1
|
Chen S, Xu J, Xiao Y, Cai H, Zhou J, Cai W, Wang Y. Loss-of-Function of CLMP Is Associated With Congenital Short Bowel Syndrome and Impaired Intestinal Development. Clin Genet 2025; 107:413-424. [PMID: 39763071 DOI: 10.1111/cge.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
Coxsackie and adenovirus receptor-like membrane protein (CLMP) mutation is identified as a genetic risk factor of congenital short bowel syndrome (CSBS). However, the specific pathogenic mechanism remains unclear. This study aimed to explore the clinical manifestations, genetic characteristics, and molecular mechanisms underlying CSBS caused by CLMP mutations. Whole-exome sequencing was performed to determine the pathogenic gene mutations in children with CSBS and their family members. In addition, a zebrafish model was established by microinjecting morpholinos into zebrafish embryos to investigate the role of clmp in intestinal embryonic development. This was investigated by measuring the length of zebrafish, evaluating gastrointestinal motility, and performing qRT-PCR assays. Two children with CSBS had CLMP mutations, one with a c.244C>T (p.R82*) mutation and exons 3-5 deletion, and the other with a c.23T>A (p.L8*) mutation and exons 3-5 deletion. After knocking down clmp expression in zebrafish embryos, the intestinal length and the gastrointestinal motility decreased. Furthermore, the expression of smooth muscle-associated genes decreased significantly. Additionally, clmp mRNA partially rescued zebrafish defects caused by clmp morpholino knockdown. Clmp knockdown decreased intestinal transport dynamics and expression of smooth muscle-related genes in zebrafish. CLMP is expected to be a potential gene therapeutic target for CSBS.
Collapse
Affiliation(s)
- Shanshan Chen
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Hui Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhou
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
2
|
Gurung RL, Zheng H, Koh HWL, M Y, Liu JJ, Liu S, Chan C, Ang K, Tan CSH, Sobota RM, Subramaniam T, Sum CF, Lim SC. Plasma Proteomics of Diabetic Kidney Disease Among Asians With Younger-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2025; 110:e239-e248. [PMID: 38626182 PMCID: PMC11747753 DOI: 10.1210/clinem/dgae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 04/18/2024]
Abstract
CONTEXT Patients with younger onset of type 2 diabetes (YT2D) have increased risk for kidney failure compared to those with late onset. However, the mechanism of diabetic kidney disease (DKD) progression in this high-risk group is poorly understood. OBJECTIVE This work aimed to identify novel biomarkers and potential causal proteins associated with DKD progression in patients with YT2D. METHODS Among YT2D (T2D onset age <40 years), 144 DKD progressors (cases) were matched for T2D onset age, sex, and ethnicity with 292 nonprogressors (controls) and divided into discovery and validation sets. DKD progression was defined as decline of estimated glomerular filtration rate (eGFR) of 3 mL/min/1.73 m2 or greater or 40% decline in eGFR from baseline. A total of 1472 plasma proteins were measured through a multiplex immunoassay that uses a proximity extension assay technology. Multivariable logistic regression was used to identify proteins associated with DKD progression. Mendelian randomization (MR) was used to evaluate causal relationship between plasma proteins and DKD progression. RESULTS Forty-two plasma proteins were associated with DKD progression, independent of traditional cardiorenal risk factors, baseline eGFR, and urine albumin-to-creatinine ratio. The proteins identified were related to inflammatory and remodeling biological processes. Our findings suggest angiogenin as one of the top signals (odds ratio = 5.29; 95% CI, 2.39-11.73; P = 4.03 × 10-5). Furthermore, genetically determined plasma angiogenin level was associated with increased odds of DKD progression. CONCLUSION Large-scale proteomic analysis identified novel proteomic biomarkers for DKD progression in YT2D. Genetic evidence suggest a causal role of plasma angiogenin in DKD progression.
