure 2014; 22:1458-66. [PMID: 25220472 DOI: 10.1016/j.str.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/01/2014] [Accepted: 08/09/2014] [Indexed: 01/07/2023]
Abstract
Multidomain scaffold proteins serve as hubs in the signal transduction network. By physically colocalizing sequential steps in a transduction pathway, scaffolds catalyze and direct incoming signals. Much is known about binary interactions with individual domains, but it is unknown whether "scaffolding activity" is predictable from pairwise affinities. Here, we characterized multivalent binding to PSD-95, a scaffold protein containing three PDZ domains connected in series by disordered linkers. We used single molecule fluorescence to watch soluble PSD-95 recruit diffusing proteins to a surface-attached receptor cytoplasmic domain. Different ternary complexes showed unique concentration dependence for scaffolding despite similar pairwise affinity. The concentration dependence of scaffolding activity was not predictable based on binary interactions. PSD-95 did not stabilize specific complexes, but rather increased the frequency of transient binding events. Our results suggest that PSD-95 maintains a loosely connected pleomorphic ensemble rather than forming a stereospecific complex containing all components.
Collapse
Affiliation(s)
- James J McCann
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ucheor B Choi
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mark E Bowen
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
15
|
Mooney SM, Qiu R, Kim JJ, Sacho EJ, Rajagopalan K, Johng D, Shiraishi T, Kulkarni P, Weninger KR. Cancer/testis antigen PAGE4, a regulator of c-Jun transactivation, is phosphorylated by homeodomain-interacting protein kinase 1, a component of the stress-response pathway. Biochemistry 2014; 53:1670-9. [PMID: 24559171 PMCID: PMC4198062 DOI: 10.1021/bi500013w] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Prostate-associated gene 4 (PAGE4)
is a cancer/testis antigen that
is typically restricted to the testicular germ cells but is aberrantly
expressed in cancer. Furthermore, PAGE4 is developmentally regulated
with dynamic expression patterns in the developing prostate and is
also a stress-response protein that is upregulated in response to
cellular stress. PAGE4 interacts with c-Jun, which is activated by
the stress-response kinase JNK1, and plays an important role in the
development and pathology of the prostate gland. Here, we have identified
homeodomain-interacting protein kinase 1 (HIPK1), also a component
of the stress-response pathway, as a kinase that phosphorylates PAGE4
at T51. We show that phosphorylation of PAGE4 is critical for its
transcriptional activity since mutating this T residue abolishes its
ability to potentiate c-Jun transactivation. In vitro single molecule FRET indicates phosphorylation results in compaction
of (still) intrinsically disordered PAGE4. Interestingly, however,
while our previous observations indicated that the wild-type nonphosphorylated
PAGE4 protein interacted with c-Jun [RajagopalanK. et al. (2014) Biochim,
Biophys. Acta1842, 154−16324263171], here we show that phosphorylation of PAGE4
weakens its interaction with c-Jun in vitro. These
data suggest that phosphorylation induces conformational changes in
natively disordered PAGE4 resulting in its decreased affinity for
c-Jun to promote interaction of c-Jun with another, unidentified,
partner. Alternatively, phosphorylated PAGE4 may induce transcription
of a novel partner, which then potentiates c-Jun transactivation.
Regardless, the present results clearly implicate PAGE4 as a component
of the stress-response pathway and uncover a novel link between components
of this pathway and prostatic development and disease.
Collapse
Affiliation(s)
- Steven M Mooney
- The James Buchanan Brady Urological Institute and Department of Urology, ‡Oncology, §Cellular and Molecular Medicine, and ∥Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University School of Medicine , 733 North Broadway, Baltimore, Maryland 21205, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rajagopalan K, Qiu R, Mooney SM, Rao S, Shiraishi T, Sacho E, Huang H, Shapiro E, Weninger KR, Kulkarni P. The Stress-response protein prostate-associated gene 4, interacts with c-Jun and potentiates its transactivation. Biochim Biophys Acta Mol Basis Dis 2013; 1842:154-63. [PMID: 24263171 DOI: 10.1016/j.bbadis.2013.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/26/2013] [Accepted: 11/13/2013] [Indexed: 01/18/2023]
Abstract
The Cancer/Testis Antigen (CTA), Prostate-associated Gene 4 (PAGE4), is a stress-response protein that is upregulated in prostate cancer (PCa) especially in precursor lesions that result from inflammatory stress. In cells under stress, translocation of PAGE4 to mitochondria increases while production of reactive oxygen species decreases. Furthermore, PAGE4 is also upregulated in human fetal prostate, underscoring its potential role in development. However, the proteins that interact with PAGE4 and the mechanisms underlying its pleiotropic functions in prostatic development and disease remain unknown. Here, we identified c-Jun as a PAGE4 interacting partner. We show that both PAGE4 and c-Jun are overexpressed in the human fetal prostate; and in cell-based assays, PAGE4 robustly potentiates c-Jun transactivation. Single-molecule Förster resonance energy transfer experiments indicate that upon binding to c-Jun, PAGE4 undergoes conformational changes. However, no interaction is observed in presence of BSA or unilamellar vesicles containing the mitochondrial inner membrane diphosphatidylglycerol lipid marker cardiolipin. Together, our data indicate that PAGE4 specifically interacts with c-Jun and that, conformational dynamics may account for its observed pleiotropic functions. To our knowledge, this is the first report demonstrating crosstalk between a CTA and a proto-oncogene. Disrupting PAGE4/c-Jun interactions using small molecules may represent a novel therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Krithika Rajagopalan
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ruoyi Qiu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Steven M Mooney
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shweta Rao
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Takumi Shiraishi
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Sacho
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Hongying Huang
- Department of Urology, New York University School of Medicine, New York, NY 10016, USA
| | - Ellen Shapiro
- Department of Urology, New York University School of Medicine, New York, NY 10016, USA
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| | - Prakash Kulkarni
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
17
|
Choi UB, Kazi R, Stenzoski N, Wollmuth LP, Uversky VN, Bowen ME. Modulating the intrinsic disorder in the cytoplasmic domain alters the biological activity of the N-methyl-D-aspartate-sensitive glutamate receptor. J Biol Chem 2013; 288:22506-15. [PMID: 23782697 DOI: 10.1074/jbc.m113.477810] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The NMDA-sensitive glutamate receptor is a ligand-gated ion channel that mediates excitatory synaptic transmission in the nervous system. Extracellular zinc allosterically regulates the NMDA receptor by binding to the extracellular N-terminal domain, which inhibits channel gating. Phosphorylation of the intrinsically disordered intracellular C-terminal domain alleviates inhibition by extracellular zinc. The mechanism for this functional effect is largely unknown. Proline is a hallmark of intrinsic disorder, so we used proline mutagenesis to modulate disorder in the cytoplasmic domain. Proline depletion selectively uncoupled zinc inhibition with little effect on receptor biogenesis, surface trafficking, or ligand-activated gating. Proline depletion also reduced the affinity for a PDZ domain involved in synaptic trafficking and affected small molecule binding. To understand the origin of these phenomena, we used single molecule fluorescence and ensemble biophysical methods to characterize the structural effects of proline mutagenesis. Proline depletion did not eliminate intrinsic disorder, but the underlying conformational dynamics were changed. Thus, we altered the form of intrinsic disorder, which appears sufficient to affect the biological activity. These findings suggest that conformational dynamics within the intrinsically disordered cytoplasmic domain are important for the allosteric regulation of NMDA receptor gating.
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | |
Collapse
|