1
|
Huang X, Zhu Q, Huang X, Yang L, Song Y, Zhu P, Zhou P. In vivo electroporation in DNA-VLP prime-boost preferentially enhances HIV-1 envelope-specific IgG2a, neutralizing antibody and CD8 T cell responses. Vaccine 2017; 35:2042-2051. [DOI: 10.1016/j.vaccine.2017.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 03/03/2017] [Indexed: 01/14/2023]
|
2
|
Li J, Valentin A, Beach RK, Alicea C, Felber BK, Pavlakis GN. DNA is an efficient booster of dendritic cell-based vaccine. Hum Vaccin Immunother 2016; 11:1927-35. [PMID: 26125100 PMCID: PMC4635890 DOI: 10.1080/21645515.2015.1020265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DC-based therapeutic vaccines as a promising strategy against chronic infections and cancer have been validated in several clinical trials. However, DC-based vaccines are complex and require many in vitro manipulations, which makes this a personalized and expensive therapeutic approach. In contrast, DNA-based vaccines have many practical advantages including simplicity, low cost of manufacturing and potent immunogenicity already proven in non-human primates and humans. In this study, we explored whether DC-based vaccines can be simplified by the addition of plasmid DNA as prime or boost to achieve robust CD8-mediated immune responses. We compared the cellular immunity induced in BALB/c and C57BL/6 mice by DC vaccines, loaded either with peptides or optimized SIV Env DNA, and plasmid DNA-based vaccines delivered by electroporation (EP). We found that mature DC loaded with peptides (P-mDC) induced the highest CD8(+) T cell responses in both strains of mice, but those responses were significantly higher in the C57BL/6 model. A heterologous prime-boost strategy (P-DC prime-DNA boost) induced CD8(+) T cell responses similar to those obtained by the P-DC vaccine. Importantly, this strategy elicited robust polyfunctional T cells as well as highest antigen-specific central memory CD8+ T cells in C57BL/6 mice, suggesting long-term memory responses. These results indicate that a DC-based vaccine in combination with DNA in a heterologous DC prime-DNA boost strategy has potential as a repeatedly administered vaccine.
Collapse
Affiliation(s)
- Jinyao Li
- a Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute ; Frederick , MD USA
| | | | | | | | | | | |
Collapse
|
3
|
Ren Y, Wang N, Hu W, Zhang X, Xu J, Wan Y. Successive site translocating inoculation potentiates DNA/recombinant vaccinia vaccination. Sci Rep 2015; 5:18099. [PMID: 26667202 PMCID: PMC4678304 DOI: 10.1038/srep18099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/11/2015] [Indexed: 12/22/2022] Open
Abstract
DNA vaccines have advantages over traditional vaccine modalities; however the relatively low immunogenicity restrains its translation into clinical use. Further optimizations are needed to get the immunogenicity of DNA vaccine closer to the level required for human use. Here we show that intramuscularly inoculating into a different limb each time significantly improves the immunogenicities of both DNA and recombinant vaccinia vaccines during multiple vaccinations, compared to repeated vaccination on the same limb. We term this strategy successive site translocating inoculation (SSTI). SSTI could work in synergy with genetic adjuvant and DNA prime-recombinant vaccinia boost regimen. By comparing in vivo antigen expression, we found that SSTI avoided the specific inhibition of in vivo antigen expression, which was observed in the limbs being repeatedly inoculated. Employing in vivo T cell depletion and passive IgG transfer, we delineated that the inhibition was not mediated by CD8+ T cells but by specific antibodies. Finally, by using C3−/− mouse model and in vivo NK cells depletion, we identified that specific antibodies negatively regulated the in vivo antigen expression primarily in a complement depended way.
Collapse
Affiliation(s)
- Yanqin Ren
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Na Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiguo Hu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yanmin Wan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| |
Collapse
|
4
|
Nilsson C, Hejdeman B, Godoy-Ramirez K, Tecleab T, Scarlatti G, Bråve A, Earl PL, Stout RR, Robb ML, Shattock RJ, Biberfeld G, Sandström E, Wahren B. HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial. PLoS One 2015; 10:e0131748. [PMID: 26121679 PMCID: PMC4486388 DOI: 10.1371/journal.pone.0131748] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/04/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers. METHODS HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA. RESULTS The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients. CONCLUSION Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use. TRIAL REGISTRATION International Standard Randomised Controlled Trial Number (ISRCTN) 60284968.
Collapse
Affiliation(s)
- Charlotta Nilsson
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| | - Bo Hejdeman
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | | | - Teghesti Tecleab
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and infectious diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andreas Bråve
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Patricia L. Earl
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, United States of America
| | | | - Merlin L. Robb
- Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Robin J. Shattock
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, United Kingdom
| | - Gunnel Biberfeld
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Sandström
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|