Collapse
Affiliation(s)
- Resham Lal Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore 169857
| | - Huili Zheng
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | | | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Clara Chan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Clara Si Hua Tan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | | | | | - Chee Fang Sum
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
- Institute of Molecular and Cell Biology, Singapore 138673
- Diabetes Centre, Admiralty Medical Centre, Singapore 730676
- Saw Swee Hock School of Public Heath, Singapore 117549
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| |
Collapse
|
3
|
Wu Z, Zhang X, An Y, Ma K, Xue R, Ye G, Du J, Chen Z, Zhu Z, Shi G, Ding X, Wan M, Jiang B, Zhang P, Liu J, Bu P. CLMP is a tumor suppressor that determines all-trans retinoic acid response in colorectal cancer. Dev Cell 2023; 58:2684-2699.e6. [PMID: 37944525 DOI: 10.1016/j.devcel.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
CAR-like membrane protein (CLMP) is a tight junction-associated protein whose mutation is associated with congenital short bowel syndrome (CSBS), but its functions in colorectal cancer (CRC) remain unknown. Here, we demonstrate that CLMP is rarely mutated but significantly decreased in CRC patients, and its deficiency accelerates CRC tumorigenesis, growth, and resistance to all-trans retinoic acid (ATRA). Mechanistically, CLMP recruits β-catenin to cell membrane, independent of cadherin proteins. CLMP-mediated β-catenin translocation inactivates Wnt(Wingless and INT-1)/β-catenin signaling, thereby suppressing CRC tumorigenesis and growth in ApcMin/+, azoxymethane/dextran sodium sulfate (AOM/DSS), and orthotopic CRC mouse models. As a direct target of Wnt/β-catenin, cytochrome P450 hydroxylase A1 (CYP26A1)-an enzyme that degrades ATRA to a less bioactive retinoid-is upregulated by CLMP deficiency, resulting in ATRA-resistant CRC that can be reversed by administering CYP26A1 inhibitor. Collectively, our data identify the anti-CRC role of CLMP and suggest that CYP26A1 inhibitor enable to boost ATRA's therapeutic efficiency.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanxuan Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhe An
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, China
| | - Kaiyue Ma
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixin Xue
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoqi Ye
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Du
- Department of General Surgery, the 7(th) Medical Center, Chinese PLA General Hospital, Beijing 100700, China
| | - Zhiyong Chen
- Department of Radiation Oncology Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Zijing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guizhi Shi
- Laboratory Animal Research Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Wan
- Laboratory Animal Research Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Jinbo Liu
- Department of Colorectal Surgery of the 1(st) Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Chen B, Zhu G, Yan A, He J, Liu Y, Li L, Yang X, Dong C, Kee K. IGSF11 is required for pericentric heterochromatin dissociation during meiotic diplotene. PLoS Genet 2021; 17:e1009778. [PMID: 34491997 PMCID: PMC8448346 DOI: 10.1371/journal.pgen.1009778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/17/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Meiosis initiation and progression are regulated by both germ cells and gonadal somatic cells. However, little is known about what genes or proteins connecting somatic and germ cells are required for this regulation. Our results show that deficiency for adhesion molecule IGSF11, which is expressed in both Sertoli cells and germ cells, leads to male infertility in mice. Combining a new meiotic fluorescent reporter system with testicular cell transplantation, we demonstrated that IGSF11 is required in both somatic cells and spermatogenic cells for primary spermatocyte development. In the absence of IGSF11, spermatocytes proceed through pachytene, but the pericentric heterochromatin of nonhomologous chromosomes remains inappropriately clustered from late pachytene onward, resulting in undissolved interchromosomal interactions. Hi-C analysis reveals elevated levels of interchromosomal interactions occurring mostly at the chromosome ends. Collectively, our data elucidates that IGSF11 in somatic cells and germ cells is required for pericentric heterochromatin dissociation during diplotene in mouse primary spermatocytes. For sexually reproducing species, the number of chromosomes in a mature germ cell is half that of a typical somatic cell, and its chromosome sequence is not identical to that of parental cell, these changes result from a highly specialized cell division process named meiosis. In contrast to mitosis, germ cells undergo many meiotic-specific regulatory processes during prophase I of meiosis. In mammals, the development of male and female meiotic germ cells relies on completely different microenvironment provided by sexually specialized gonadal somatic cells, but what gene is required for germ cells and gonadal somatic cells to mediate meiosis progression is largely unclear. Here, we construct a fluorescent reporter to trace meiotic prophase in mice, and use it to examine the requirement of IGSF11 in mediating pericentric heterochromatin dissociation during meiosis.
Collapse
Affiliation(s)
- Bo Chen
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Gengzhen Zhu
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - An Yan
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jing He
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yang Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
5
|
Eom DS, Patterson LB, Bostic RR, Parichy DM. Immunoglobulin superfamily receptor Junctional adhesion molecule 3 (Jam3) requirement for melanophore survival and patterning during formation of zebrafish stripes. Dev Biol 2021; 476:314-327. [PMID: 33933422 PMCID: PMC10069301 DOI: 10.1016/j.ydbio.2021.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Adhesive interactions are essential for tissue patterning and morphogenesis yet difficult to study owing to functional redundancies across genes and gene families. A useful system in which to dissect roles for cell adhesion and adhesion-dependent signaling is the pattern formed by pigment cells in skin of adult zebrafish, in which stripes represent the arrangement of neural crest derived melanophores, cells homologous to melanocytes. In a forward genetic screen for adult pattern defects, we isolated the pissarro (psr) mutant, having a variegated phenotype of spots, as well as defects in adult fin and lens. We show that psr corresponds to junctional adhesion protein 3b (jam3b) encoding a zebrafish orthologue of the two immunoglobulin-like domain receptor JAM3 (JAM-C), known for roles in adhesion and signaling in other developing tissues, and for promoting metastatic behavior of human and murine melanoma cells. We found that zebrafish jam3b is expressed post-embryonically in a variety of cells including melanophores, and that jam3b mutants have defects in melanophore survival. Jam3b supported aggregation of cells in vitro and was required autonomously by melanophores for an adherent phenotype in vivo. Genetic analyses further indicated both overlapping and non-overlapping functions with the related receptor, Immunoglobulin superfamily 11 (Igsf11) and Kit receptor tyrosine kinase. These findings suggest a model for Jam3b function in zebrafish melanophores and hint at the complexity of adhesive interactions underlying pattern formation.
Collapse
Affiliation(s)
- Dae Seok Eom
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Raegan R Bostic
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Han X, Zhao ZA, Yan S, Lei W, Wu H, Lu XA, Chen Y, Li J, Wang Y, Yu M, Wang Y, Zheng Y, Wang H, Shen Z, Hu S. CXADR-like membrane protein protects against heart injury by preventing excessive pyroptosis after myocardial infarction. J Cell Mol Med 2020; 24:13775-13788. [PMID: 33084169 PMCID: PMC7753842 DOI: 10.1111/jcmm.15955] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Myocardial infarction (MI) results in cardiomyocyte death and ultimately leads to heart failure. Pyroptosis is a type of the inflammatory programmed cell death that has been found in various diseased tissues. However, the role of pyroptosis in MI heart remains unknown. Here, we showed that CXADR‐like membrane protein (CLMP) was involved in pyroptosis in the mouse MI heart. Our data showed that CLMP was strongly expressed in fibroblasts of the infarcted mouse hearts. The Clmp+/− mice showed more serious myocardial fibrosis and ventricular dysfunction post‐MI than wild‐type (Clmp+/+) mice, indicating a protective effect of the fibroblast‐expressed CLMP against MI‐induced heart damage. Transcriptome analyses by RNA sequencing indicated that Il‐1β mRNA was significantly increased in the MI heart of Clmp+/− mouse, which indicated a more serious inflammatory response. Meanwhile, cleaved caspase‐1 and Gasdermin D were significantly increased in the Clmp+/− MI heart, which demonstrated enhanced pyroptosis in the Clmp knockdown heart. Further analysis revealed that the pyroptosis mainly occurred in cardiac fibroblasts (CFs). Compared to wild‐type fibroblasts, Clmp+/− CFs showed more serious pyroptosis and inflammatory after LPS plus nigericin treatment. Collectively, our results indicate that CLMP participates in the pyroptotic and inflammatory response of CFs in MI heart. We have provided a novel pyroptotic insight into the ischaemic heart, which might hold substantial potential for the treatment of MI.
Collapse
Affiliation(s)
- Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation & Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, China
| | - Shiping Yan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Xing-Ai Lu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yongming Wang
- MOE Key Laboratory of Contemporary Anthropology at School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Ebnet K. Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. Physiol Rev 2017; 97:1529-1554. [PMID: 28931565 DOI: 10.1152/physrev.00004.2017] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Junctional adhesion molecules (JAM)-A, -B and -C are cell-cell adhesion molecules of the immunoglobulin superfamily which are expressed by a variety of tissues, both during development and in the adult organism. Through their extracellular domains, they interact with other adhesion receptors on opposing cells. Through their cytoplasmic domains, they interact with PDZ domain-containing scaffolding and signaling proteins. In combination, these two properties regulate the assembly of signaling complexes at specific sites of cell-cell adhesion. The multitude of molecular interactions has enabled JAMs to adopt distinct cellular functions such as the regulation of cell-cell contact formation, cell migration, or mitotic spindle orientation. Not surprisingly, JAMs regulate diverse processes such as epithelial and endothelial barrier formation, hemostasis, angiogenesis, hematopoiesis, germ cell development, and the development of the central and peripheral nervous system. This review summarizes the recent progress in the understanding of JAMs, including their characteristic structural features, their molecular interactions, their cellular functions, and their contribution to a multitude of processes during vertebrate development and homeostasis.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Cells-In-Motion Cluster of Excellence (EXC1003-CiM), and Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| |
Collapse
|
8
|
Matthäus C, Langhorst H, Schütz L, Jüttner R, Rathjen FG. Cell-cell communication mediated by the CAR subgroup of immunoglobulin cell adhesion molecules in health and disease. Mol Cell Neurosci 2016; 81:32-40. [PMID: 27871939 DOI: 10.1016/j.mcn.2016.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
The immunoglobulin superfamily represents a diverse set of cell-cell contact proteins and includes well-studied members such as NCAM1, DSCAM, L1 or the contactins which are strongly expressed in the nervous system. In this review we put our focus on the biological function of a less understood subgroup of Ig-like proteins composed of CAR (coxsackievirus and adenovirus receptor), CLMP (CAR-like membrane protein) and BT-IgSF (brain and testis specific immunoglobulin superfamily). The CAR-related proteins are type I transmembrane proteins containing an N-terminal variable (V-type) and a membrane proximal constant (C2-type) Ig domain in their extracellular region which are implicated in homotypic adhesion. They are highly expressed during embryonic development in a variety of tissues including the nervous system whereby in adult stages the protein level of CAR and CLMP decreases, only BT-IgSF expression increases within age. CAR-related proteins are concentrated at specialized cell-cell communication sites such as gap or tight junctions and are present at the plasma membrane in larger protein complexes. Considerable progress has been made on the molecular structure and interactions of CAR while research on CLMP and BT-IgSF is at an early stage. Studies on mouse mutants revealed biological functions of CAR in the heart and for CLMP in the gastrointestinal and urogenital systems. Furthermore, CAR and BT-IgSF appear to regulate synaptic function in the hippocampus.
Collapse
Affiliation(s)
- Claudia Matthäus
- Max-Delbrück-Center for Molecular Medicine, Developmental Neurobiology, 13092 Berlin, Germany.
| | - Hanna Langhorst
- Max-Delbrück-Center for Molecular Medicine, Developmental Neurobiology, 13092 Berlin, Germany
| | - Laura Schütz
- Max-Delbrück-Center for Molecular Medicine, Developmental Neurobiology, 13092 Berlin, Germany
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Developmental Neurobiology, 13092 Berlin, Germany
| | - Fritz G Rathjen
- Max-Delbrück-Center for Molecular Medicine, Developmental Neurobiology, 13092 Berlin, Germany.
| |
Collapse
|
9
|
Zhang NH, Peng RQ, Ding Y, Zhang XS. Rejection of adenovirus infection is independent of coxsackie and adenovirus receptor expression in cisplatin-resistant human lung cancer cells. Oncol Rep 2016; 36:715-20. [PMID: 27373420 DOI: 10.3892/or.2016.4870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/06/2016] [Indexed: 11/06/2022] Open
Abstract
The adenovirus vector-based cancer gene therapy is controversial. Low transduction efficacy is believed to be one of the main barriers for the decreased expression of coxsackie and adenovirus receptor (CAR) on tumor cells. However, the expression of CAR on primary tumor tissue and tumor tissue survived from treatment has still been not extensively studied. The present study analyzed the adenovirus infection rates and CAR expression in human lung adenocarcinoma cell line A549 and its cisplatin-resistant subline A549/DDP. The results showed that although the CAR expression in A549 and A549/DDP was not different, compared with the A549, A549/DDP appeared obviously to reject adenovirus infection. Moreover, we modified CAR expression in the two cell lines with proteasome inhibitor MG-132 and histone deacetylase inhibitor trichostatin A (TSA), and analyzed the adenovirus infection rates after modifying agent treatments. Both TSA and MG-132 pretreatments could increase the CAR expression in the two cell lines, but the drug pretreatments could only make A549 cells more susceptible to adenovirus infectivity.
Collapse
Affiliation(s)
- Nian-Hua Zhang
- Department of Oncology, Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, P.R. China
| | - Rui-Qing Peng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Ya Ding
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Xiao-Shi Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
10
|
Jang S, Oh D, Lee Y, Hosy E, Shin H, van Riesen C, Whitcomb D, Warburton JM, Jo J, Kim D, Kim SG, Um SM, Kwon SK, Kim MH, Roh JD, Woo J, Jun H, Lee D, Mah W, Kim H, Kaang BK, Cho K, Rhee JS, Choquet D, Kim E. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity. Nat Neurosci 2016; 19:84-93. [PMID: 26595655 PMCID: PMC5010778 DOI: 10.1038/nn.4176] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms that include trans-synaptic adhesion and recruitment of diverse synaptic proteins. We found that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule that preferentially expressed in the brain, is a dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPA glutamate receptors (AMPARs). IgSF11 required PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilized synaptic AMPARs, as determined by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice led to the suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 did not regulate the functional characteristics of AMPARs, including desensitization, deactivation or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs.
Collapse
Affiliation(s)
- Seil Jang
- Department of Biological Sciences, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Daeyoung Oh
- Department of Biomedical Sciences, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 305-701, Korea
- Department of Psychiatry, CHA Bundang Medical Center, CHA
University, Seoul, Korea
| | - Yeunkum Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science
(IBS), Daejeon 305-701, Korea
| | - Eric Hosy
- University of Bordeaux, Interdisciplinary Institute for
Neuroscience, France; CNRS UMR 5297, F-33000 Bordeaux, France
| | - Hyewon Shin
- Department of Biomedical Sciences, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Christoph van Riesen
- Department of Molecular Neurobiology, Max Planck Institute of
Experimental Medicine, D-37075 Göttingen, Germany
| | - Daniel Whitcomb
- School of Clinical Sciences, Faculty of Medicine and Dentistry,
University of Bristol, Whitson street, Bristol, UK
- Centre for Synaptic Plasticity, University of Bristol, Whitson
street, Bristol, UK
| | - Julia M. Warburton
- School of Clinical Sciences, Faculty of Medicine and Dentistry,
University of Bristol, Whitson street, Bristol, UK
| | - Jihoon Jo
- School of Clinical Sciences, Faculty of Medicine and Dentistry,
University of Bristol, Whitson street, Bristol, UK
- Department of Biomedical Sciences, Chonnam National University
Medical School, Gwangju, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science
(IBS), Daejeon 305-701, Korea
| | - Sun Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science
(IBS), Daejeon 305-701, Korea
| | - Seung Min Um
- Department of Biological Sciences, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Seok-kyu Kwon
- Department of Biological Sciences, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Myoung-Hwan Kim
- Department of Physiology, Seoul National University College of
Medicine, Seoul 110-799, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Gyeonggi
463-707, Republic of Korea
| | - Junyeop Daniel Roh
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science
(IBS), Daejeon 305-701, Korea
| | - Jooyeon Woo
- Department of Biological Sciences, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Heejung Jun
- Brain and Cognitive Sciences, College of Natural Sciences, Seoul
National University, Seoul 151-747, Korea
| | - Dongmin Lee
- Department of Anatomy and Division of Brain Korea 21 Biomedical
Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu,
Seoul 136-705, Korea
| | - Won Mah
- Department of Anatomy and Neurobiology, School of Dentistry,
Kyungpook National University, Daegu 700-412, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Biomedical
Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu,
Seoul 136-705, Korea
| | - Bong-Kiun Kaang
- Brain and Cognitive Sciences, College of Natural Sciences, Seoul
National University, Seoul 151-747, Korea
| | - Kwangwook Cho
- School of Clinical Sciences, Faculty of Medicine and Dentistry,
University of Bristol, Whitson street, Bristol, UK
- Centre for Synaptic Plasticity, University of Bristol, Whitson
street, Bristol, UK
| | - Jeong-Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of
Experimental Medicine, D-37075 Göttingen, Germany
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for
Neuroscience, France; CNRS UMR 5297, F-33000 Bordeaux, France
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 305-701, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science
(IBS), Daejeon 305-701, Korea
| |
Collapse
|
11
|
Allorecognition proteins in an invertebrate exhibit homophilic interactions. Curr Biol 2015; 25:2845-2850. [PMID: 26455308 DOI: 10.1016/j.cub.2015.09.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 11/21/2022]
Abstract
Sessile colonial invertebrates-animals such as sponges, corals, bryozoans, and ascidians-can distinguish between their own tissues and those of conspecifics upon contact [1]. This ability, called allorecognition, mediates spatial competition and can prevent stem cell parasitism by ensuring that colonies only fuse with self or close kin. In every taxon studied to date, allorecognition is controlled by one or more highly polymorphic genes [2-8]. However, in no case is it understood how the proteins encoded by these genes discriminate self from non-self. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two highly polymorphic allorecognition genes, Alr1 and Alr2 [3, 5, 9-12]. Sequence variation at each gene predicts allorecognition in laboratory strains such that colonies reject if they do not share a common allele at either locus, fuse temporarily if they share an allele at only one locus, or fuse permanently if they share an allele at both genes [5, 9]. Here, we show that the gene products of Alr1 and Alr2 (Alr1 and Alr2) are self-ligands with extraordinary specificity. Using an in vitro cell aggregation assay, we found that Alr1 and Alr2 bind to themselves homophilically across opposing cell membranes. For both proteins, each isoform bound only to itself or to an isoform of nearly identical sequence. These results provide a mechanistic explanation for the exquisite specificity of Hydractinia allorecognition. Our results also indicate that hydroids have evolved a molecular strategy of self-recognition that is unique among characterized allorecognition systems within and outside invertebrates.
Collapse
|
12
|
Schell C, Kretz O, Bregenzer A, Rogg M, Helmstädter M, Lisewski U, Gotthardt M, Tharaux PL, Huber TB, Grahammer F. Podocyte-Specific Deletion of Murine CXADR Does Not Impair Podocyte Development, Function or Stress Response. PLoS One 2015; 10:e0129424. [PMID: 26076477 PMCID: PMC4468136 DOI: 10.1371/journal.pone.0129424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/10/2015] [Indexed: 12/27/2022] Open
Abstract
The coxsackie- and adenovirus receptor (CXADR) is a member of the immunoglobulin protein superfamily, present in various epithelial cells including glomerular epithelial cells. Beside its known function as a virus receptor, it also constitutes an integral part of cell-junctions. Previous studies in the zebrafish pronephros postulated a potential role of CXADR for the terminal differentiation of glomerular podocytes and correct patterning of the elaborated foot process architecture. However, due to early embryonic lethality of constitutive Cxadr knockout mice, mammalian data on kidney epithelial cells have been lacking. Interestingly, Cxadr is robustly expressed during podocyte development and in adulthood in response to glomerular injury. We therefore used a conditional transgenic approach to elucidate the function of Cxadr for podocyte development and stress response. Surprisingly, we could not discern a developmental phenotype in podocyte specific Cxadr knock-out mice. In addition, despite a significant up regulation of CXADR during toxic, genetic and immunologic podocyte injury, we could not detect any impact of Cxadr on these injury models. Thus these data indicate that in contrast to lower vertebrate models, mammalian podocytes have acquired molecular programs to compensate for the loss of Cxadr.
Collapse
Affiliation(s)
- Christoph Schell
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Oliver Kretz
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
- Department of Neuroanatomy, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Andreas Bregenzer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | | | - Ulrike Lisewski
- Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | - Tobias B. Huber
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, Freiburg, Germany
- BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- * E-mail:
| | - Florian Grahammer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|